mirror of
https://github.com/autistic-symposium/tensorflow-for-deep-learning-py.git
synced 2025-05-10 18:54:57 -04:00
36 lines
930 B
Python
36 lines
930 B
Python
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
# Model linear regression y = Wx + b
|
|
x = tf.placeholder(tf.float32, [None, 1])
|
|
W = tf.Variable(tf.zeros([1,1]))
|
|
b = tf.Variable(tf.zeros([1]))
|
|
product = tf.matmul(x,W)
|
|
y = product + b
|
|
y_ = tf.placeholder(tf.float32, [None, 1])
|
|
|
|
# Cost function sum((y_-y)**2)
|
|
cost = tf.reduce_mean(tf.square(y_-y))
|
|
|
|
# Training using Gradient Descent to minimize cost
|
|
train_step = tf.train.GradientDescentOptimizer(0.0000001).minimize(cost)
|
|
|
|
sess = tf.Session()
|
|
init = tf.initialize_all_variables()
|
|
sess.run(init)
|
|
steps = 1000
|
|
for i in range(steps):
|
|
|
|
# Create fake data for y = W.x + b where W = 2, b = 0
|
|
xs = np.array([[i]])
|
|
ys = np.array([[2*i]])
|
|
|
|
# Train
|
|
feed = { x: xs, y_: ys }
|
|
sess.run(train_step, feed_dict=feed)
|
|
|
|
print("After %d iteration:" % i)
|
|
print("W: %f" % sess.run(W))
|
|
print("b: %f" % sess.run(b))
|
|
|
|
print("cost: %f" % sess.run(cost, feed_dict=feed))
|