
DRAFTPrinciples of Algorithmic Problem Solving

Johan Sannemo

2017

DRAFT

ii

This version of the book is a preliminary draft. Expect to find
typos and other mistakes. If you do, please report them to
johan.sannemo+book@gmail.com. Before reporting a bug, please
check whether it still exists in the latest version of this draft,
available at http://csc.kth.se/~jsannemo/slask/main.pdf.

mailto:johan.sannemo+book@gmail.com
http://csc.kth.se/~jsannemo/slask/main.pdf

DRAFT
Contents

Preface vii

Reading this Book ix

I Preliminaries 1

1 Algorithms and Problems 3
1.1 Computational Problems . 3
1.2 Algorithms . 5

1.2.1 Correctness . 7
1.3 Programming Languages . 8
1.4 Pseudo Code . 9
1.5 The Kattis Online Judge . 10
1.6 Chapter Notes . 11

2 Programming in C++ 13
2.1 Development Environments . 14
2.2 Hello World! . 14
2.3 Variables and Types . 17
2.4 Input and Output . 21
2.5 Operators . 23
2.6 If Statements . 25
2.7 For Loops . 27
2.8 While Loops . 29
2.9 Functions . 29
2.10 Structures . 32
2.11 Arrays . 35
2.12 The Preprocessor . 36
2.13 Template . 37
2.14 Additional Exercises . 37
2.15 Chapter Notes . 38

iii

DRAFT

iv CONTENTS

3 Implementation Problems 39
3.1 Additional Exercises . 54
3.2 Chapter Notes . 54

4 Time Complexity 57
4.1 The Complexity of Insertion Sort . 57
4.2 Asymptotic Notation . 60
4.3 NP-complete problems . 62
4.4 Other Types of Complexities . 63
4.5 Exercises . 63
4.6 Chapter Notes . 64

II Basics 65

5 Brute Force 67
5.1 Optimization Problems . 67
5.2 Generate and Test . 68
5.3 Backtracking . 71
5.4 Fixing Parameters . 77
5.5 Meet in the Middle . 79
5.6 Chapter Notes . 81

6 Greedy Algorithms 83
6.1 Optimal Substructure . 83
6.2 Locally Optimal Choices . 85
6.3 Scheduling . 86
6.4 Chapter Notes . 89

7 Dynamic Programming 91
7.1 Best Path in a DAG . 91
7.2 Dynamic Programming . 93

7.2.1 Bottom-Up Computation . 94
7.2.2 Order of Computation and Memory Usage 95

7.3 Multidimensional DP . 96
7.4 Subset DP . 98
7.5 Digit DP . 99
7.6 Standard Problems . 101

7.6.1 Knapsack . 102
7.6.2 Longest Common Subsequence 103
7.6.3 Set Cover . 104

7.7 Chapter Notes . 107

8 Divide and Conquer 109

DRAFT

CONTENTS v

8.1 Inductive Constructions . 109
8.2 Merge Sort . 116
8.3 Binary Search . 118

8.3.1 Optimization Problems . 120
8.3.2 Searching in a Sorted Array . 121
8.3.3 Generalized Binary Search . 123

8.4 Karatsuba’s algorithm . 125
8.5 Chapter Notes . 126

9 Data Structures 127
9.1 Disjoint Sets . 127
9.2 Range Queries . 130

9.2.1 Prefix Precomputation . 130
9.2.2 Sparse Tables . 131
9.2.3 Segment Trees . 133

9.3 Chapter Notes . 136

10 Graph Algorithms 137
10.1 Breadth-First Search . 137
10.2 Depth-First Search . 142
10.3 Weighted Shortest Path . 145

10.3.1 Dijkstra’s Algorithm . 145
10.3.2 Bellman-Ford . 145
10.3.3 Floyd-Warshall . 147

10.4 Minimum Spanning Tree . 148
10.5 Chapter Notes . 150

11 Maximum Flows 151
11.1 Flow Networks . 151
11.2 Edmonds-Karp . 153

11.2.1 Augmenting Paths . 154
11.2.2 Finding Augmenting Paths . 155

11.3 Applications of Flows . 156
11.4 Chapter Notes . 158

12 Strings 159
12.1 Tries . 159
12.2 String Matching . 164
12.3 Hashing . 168

12.3.1 The Parameters of Polynomial Hashes 173
12.3.2 2D Polynomial Hashing . 175

12.4 Chapter Notes . 176

13 Combinatorics 177

DRAFT

vi CONTENTS

13.1 The Addition and Multiplication Principles 177
13.2 Permutations . 180

13.2.1 Permutations as Bijections . 181
13.3 Ordered Subsets . 186
13.4 Binomial Coefficients . 186

13.4.1 Dyck Paths . 190
13.4.2 Catalan Numbers . 193

13.5 The Principle of Inclusion and Exclusion 194
13.6 Invariants . 196
13.7 Monovariants . 198
13.8 Chapter Notes . 203

14 Number Theory 205
14.1 Divisibility . 205
14.2 Prime Numbers . 208
14.3 The Euclidean Algorithm . 212
14.4 Modular Arithmetic . 218
14.5 Chinese Remainder Theorem . 221
14.6 Euler’s totient function . 223
14.7 Chapter Notes . 227

15 Competitive Programming Strategy 229
15.1 IOI . 229

15.1.1 Strategy . 230
15.1.2 Getting Better . 231

15.2 ICPC . 232
15.2.1 Strategy . 232
15.2.2 Getting Better . 234

A Mathematics 237
A.1 Logic . 237
A.2 Sets and Sequences . 240
A.3 Sums and Products . 242
A.4 Graphs . 244
A.5 Chapter Notes . 246

Bibliography 249

Index 251

DRAFT
Preface

Algorithmic problem solving is the art of formulating efficient methods that solve
problems of a mathematical nature. From the many numerical algorithms developed
by the ancient Babylonians to the founding of graph theory by Euler, algorithmic
problem solving has been a popular intellectual pursuit during the last few thousand
years. For a long time, it was a purely mathematical endeavor, with algorithms
meant to be executed by hand. During the recent decades, algorithmic problem
solving has evolved. What was mainly a topic of research became a mind sport
known as competitive programming. As a sport, algorithmic problem solving rose
in popularity, with the largest events attracting tens of thousands of programmers.
While its mathematical counterpart has a rich literature, there are only a few books
on algorithms with a strong problem solving focus.

The purpose of this book is to contribute to the literature of algorithmic problem
solving in two ways. First of all, it tries to fill in some holes in existing books. Many
topics in algorithmic problem solving lack any treatment at all in the literature – at
least in English books. Instead, much of the content is documented only in blog posts
and solutions to problems from various competitions. While this book attempts to
rectify this, it is not to detract from those sources. Many of the best treatments of
an algorithmic topic I have seen are as part of a well-written solution to a problem.
However, there is value in completeness and coherence when treating such a large
area. Secondly, I hope to provide another way of learning the basics of algorithmic
problem solving, by helping the reader build an intuition for problem solving. A large
part of this book describes techniques using worked-through examples of problems.
These examples attempt not only to describe the manner in which a problem is solved,
but to give an insight into how a thought process might be guided to yield the insights
necessary to arrive at a solution.

This book is different from pure programming books and most other algorithm
textbooks. Programming books are mostly either in-depth studies of a specific pro-
gramming language, or describe various programming paradigms. In this book, a
single language is used – C++. The text on C++ exists for the sole purpose of enabling
those readers without prior programming experience to implement the solutions to
algorithm problems. Such a treatment is necessarily minimal, and will teach neither

vii

DRAFT

viii CONTENTS

good coding style nor advanced programming concepts. Algorithm textbooks teach
primarily algorithm analysis, basic algorithm design, and some standard algorithms
and data structures. They seldom include as much problem solving as this book does.
Additionally, it falls somewhere between the practical nature of a programming book
and the heavy theory of algorithm textbooks. This is in part due to the book’s dual
nature of being not only about algorithmic problem solving, but also competitive
programming, to an extent. As such, we will include more real code and efficient C++
implementations of algorithms than you will see in most algorithm books.

Acknowledgments. First and foremost, thanks to Per Austrin, who provided much
valuable advice and feedback during the writing of this book. Thanks to Simon and
Mårten, who have competed with me for several years as Omogen Heap. Finally,
thanks to several others, who have read through drafts and caught numerous mistakes
of my own.

DRAFT
Reading this Book

This book consists of two parts. The first part contains some preliminary background,
such as algorithm analysis and programming in C++. With an undergraduate educa-
tion in computer science, most of these chapters are probably familiar to you. It is
recommended that you at least skim through the first part, since the remainder of the
book assumes you know the contents of the preliminary chapters.

The second part makes up most of the material in the book. Some of it should be
familiar if you have taken a course in algorithms and data structures. The take
on those topics is a bit different compared to an algorithms course. Therefore, we
recommend that you read through the parts even if you feel familiar with them –
in particular those on the basic problem solving paradigms, i.e. brute force, greedy
algorithms, dynamic programming and divide & conquer. The chapters in this part
are structured so that a chapter builds upon only the preliminaries and previous
chapters to the largest extent possible.

At the end of the book, you can find a appendix with some mathematical back-
ground.

This book can also be used to improve your competitive programming skills. Some
parts are unique to competitive programming (in particular Chapter 15 on contest
strategy). This knowledge is extracted into competitive tips:

Competitive Tip

A competitive tip contains some information specific to competitive programming.
These can be safely ignored if you are interested only in the problem solving
aspect and not the competitions.

The book often refers to exercises from the Kattis online judge. These are named Kattis
Exercise, and give a problem name and ID.

Exercise 0.1 — Kattis Exercise

Problem Name – problemid

ix

DRAFT

x CONTENTS

The URL of such a problem is http://open.kattis.com/problem/problemid.

The C++ code in this book makes use of some preprocessor directives from a template.
Even if you are familiar with C++, or does not wish to learn it, we still recommend
that you read through this template (Section 2.13) to better understand the C++ code
in the book.

http://open.kattis.com/problem/problemid

DRAFTPart I

Preliminaries

1

DRAFT

DRAFT
Chapter 1

Algorithms and Problems

The greatest technical invention of the last century was probably the digital, general
purpose computer. It was the start of the revolution which provided us with the
Internet, smartphones, tablets and the computerization of society.

To harness the power of computers, we use programming. Programming is the art of
developing a solution to a computational problem, in the form of a set of instructions that
a computer can execute. These instructions are what we call code, and the language in
which they are written a programming language.

The abstract method that such code describes is what we call an algorithm. The aim of
algorithmic problem solving is thus to, given a computational problem, devise an algo-
rithm that solves it. One does not necessarily need to complete the full programming
process (i.e. writing code that implements the algorithm in a programming language)
to enjoy solving algorithmic problems. However, it often provides more insight and
trains you at finding simpler algorithms to problems.

1.1 Computational Problems

A computational problem generally consists of two parts. First, it needs an input
description, such as “a sequence of integers”, “a string”, or some other kind of
mathematical object. Using this input, we have a goal which we wish to accomplish
defined by an output description. For example, a computational problem might
require us to sort a given sequence of integers. This particular problem is called the
Sorting Problem.

Sorting
Your task is to sort a sequence of integers in descending order, i.e. from the lowest

3

DRAFT

4 CHAPTER 1. ALGORITHMS AND PROBLEMS

to the highest.

Input
The input consists of a sequence of N integers a0, a1, ..., aN−1.

Output
The output should contain a permutation a ′ of the sequence a, such that a ′0 ≤
a ′1 ≤ ... ≤ a ′N−1.

A particular input to a computational problem is called an instance. To the sorting
problem, the sequence 3, 6, 1,−1, 2, 2 would be an instance. The correct output for
this particular problem would be −1, 1, 2, 2, 3, 6.

We will see some variations of this format later, such as problems without inputs, but
in general this is what our problems will look like.

Competitive Tip

Sometimes, problem statements contain huge amounts of text. Skimming through
the input and output sections before any other text in the problem can often give
you a quick idea about its topic and difficulty, which helps determining what
problems to solve first.

Exercise 1.1

What is the input and output for the following computational problems?

1) Compute the greatest common divisor of two numbers.

2) Find a root of a polynomial.

3) Multiply two numbers.

Exercise 1.2

Consider the following problem. I am thinking of an integer between 1 and 100.
Your task is to find this number, by asking me questions of the form “is your
number higher, lower or equal to x” for different numbers x.

This is an interactive, or online computational problem. How would you describe
the input and output to it? Why do you think it is called interactive?

DRAFT

1.2. ALGORITHMS 5

1.2 Algorithms

Algorithms are the solutions to computational problems. They define a method which
uses the input to the problem to produce the correct output. A computational problem
can have many solutions. Algorithms to solve the sorting problem are a research area
by themselves! Let us look at one possible sorting algorithm as an example, called
selection sort.

Algorithm 1.1: Selection Sort

We construct the sorted sequence iteratively, one element at a time, starting with
the smallest.

Assume that we have chosen the K smallest elements of the original sequence, and
have sorted them. Then, the smallest element remaining in that sequence must
be the (K+ 1)’st smallest element of the original sequence. Thus, by finding the
smallest element among those that remain, we know what the (K+ 1)’st element
of the sorted sequence is. Combining this with the first K sorted elements, we can
find the first K+ 1 elements of the output.

By repeating this processN times, the result will be theN numbers of the original
sequence, but sorted.

If you want to see this algorithm in practice, it is performed on our previous example
instance, the sequence 3, 6, 1,−1, 2, 2, in Figures 1.1a-1.1f.

So far, we have been vague about what exactly an algorithm is. Looking at our exam-
ple (Algorithm 1.1) we do not have any particular structure or rigor in the description
of our method. There is nothing inherently wrong with describing algorithms this
way. It is easy to understand, and gives the writer an opportunity to provide context
as to why certain actions are performed, making the correctness of the algorithm
more obvious. The main downsides of such a description are the ambiguity and the
lack of detail.

Until an algorithm is described in sufficient detail, it is possible to accidentally abstract
away operations we may not know how to perform behind a few English words. As a
somewhat contrived example, our textual description of selection sort includes actions
such as “choosing the smallest number of a sequence”. While such an operation may
seem very simple to us humans, algorithms are generally constructed with regards
to some kind of computer. Unfortunately, computers can not map such English
expressions to their code counterparts yet. Instructing a computer to execute an
algorithm thus require us to formulate our algorithm in steps small enough that even
a computer knows how to perform it. In this sense, a computer is rather stupid.

DRAFT

6 CHAPTER 1. ALGORITHMS AND PROBLEMS

3 6 1 −1 2 2

(a) Originally, we start out with the unsorted sequence 3 6 1 -1 2 2.

−1 3 6 1 2 2

(b) The smallest element of the sequence is −1, so this is the first element of the sorted
sequence.

−1 1 3 6 2 2

(c) We find the next element of the output by removing the −1, and finding the smallest
remaining element – in this case 1.

−1 1 2 3 6 2

(d) Here, there is no unique smallest element. In this case, we choose any of the two 2s.

−1 1 2 2 3 6

−1 1 2 2 3 6

(e) The next two elements chosen will be a 2 and a 3.

−1 1 2 2 3 6

(f) Finally, we choose the last remaining element of the input sequence – the 6. This concludes
the sorting of our sequence.

Figure 1.1: An example execution of Selection Sort.

The English language is also ambiguous. We are sloppy with references to “this
variable” and “that set”. We use confusing terminology and frequently misunderstand
each other. Real code does not have this problem. It forces us to be specific with what
we mean.

We will generally describe our algorithms in a representation called pseudo code
(Section 1.4), accompanied by an online exercise to implement the code. Sometimes,
we will instead give explicit code that solves a problem. This will be the case whenever
an algorithm is very complex, or care must be taken to make the implementation
efficient. The goal is that you should get to practice understanding pseudo code,
while still ending up with correct implementations of the algorithms (thus the online
exercises).

Exercise 1.3

Do you know any algorithms, for example from school? (Hint: you use many
algorithms to solve certain arithmetic and algebraic problems, such as those in
Exercise 1.1.)

DRAFT

1.2. ALGORITHMS 7

Exercise 1.4

Construct an algorithm which solves the guessing problem in exercise 1.2. How
many questions does it use? The optimal number of questions is about log

2
100 ≈ 7

questions. Can you achieve this?

1.2.1 Correctness

One subtle, albeit important point that we glossed over is what it means for an
algorithm to actually be correct.

There are two common notions of correctness – partial correctness and total correct-
ness. The first notion requires an algorithm to, upon termination, have produced an
output that fulfill all the criteria laid out in the output description. Total correctness
additionally require an algorithm to terminate within finite time. When we talk
about correctness of our algorithms later on, we will generally focus on the partial
correctness. Termination will instead be proved implicitly, as we will consider more
granular measures of efficiency (called time complexity, Chapter 4) than just finite
termination. These measures will imply the termination of the algorithm, completing
the proof of total correctness.

Proving that the selection sort algorithm terminates in finite time is quite easy. It
performs one iteration of the selection step for each element in the original sequence
(which is finite). Furthermore, each such iteration can be performed in finite time by
considering each remaining element of the selection when finding the smallest one.
The remaining sequence is a subsequence of the original one, and is therefore also
finite.

Proving that the algorithm produces the correct output is a bit more difficult to for-
mally prove. The main idea behind a formal proof is contained within our description
of the algorithm itself.

Later on, we will compromise on both conditions. Generally, we are satisfied with
an algorithm terminating in expected finite time, or answering correctly with, say,
probability 0.75 for every input. Similarly, we are sometimes happy to find an
approximate solution to a problem. What this means more concretely will become clear
in due time, when we study such algorithms.

Competitive Tip

Proving your algorithm correct is sometimes quite difficult. In a competition,
a correct algorithm is correct even if you cannot prove it. If you have an idea
you think is correct, it may be worth testing. Unfortunately, this makes it even
harder to decide if an incorrect submission is due to an incorrect algorithm or an

DRAFT

8 CHAPTER 1. ALGORITHMS AND PROBLEMS

incorrect implementation.

Exercise 1.5

Prove the correctness of your algorithm to the guessing problem from Exercise 1.4.

Exercise 1.6

Why would an algorithm that is correct with e.g. probability 0.75 still be very
useful to us?

Why is it important that such an algorithm is correct with probability 0.75 on every
problem instance, instead of always being correct for 75% of all cases?

1.3 Programming Languages

The purpose of programming languages is to formulate methods at a level where
a computer can execute them. While we in textual descriptions of methods are
often satisfied with describing what we wish to do, programming languages require
considerably more constructive descriptions. Computers are quite basic creatures
compared to us humans. They only understand a very limited set of instructions,
such as adding numbers, multiplying numbers, or moving data around within its
memory. The syntax of programming languages are often a bit arcane at first, but
they grow on you with coding experience.

To complicate matters further, programming languages themselves define a spectrum
of expressiveness. On the lowest level, programming deals with electrical current in
your processor, with current above or below a certain threshold denoting the digits
0 and 1. Above these circuit-level electronics lie a processors own programming,
often called microcode. Using this, a processor implements machine code, such as
the x86 instruction set. Machine code is often written using a higher-level syntax
called Assembly. While some code is written in this rather low-level language, we
mostly abstract away details of them in high-level languages such as C++ (this book’s
language of choice).

This knowledge is somewhat useless from a problem solving standpoint, but intimate
knowledge of how a computer works is of high importance in software engineering,
and is occasionally helpful in programming competitions. Therefore, you should not
be surprised about certain remarks relating to these low-level concepts.

These facts also provide some motivation for why we use what we call compilers.
When programming in C++, we can not immediately tell a computer to run its code.

DRAFT

1.4. PSEUDO CODE 9

As you now know, C++ is at a higher level than what the processor of a computer
can run. A compiler takes care of this problem, by translating our C++ code into
machine code, which a processor knows how to handle. It is a program of its own,
that takes the code files we will write and produce executable files that we can run on
the computer. The process and purpose of a compiler is somewhat like what we do
ourselves when translating a method from English sentences or our own thoughts
into the lower level language of C++.

1.4 Pseudo Code

Somewhere in between describing algorithms in English text and in a programming
language lie pseudo code. As hinted by its name, it is not quite actual code, in two
aspects. First of all, the instructions we write is not the programming language of any
particular computer. The point of pseudo code is to be independent of what computer
it is implemented on. Instead, it tries to convey the main points of an algorithm in a
detailed manner such that it can easily be translated into any particular programming
language. Secondly, we sometimes fall back to the liberties of the English language.
At some point, we may decide that “choose the smallest number of a sequence” is
clear enough for our audience.

With an explanation of this distinction in hand, let us look at a concrete example of
what is meant by pseudo code. Again, the honor of being an example falls upon
selection sort, now described in pseudo code in Algorithm 1.2.

Algorithm 1.2: Selection Sort

procedure SELECTIONSORT(A)
Let A ′ be an empty sequence
while A is not empty do

minIndex← 0

for every element Ai in A do
if Ai < AminIndex then

minIndex← i
Append AminIndex to A ′

Remove AminIndex from A

Pseudo code reads somewhat like our English language variant of the algorithm,
except having the actions broken down into smaller pieces. Most of the constructs of
our pseudo code are more or less obvious. The notation variable← value is how we
denote an assignment in pseudo code. For those without programming experience,
this means that the variable named variable now takes the value value.

DRAFT

10 CHAPTER 1. ALGORITHMS AND PROBLEMS

Pseudo code will appear when we try to explain some part of a solution in great
detail, but where programming language specific aspects would draw unnecessary
attention to themselves.

Competitive Tip

In team competitions where a team only have a single computer, a team will often
have solved problems waiting to be coded. Writing pseudo code of the solution
to one of these problems while waiting for computer time is an efficient way to
parallelize your work. This can be practiced by writing pseudo code on paper
even when you are solving problems by yourself.

Exercise 1.7

Write pseudo code for your algorithm to the guessing problem from Exercise 1.4.

1.5 The Kattis Online Judge

Most of the exercises in this book exist as problems on the Kattis web system. You
can find the judge at https://open.kattis.com. Kattis is a so called online judge,
which has been used in the university competitive programming world finals (the
International Collegiate Programming Contest World Finals) for several years. It
contains a large collection of computational problems, and allows you to submit a
program you have written that purports to solve the problem. Kattis will then run
your program on a large number of predetermined instances of the problem.

When solving problems on a judge, a problem will generally include some additional
information. Since actual computers only have a finite amount of time and memory,
problems limit the amount of these resources available to our programs when solving
an instance. This also means the size of inputs to a problem need to be constrained
as well, or else the resource limits for a given problem would not be obtainable –
an arbitrarily large input generally takes arbitrarily large time to process, even for
a computer. Thus, a more complete version of the sorting problem as given in a
competition could look like this:

Sorting
Time: 1s, memory: 1MB

Your task is to sort a sequence of integers in descending order, i.e. from the lowest
to the highest.

Input

https://open.kattis.com

DRAFT

1.6. CHAPTER NOTES 11

The input consists of a sequence of N integers (0 ≤ N ≤ 1000) a0, a1, ..., aN−1

(|ai| ≤ 109).
Output
The output should contain a permutation a ′ of the sequence a, such that a ′0 ≤
a ′1 ≤ ... ≤ a ′N−1.

If your program exceeds the allowed resource limits (i.e. takes too much time or
memory), crashes, or gives an invalid output, Kattis will tell you so with a rejected
judgment. Assuming your program passes all the instances, it will be be given the
Accepted judgment.

Note that getting a program accepted by Kattis is not the same as having a correct
program – it is a necessary but not sufficient criteria for correctness. This is also a
fact which is possible to exploit during competitions, which we will see later in this
book.

We recommend that you get an account on Kattis, so that you can follow along with
the book’s exercises.

Exercise 1.8

Register an account on Kattis

Many other online judges exists, such as:

• Codeforces (http://codeforces.com)

• TopCoder (https://topcoder.com)

• HackerRank (https://hackerrank.com)

1.6 Chapter Notes

The introductions given in this chapter are very bare bones, mostly stripped down to
what you need to get by when solving algorithmic problems.

Many other books delve into the theoretical study of algorithms deeper than we
will, in particular regarding subjects not relevant to algorithmic problem solving.
Introduction to Algorithms [5] is a rigorous introductory text book on algorithms, with
both depth and width.

For a gentle introduction to the technology that underlies computers, CODE [19] is a
well-written journey from the basics of bits and bytes all the way to assembly code
and operating systems.

http://codeforces.com
https://topcoder.com
https://hackerrank.com

DRAFT

12 CHAPTER 1. ALGORITHMS AND PROBLEMS

DRAFT
Chapter 2

Programming in C++

We will learn some more practical matters – the basics of the C++ programming
language. This language is the most common programming language within the
competitive programming community, for a few reasons (aside from C++ being a
popular language in general). Programs coded in C++ are generally somewhat faster
than most other competitive programming languages, and there are many routines
in the accompanying standard code libraries that are useful when implementing
algorithms.

Of course, no language is without downsides. C++ is a bit difficult to learn as a
beginner’s programming language, to say the least. Its error management is un-
forgiving, often causing erratic behavior in programs instead of crashing with an
error. Programming certain things become quite verbose, compared to many other
languages.

After bashing the difficulty of C++, you might ask if it really is the best language
in order to get started with algorithmic problem solving. While there certainly are
simpler languages, we believe the benefits of C++ weigh up for the disadvantages
in the long term even though it demands more from you as a reader. Either way, it
is definitely the language we have the most experience of teaching problem solving
with.

When you study this chapter, you will see a lot of example code. Type this code
and run it. We can not really stress this point enough. Learning programming from
scratch – in particular a complicated language such as C++ – is not possible unless you
try the concepts yourself. Additionally, we recommend that you do every exercise in
this chapter.

Finally, know that our treatment of C++ is minimal. We will not explain all the
details behind the language, nor good coding style or general software engineering
principles. In fact, we will frequently make use of bad coding practices. If you want

13

DRAFT

14 CHAPTER 2. PROGRAMMING IN C++

to delve deeper, you can find more resources in the chapter notes.

2.1 Development Environments

Before we get to the juicy parts of C++, you first need to install a compiler for C++ and
(optionally) a code editor. If you are running Windows, we recommend Code::Blocks,
a code editor that also installs a compiler for you. You can download this from the
Code::Blocks web site, http://www.codeblocks.org/downloads/26. Choose the file
that ends with mingw-setup.exe.

If you are using Mac OS, you can instead get a compiler by installing Xcode from the
Mac App Store. You can then either use Xcode to write your programs, or install
Code::Blocks.

Running a Linux distribution (such as Ubuntu), you should be able to find the package
g++ in your favorite package manager. This installs the GCC compiler for you, which
is the most popular compiler for Linux systems. Possibly, codeblocks exists as a
package there as well.

Note that instructions like these tend to rot, with applications disappearing from the
web, operating systems changing names and so on. In this case, you are on your own,
and will have to find instructions to by yourself.

In this chapter, we will assume you are using Code::Blocks. If you chose some other
editor or compiler, you will need to find instructions on how to compile and run
programs yourself.

2.2 Hello World!

Now that you have a compiler and editor ready, we will learn the basic structure of a
C++ program. The classical example of a program when learning a new language
is to print the text Hello World!. We will also solve our first Kattis problem in this
section.

Start by opening Code::Blocks, and create a new file (by going to File ⇒ New ⇒
Empty File). Save the file as hello.cpp in a new folder (such as Code).

Now, type the code from Listing 2.1 into your editor.

In Code::Blocks, You can save your program by typing Ctrl+S, and running it by
pressing the F9 key. A window will appear, containing the text Hello World!. If no
window appear, you probably mistyped the program.

http://www.codeblocks.org/downloads/26

DRAFT

2.2. HELLO WORLD! 15

Listing 2.1 Hello World!
1 #include <iostream>
2

3 using namespace std;
4

5 int main() {
6 // Print Hello World!
7 cout << "Hello World!" << endl;
8 }

Coincidentally, Kattis happens to have a problem whose output description dictates
that your program should print the text Hello World!. How convenient. This is a
great opportunity to get familiar with Kattis.

Exercise 2.1 — Kattis Exercise

Hello World! – hello

When you submit your solution, Kattis will grade it and give you her judgment. If
you typed everything correctly, Kattis will tell you it got Accepted. Otherwise, you
will probably get Wrong Answer, meaning you typed the wrong text.

Once you have managed to solve the problem, it is time to talk a bit about the code
you typed.

The first line of the code,

#include <iostream>

is used to include the iostream file from the so-called standard library of C++. The
standard library is a large collection of ready-to-use algorithms, data structures and
other routines which you can use when coding. For example, there are sorting
routines in the C++ standard library, meaning you do not need to implement your
own sorting algorithm when coding solutions.

Later on, we will see other useful examples of the standard library and include many
more files. The iostream file in particular contains routines for reading and writing
data to your screen. Your program used code from this file when it printed Hello
World! upon execution.

Competitive Tip

On some platforms, there is a special include file called bits/stdc++.h. This file
basically includes the entire standard library. You can check if it is available on
your platform by including it using

#include <bits/stdc++.h>

DRAFT

16 CHAPTER 2. PROGRAMMING IN C++

in the beginning of your code. If your program still compiles, you can use this
and not include anything else.

The third line,

using namespace std;

tells the compiler that we wish to use code from the standard library. If we did not
use it, we would have to specify this every time we used code from the standard
library later in our program.

The fifth line defines our main function. When we instruct the computer to run our
program, this is where it will start looking for code to execute. The first line of the
main function is where the program will start to run, and then execute further lines
sequentially. We will later see how we can define additional functions, as a way of
structuring our code.

Note that the code in a function – its body – must be enclosed by curly brackets.
Without them, we would not know which lines belonged to the function.

On line 6, we wrote a comment

// Print Hello World!

Comments are explanatory lines which are not executed by the computer. The
purpose of a comment is to explain what the code around it does, and why. They
begin with two slashes // and continue until the end of the current line.

It is not until the seventh line that things start happening in the program. We use
the standard library utility cout to print text to the screen. This is done by writing
e.g:

cout << "this is text you want to print. ";
cout << "you can " << "also print " << "multiple things. ";
cout << "to print a new line" << endl << "you print endl" << endl;
cout << "without any quotes" << endl;

Lines that do things in C++ are called statements. Note the semi colon at the end
of the line! Semi colons are used to specify the end of a statement, and are manda-
tory.

Exercise 2.2

Must the main function be named main? What happens if you changed main to
something else and try to run your program?

DRAFT

2.3. VARIABLES AND TYPES 17

Exercise 2.3

Play around with cout a bit, printing various things. For example, you can print a
pretty haiku.

2.3 Variables and Types

The Hello World! program is boring. It only prints text, which is seldom the only
necessary component of an algorithm (aside from the Hello World! problem on Kattis).
We now move on to a new but hopefully familiar concept.

When we solve mathematical problems, it often proves useful to introduce all kinds
of names for known and unknown values. Math problems often deal with classes
of N students, ice cream trucks with velocity vcar km/h and candy prices of pcandy
$/kg.

This concept naturally translates into C++, but with a twist. In most programming
languages, we first need to say what type a variable has! We do not bother with this
in mathematics. We say that “let x = 5”, and that is that. In C++, we need to be a bit
more verbose. We must write that “I want to introduce a variable x now. It is going to
be an integer – more specifically, 5”. Once we have decided what kind of value x will
be (in this case integer), it will always be an integer. We cannot just go ahead and say
“oh, I’ve changed my mind. x = 2.5 now!” since 2.5 is of the wrong type (a decimal
number rather than an integer).

Another major difference is that variables in C++ are not tied to a single value for
the entirety of its lifespan. Instead, we are able to modify the value which our
variables take using something called assignment. Some languages does not permit
this, preferring their variables to be immutable.

In Listing 2.2, we demonstrate how variables are used in C++. Type this program into
your editor and run it. What is the output, and what did you expect the output to
be?

The first time we use a variable in C++, we need to decide what kind of values it may
contain. This is called declaring the variable of a certain type. For example

int five = 5;

declares an integer variable five, and assign the value 5 to it. The int part is C++ for
integer, and is what we call a type. After the type, we write the name of the variable –
in this case 5. Finally, we may assign a value to the variable. Note that further use of
the variable never include the int part. We declare the type of a variable once, and
only once.

DRAFT

18 CHAPTER 2. PROGRAMMING IN C++

Listing 2.2 Variables
1 #include <iostream>
2

3 using namespace std;
4

5 int main() {
6 int five = 5;
7 cout << five << endl;
8 int seven = 7;
9 cout << seven << endl;

10

11 five = seven + 2; // = 7 + 2 = 9
12 cout << five << endl;
13

14 seven = 0;
15 cout << five << endl; // five is still 9
16 cout << 5 << endl; // we print the integer 5 directly
17 }

Later on, we decide that 5 is a somewhat small value for a variable called five. We
can change the value of a variable by using the assignment operator – the equality sign
=. The assignment

five = seven + 2;

states that from now on the variable five should take the value given by the expres-
sion seven + 2. Since (at least for the moment), seven has the value 7, this evaluates
to 7+ 2 = 9. Thus five will actually be 9, which explains the output we get from line
12.

On line 14, we change the value of the variable seven. Note that line 15 still prints the
value of five as 9. Some people find this model of assignment confusing. We first
performed the assignment five = seven + 2;, but the value of five did not change
with the value of seven. This is mostly an unfortunate consequence of the choice
of = as operator for assignment. One could think that “once an equality, always an
equality” – that the value of five should always be the same as the value of seven +
2. This is not the case. An assignment sets the value of the variable on the left hand
side to the value of the expression on the right hand side at a particular moment in
time, nothing more.

Finally, the snippet demonstrates how to print the values of a variable on the screen –
we cout it the same way as with text! This also makes the reason for why text needs
to be enquoted more clear. Without quotes, we would not be able to distinguish from
the text string "hi" and the variable hi.

DRAFT

2.3. VARIABLES AND TYPES 19

Exercise 2.4

C++ allows declarations of immutable (constant) variables, using the keyword
const. For example

const int FIVE = 5;

What happens if you try to perform an assignment to such a variable?

Exercise 2.5

What value will the variables a, b and c have after executing the following code:

int a = 4;
int b = 2;
int c = 7;

b = a + c;
c = b - 2;
a = a + a;
b = b * 2;
c = c - c;

Here, - denotes subtraction and * multiplication.

Once you have arrived at an answer, type this code into the main function of a new
program, and print the values of the variables. Did you get it right?

Exercise 2.6

What happens when an integer is divided by another integer? Try running the
following code:

cout << (5 / 3) << endl;
cout << (15 / 5) << endl;
cout << (2 / 2) << endl;
cout << (7 / 2) << endl;

There are many other types than int. We have already seen one (although without its
correct name), the type for text. In Listing 2.3, you can see some of the most common
types.

The text data type is called string. As we have already seen, values of this type must
be enclosed with double quotes. If we actually want to include a quote in a string, we
type \".

DRAFT

20 CHAPTER 2. PROGRAMMING IN C++

Listing 2.3 Types
1 #include <iostream>
2

3 using namespace std;
4

5 int main() {
6 string text = "Johan said: \"heya!\" ";
7 cout << text << endl;
8

9 char letter = ’@’;
10 cout << letter << endl;
11

12 int number = 7;
13 cout << number << endl;
14

15 long long largeNumber = 888888888888LL;
16 cout << largeNumber << endl;
17

18 double decimalNumber = 513.23;
19 cout << decimalNumber << endl;
20

21 bool thisisfalse = false;
22 bool thisistrue = true;
23 cout << thisistrue << " and " << thisisfalse << endl;
24 }

There exists a data type containing one single letter, the char. Such a value is sur-
rounded by single quotes. The char value containing the single quote is written ’\”,
similarly to how we included double quotes in strings.

Then comes the int, which we discussed earlier. The long long type, just as the int
type, contains integers. They differ in how large integers they can contain. An int
can only contain integers between −231 and 231 − 1, while a long long extends this
range to −263 to 263 − 1.

Exercise 2.7

Write a program that assigns the minimum and maximum values of an int to a
int variable x. What happens if you increment or decrement this value using x =
x + 1; or x = x - 1;, respectively and print its new value?

Competitive Tip

One of the most common sources for errors in code is when we try to store an
integer value outside the range of the type. Always make sure your values fit
inside the range of an int if you use it – otherwise, use long longs!

DRAFT

2.4. INPUT AND OUTPUT 21

Next comes the double type. This type represents decimal numbers. Note that the
decimal sign in C++ is a dot, not a comma.

Finally, we will look at a rather special type, the bool (short for boolean). This type
can only contain one of two different values – it is either true or false. While this
may look useless at a first glance, boolean values will become important later.

Exercise 2.8

If we type \" to include a double quote in a string, this means we cannot include a
backslash by simply typing \. Find out how to include a literal backslash in a string
(either by searching the web, or thinking about how we included the different
quote characters).

Exercise 2.9

Just like the integer types, a double cannot represent arbitrarily large values. Find
out what the minimum and maximum values a double can store is.

C++ has a construct called the typedef, or type definition. It allows us to give certain
types new names. For example, we might alias long long with ll. Such a typedef
statement looks like this:

typedef long long ll;

After this statement, we can use ll just as if it were a long long:

ll largeNumber = 888888888888LL

2.4 Input and Output

In previous sections, we have occasionally printed things onto our screen. To spice
our code up a bit, we are now going to learn how to do the reverse – reading values
which we type on our keyboards into a running program! When we run a program,
we may type things in the window that appears. By pressing the Enter key, we allow
the program to read what we have written so far.

Reading input data is done just as you would expect, almost entirely symmetric to
printing output. Instead of cout we use cin, and instead of « variable we use »
variable, i.e.

cin >> variable;

Type in the program from Listing 2.4 to see how it works.

DRAFT

22 CHAPTER 2. PROGRAMMING IN C++

Listing 2.4 Input
1 #include <iostream>
2

3 using namespace std;
4

5 int main() {
6 string name;
7 cout << "What’s your first name?" << endl;
8 cin >> name;
9

10 int age;
11 cout << "How old are you?" << endl;
12 cin >> age;
13

14 cout << "Hi, " << name << "!" << endl;
15 cout << "You are " << age << " years old." << endl;
16 }

Exercise 2.10

What happens if you type an invalid input, such as your first name instead of your
age?

When reading input into a string variable, the program will only read text until
the first whitespace. To read an entire line, you can use the getline function (List-
ing 2.5).

Listing 2.5 getline
1 #include <iostream>
2

3 using namespace std;
4

5 int main() {
6 string line;
7 cout << "Type some text, and press enter: " << endl;
8 getline(cin, line);
9

10 cout << "You typed: " << line << endl;
11 }

Exercise 2.11 — Kattis Exercises

Two-Sum – twosum

Triangle Area – triarea

DRAFT

2.5. OPERATORS 23

2.5 Operators

We have already seen examples of what we call operators. Earlier we have used
the assignment operator =, and the arithmetic operators + - * /, which stand for
addition, subtraction, multiplication and division. They work almost like they do in
mathematics, and allows us to create code such as the one in Listing 2.6.

Listing 2.6 Operators
1 #include <iostream>
2

3 using namespace std;
4

5 int main() {
6 int a = 0;
7 int b = 0;
8

9 cin >> a >> b;
10

11 cout << "Sum: " << (a + b) << endl;
12 cout << "Difference: " << (a - b) << endl;
13 cout << "Product: " << (a * b) << endl;
14 cout << "Quotient: " << (a / b) << endl;
15 cout << "Remainder: " << (a % b) << endl;
16 }

Exercise 2.12

Type in Listing 2.6 and test it on a few different values. In particular, test:

• b = 0

• Negative values for a and/or b

• Values where the expected result is outside the valid range of an int

As you have probably noticed, the division operator of C++ performs so-called integer
division, meaning it rounds the answer to an integer (towards 0). Hence 7 / 3 = 2,
with remainder 1.

The snippet introduces the modulo operator, %. It computes the remainder of the first
operand, when divided by the second. As an example, 7 % 3 = 1.

In case we wish the answer to be a decimal number instead of performing integer
division, one of the operands must be a double (Listing 2.7).

We end this section with some shorthand operators. Check out Listing 2.8 for some
examples.

DRAFT

24 CHAPTER 2. PROGRAMMING IN C++

Listing 2.7 Operators
1 int a = 6;
2 int b = 4;
3

4 cout << (a / b) << endl;
5

6 double aa = 6.0;
7 double bb = 4.0;
8

9 cout << (aa / bb) << endl;

Each arithmetic operator has a corresponding combined assignment operator. Such
an operator, e.g. a += 5;, is equivalent to a = a + 5; They act as if the variable on
the left hand side is also the left hand side of the corresponding arithmetic operator,
and assign the result of this computation to said variable. Thus, the above statement
increase the variable a with 5.

It turns out addition and subtraction with 1 was a fairly common operation. In fact,
it was so common additional operators were introduced for this purpose, saving an
entire character instead of the highly verbose +=1 operator. These operators consist of
two plus signs or two minus signs. Thus, a++ increments the variable with 1.

Listing 2.8 Shorthand Operators
1 int num = 0;
2

3 num += 1;
4 cout << num << endl;
5

6 num *= 2;
7 cout << num << endl;
8

9 num -= 3;
10 cout << num << endl;
11

12 cout << num++ << endl;
13 cout << num << endl;
14

15 cout << ++num << endl;
16 cout << num << endl;
17

18 cout << num-- << endl;
19 cout << num << endl;

We will sometimes use the fact that these expressions evaluate to some value, and
which value this is depends on whether we put the operator before or after the
variable name. If we put ++ before the variable, the value of the expression will be
the incremented value. If we put it afterwards, we get the original value. To get a
better understanding of how this works, it is best if you type the code in yourself and

DRAFT

2.6. IF STATEMENTS 25

analyze the results.

2.6 If Statements

In addition to assignment and arithmetic, a large number of comparison operators
exists. These compare two values, resulting in a bool value with the result of the
comparison (see Listing 2.9).

Listing 2.9 Comparison Operators
1 a == b // check if a equals b
2 a != b // check if a and b are different
3 a > b // check if a is greater than b
4 a < b // check if a is less than b
5 a <= b // check if a is less than or equal to b
6 a >= b // check if a is greater than or equal to b

Exercise 2.13

Write a program that reads two integers as input, and prints the result of the
different comparison operators from Listing 2.9.

A bool can also be negated using the ! operator. So the expression !false (which we
read as “not false”) has the value true, and vice versa !true evaluates to false.

The major use of bool variables is in conjunction with if statements (also called
conditional statements). They come from the necessity of only executing certain lines
of code if (and only if) some certain condition is true. For example, assume we need
to check if a number is odd or even. We can do this by computing the remainder of a
number when divided by 2 (using the modulo operator), and checking if it is 0 (even
number), 1 (positive odd number) or -1 (negative odd number). An implementation
of this can be seen in Listing 2.10.

Listing 2.10 Odd or Even
1 int input;
2 cin >> input;
3 if (input % 2 == 0) {
4 cout << input << " is even!" << endl;
5 }
6 if (input % 2 == 1 || input % 2 == -1) {
7 cout << input << " is odd!" << endl;
8 }

An if statement consists of two parts – a condition, given inside brackets after the if

DRAFT

26 CHAPTER 2. PROGRAMMING IN C++

keyword, followed by a body – some lines of code surrounded by curly brackets. The
code inside the body will be executed in case the condition evaluates to true.

In our odd or even example, we can see a certain redundancy. If a number is not even,
we already know it is odd. Checking this explicitly using the modulo operator seems
to be a bit unnecessary. Indeed, there is a construct that saves us from this verbosity –
the else statement. It is used after an if statement, and provides code that should be
run if the condition given to the condition of an if statement is false. We can thus
simplify our odd and even program to the one in Listing 2.11.

Listing 2.11 Odd or Even 2
1 int input;
2 cin >> input;
3 if (input % 2 == 0) {
4 cout << input << " is even!" << endl;
5 } else {
6 cout << input << " is odd!" << endl;
7 }

There is one last if-related construct – the else if. Since code is worth a thousand
words, we demonstrate how it works in Listing 2.12, implementing a helper for the
children’s game FizzBuzz.

Listing 2.12 Else If
1 int input;
2 cin >> input;
3 if (input % 15 == 0) {
4 cout << "FizzBuzz" << endl;
5 } else if (input % 5 == 0) {
6 cout << "Buzz" << endl;
7 } else if (input % 3 == 0) {
8 cout << "Fizz" << endl;
9 } else {

10 cout << input << endl;
11 }

Exercise 2.14

Run the program with the values 30, 10, 6, 4. Explain the output you get.

Exercise 2.15 — Kattis Exercises

Three Sorting – threesort

Casino – casino

Grading – grading

DRAFT

2.7. FOR LOOPS 27

2.7 For Loops

Another rudimentary building block of programs is the for loop. A for loop is used
to execute a block of code multiple times. The most basic loop repeats code a fixed
number of times, such as in the example from Listing 2.13.

Listing 2.13 For
1 #include <iostream>
2

3 using namespace std;
4

5 int main() {
6 int repetitions = 0;
7 cin >> repetitions;
8

9 for (int i = 0; i < repetitions; i++) {
10 cout << "This is repetition " << i << endl;
11 }
12 }

A for loop is built up from four parts. The first three parts are the semi-colon separated
expressions immediately after the for keyword. In the first of these parts, you can
write some expression, such as a variable declaration. In the second part, you write
an expression that evaluates to a bool, such as a comparison between two values. In
the third part, you write another expression.

The first part will be executed only once – it is the first thing that happens in a loop.
In this case, we decide to declare a new variable i and set it to 0.

The loop will then be repeated until the condition in the second part is false. Our
example loop will repeat until i is no longer less than repetitions.

The third part executes after each execution of the loop. Since we use the variable i to
count how many times the loop has executed, we want to increment this by 1 after
each iteration.

Together, these three parts make sure our loop will run exactly repetitions times.
The final part of the loop is the statements within curly brackets. Just as with the if
statements, this is called the body of the loop, and is the code that will be executed in
each repetition of the loop.

Exercise 2.16

What happens if you enter a negative value as the number of loop repetitions?

DRAFT

28 CHAPTER 2. PROGRAMMING IN C++

Exercise 2.17

Design a loop that instead counts backwards, from repetitions − 1 to 0.

Exercise 2.18 — Kattis Exercises

N-sum – nsum

Cinema – cinema

Within a loop, two useful keywords can be used to modify the loop – continue and
break. Using continue; inside a loop exits the current iteration, and starts the next
one. break; on the other hand, exits the loop altogether. For en example, consider
Listing 2.14.

Listing 2.14 Break and Continue
1 int check = 36;
2

3 for (int divisor = 2; divisor * divisor <= check; ++divisor) {
4 if (check % divisor == 0) {
5 cout << check << " is not prime!" << endl;
6 cout << "It equals " << divisor << " x " << (check / divisor) << endl;
7 break;
8 }
9 }

10

11 for (int divisor = 1; divisor <= check; ++divisor) {
12 if (check % divisor == 0) {
13 continue;
14 }
15 cout << divisor << " does not divide " << check << endl;
16 }

Exercise 2.19

What will the following code snippet output?

1 for (int i = 0; false; i++) {
2 cout << i << endl;
3 }
4

5 for (int i = 0; i >= -10; --i) {
6 cout << i << endl;
7 }
8

9 for (int i = 0; i <= 10; ++i) {
10 if (i % 2 == 0) continue;
11 if (i == 8) break;

DRAFT

2.8. WHILE LOOPS 29

12 cout << i << endl;
13 }

Exercise 2.20 — Kattis Exercise

Cinema 2 – cinema2

2.8 While Loops

There is a second kind of loop, which is simpler than the for loop. It is called a while
loop, and works like a for loop where the initial statement and the update statement
are removed, leaving only the condition and the body. It can be used when you want
to loop over something until a certain condition is false (Listing 2.15).

Listing 2.15 While
1 #include <iostream>
2

3 using namespace std;
4

5 int main() {
6 int num = 9;
7 while (num != 1) {
8 if (num % 2 == 0) {
9 num /= 2;

10 } else {
11 num = 3 * num + 1;
12 }
13 cout << num << endl;
14 }
15 }

The break; and continue; statements work the same way as the do in a for loop.

2.9 Functions

In mathematics, a function is something that takes one or more arguments, and
compute some value based on them. For example, the squaring function square(x) =
x2, the addition function add(x, y) = x+ y or the minimum function min(a, b).

Functions exists in programming as well, but work a bit differently. Indeed, we have
already seen a function – the main() function.

We have implemented the example functions in Listing 2.16.

DRAFT

30 CHAPTER 2. PROGRAMMING IN C++

Listing 2.16 Functions
1 #include <iostream>
2

3 using namespace std;
4

5 int square(int x) {
6 return x * x;
7 }
8

9 int min(int x, int y) {
10 if (x < y) {
11 return x;
12 } else {
13 return y;
14 }
15 }
16

17 int add(int x, int y) {
18 return x + y;
19 }
20

21 int main() {
22 int x, y;
23 cin >> x >> y;
24 cout << x << "^2 = " << square(x) << endl;
25 cout << x << " + " << y << " = " << add(x, y) << endl;
26 cout << "min(" << x << ", " << y << ") = " << min(x, y) << endl;
27 }

In the same way that a variable declaration starts by proclaiming what data type the
variable contains, a function declaration states what data type the function evaluates
to. Afterwards, we write the name of the function, followed by its arguments (which
is a comma-separated list of variable declarations). Finally, we give it a body of code,
wrapped in curly brackets.

Unlike our main function, we see the return keyword in our functions. A return
statement says “stop executing this function, and return the following value!”. Thus,
when we call the squaring function by square(x), the function will compute the
value x * x and make sure that square(x) evaluates to just that.

Why have we left a return statement out of the main function? In main(), the compiler
inserts an implicit return 0; statement at the end of the function.

Exercise 2.21

What will the following function calls evaluate to?

square(5);

DRAFT

2.9. FUNCTIONS 31

add(square(3), 10);
min(square(10), add(square(9), 23));

Exercise 2.22

In our code, we declared all of the new arithmetic functions above our main
function. Why did we do this? What happens if you move one below the main
function instead? (Hint: what happens if you try to use a variable before declaring
it?)

An important fact of function calling is that the arguments we send along are copied.
If we try to change them by assigning values to our arguments, we will not change
the original variables in the calling function (see Listing 2.17 for an example).

Listing 2.17 Copying
1 void change(int val) {
2 val = 0;
3 }
4

5 int main() {
6 int variable = 100;
7 cout << "Variable is " << variable << endl;
8 change(variable);
9 cout << "Variable is " << variable << endl;

10 }

We can also choose to not return anything, using the void return type. This may
seem useless, since nothing ought to happen if we call a function but does not get
anything in return. However, there are ways we can affect the program without
returning.

The first one is by using global variables. It turns out that variables may be declared
outside of a function. It is then available to every function in your program. Changes
to a global variable by one function will also be seen by other functions (try out
Listing 2.18 to see them in action).

Secondly, we may actually change the variables given to us as arguments by declaring
them as references. Such an argument is written by adding a & before the variable
name, for example int &x. If we perform assignments to the variable x within the
function, we will change the variable used for this argument in the calling function
instead. For an example of references, check out Listing 2.19.

DRAFT

32 CHAPTER 2. PROGRAMMING IN C++

Listing 2.18 Global Variables
1 int currentMoney = 0;
2

3 void deposit(int newMoney) {
4 currentMoney += newMoney;
5 }
6 void withdraw(int withdrawal) {
7 currentMoney -= withdrawal;
8 }
9

10 int main() {
11 cout << "Currently, you have " << currentMoney << " money" << endl;
12 deposit(1000);
13 withdraw(2000);
14 cout << "Oh-oh! Your current balance is " << currentMoney << " :(" << endl;
15 }

Listing 2.19 References
1 // Note &val instead of val
2 void change(int &val) {
3 val = 0;
4 }
5

6 int main() {
7 int variable = 100;
8 cout << "Variable is " << variable << endl;
9 change(0);

10 cout << "Variable is " << variable << endl;
11 }

Exercise 2.23

Why is the function call change(4) not valid C++? (hint: what exactly are we
changing when we assign to the reference in func?)

Exercise 2.24 — Kattis Exercise

Arithmetic Functions – arithmethic

2.10 Structures

We will now turn our attention to some more advanced concepts, starting with struc-
tures. Structures are a special kind of data type that can contain member variables
– variables inside them – and member functions – functions which can operate on
member variables.

DRAFT

2.10. STRUCTURES 33

The basic syntax used to define a structure looks like this:

struct Point {
double x;
double y;

};

This particular structure contains two member variables, x and y, representing the
coordinates of a point in 2D Euclidean space.

Once we have defined a structure, we can create instances of it. Every instance has
its own copy of the member variables of the structure.

To create an instance, we use the same syntax as with other variables. We can access
the member variables of a structure using the instance.variable syntax:

Point origin; // create an instance of the Point structure

// set the coordinates to (0, 0)
origin.x = 0;
origin.y = 0;

cout << "The origin is (" << origin.x << ", " << origin.y << ")." << endl;

As you can see, structures allow us to group certain kinds of data together in a
logical fashion. Later on, this will simplify the coding of certain algorithms and data
structures immensely.

There is an alternate way of constructing instances, using constructors. A constructor
looks like a function inside our structure, and allows us to pass arguments when we
create a new instance of a struct. The constructor will receive these arguments, to
help set up the instance.

Let us add a constructor to our point structure, to more easily create instances:

struct Point {
double x;
double y;

Point(double theX, double theY) {
x = theX;
y = theY;

}
};

This particular constructor lets us pass two arguments when constructing the instance,
to set the coordinates correctly. This lets us avoid the two extra statements to set the
member variables.

DRAFT

34 CHAPTER 2. PROGRAMMING IN C++

Point p(4, 2.1);
cout << "The point is (" << p.x << ", " << p.y << ")." << endl;

We can also define functions inside the structure. These functions are as any other
functions, with the addition that they can access the member variables of the instance
which the member function is called on. For example, we might want a convenient
way to mirror a certain point in the x-axis. This could be accomplished by adding a
member function:

struct Point {
double x;
double y;

Point(double theX, double theY) {
x = theX;
y = theY;

}

Point mirror() {
return Point(x, -y);

}
};

To call the member function mirror() on the point p, we write p.mirror().

Exercise 2.25

Add a translate member function to the point structure. It should take two
double values x and y as arguments, returning a new point which is the instance
point translated by (x, y).

In our mirror function, we are not modifying any of the internal state of the function.
We can make this fact clearer by declaring the function to be const (similarly to a
const variable):

Point mirror() const {
return Point(x, -y);

}

This change ensures that our function will not be able to change any of the member
variables.

Exercise 2.26

What happens if we try to change a member variable in a const member function?

DRAFT

2.11. ARRAYS 35

Exercise 2.27

Write a struct which contains three variables of type Point called Triangle. It
should have an area() member function which returns the area of the triangle.

Exercise 2.28

Fill in the remaining code to implement this structure:

struct Quotient {
int nominator;
int denominator;

// Construct a new Quotient with the given nominator and denominator
Quotient(int n, int d) {

...
}

// Return a new Quotient, this instance plus the "other" instance
Quotient add(const Quotient &other) const {

...
}

// Return a new Quotient, this instance times the "other" instance
Quotient multiply(const Quotient &other) const {

...
}

// Output the value on the screen in the format n/d
void print() const {

...
}

};

2.11 Arrays

An array is another special type of variable, which can contain a large number of
variables of the same type. For example, it could be used to represent the recurring
data type “sequence of integers” from the Sorting Problem in Chapter 1. When
declaring an array, we specify the type of variable it should contain, its name and its
size using the syntax:

DRAFT

36 CHAPTER 2. PROGRAMMING IN C++

type name[size];

For example, an integer array of size 50 named seq would be declared using

int seq[50];

This creates 50 integer “variables”, which we can refer to using the syntax seq[index],
starting from zero (they are zero-indexed). Thus we can use seq[0], seq[1], etc, all
the way up to seq[49].

Be aware that using an index outside the valid range for a particular array (i.e. below
0 or above the size − 1 can cause erratic behavior in the program without crashing
it.

Later on, we will transition from using arrays to using a structure from the standard
library which serve the same purpose – the vector.

Exercise 2.29 — Kattis Exercise

Reversing Strings – reverse

2.12 The Preprocessor

C++ has a powerful tool called the preprocessor. This utility is able to read and
modify your code using certain rules during compilation. For example, #include is a
preprocessor directive that includes a certain file in your code.

Most commonly, we will use the #define directive. It allows us to replace certain
tokens in our code with other ones. The most basic usage is

#define TOREPLACE REPLACEWITH

which replaces the token TOREPLACE in our program with REPLACEWITH. The true
power of the define comes when using define directives with parameters. These look
similar to functions, and allows us to replace certain expressions with another one,
additionally inserting certain values into it. We call these macros. For example the
macro

#define rep(i,a,b) for (int i = a; i < b; i++)

means that the expression

rep(i,0,5) {
cout << i << endl;

}

is expanded to

DRAFT

2.13. TEMPLATE 37

for (int i = 0; i < 5; ++i) {
cout << i << endl;

}

You can probably get by without ever using macros in your code. The reason we
discuss them is because we are going to use them in code in the book, so it is a good
idea to at least be familiar with their meaning.

2.13 Template

In competitive programming, one often use a template, with some shorthand typedef’s
and preprocessor directives. Here, we given an example of such a template, which
will be used in some of the C++ code in this book.

#include <bits/stdc++.h>
using namespace std;

#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define trav(a, x) for(auto& a : x)
#define all(x) x.begin(), x.end()
#define sz(x) (int)(x).size()
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;

int main() {
}

The trav(a, x) macro is used to iterate through all members of a data structure from
the standard library. We will study such data structures in later chapters.

2.14 Additional Exercises
Exercise 2.30 — Kattis Exercises

Solving for Carrots – carrots

Paul Eigon – pauleigon

Dice Game – dicegame

Reverse Binary – reversebinary

DRAFT

38 CHAPTER 2. PROGRAMMING IN C++

2.15 Chapter Notes

C++ was invented by Danish computer scientist Bjarne Stroustrup. Bjarne has also
published a book on the language, The C++ Programming Language[23] which contains
a more in-depth treatment of the language. It is rather accessible to C++ beginners,
but is better read by someone who have some prior programming experience (in any
programming language).

C++ is standardized by the International Organization for Standardization (ISO).
These standards are the authoritative source on what C++ is. They final drafts of
the standards can be downloaded at the homepage of the Standard C++ Founda-
tion1.

There are many online references of the language and its standard library. The two
we use most are:

• http://en.cppreference.com/w/

• http://www.cplusplus.com/reference/

1https://isocpp.org/

http://en.cppreference.com/w/
http://www.cplusplus.com/reference/
https://isocpp.org/

DRAFT
Chapter 3

Implementation Problems

The “simplest” kind of problem we solve is those where the statement of a problem
is so detailed that the difficult part is not to figure out the solution, but to imple-
ment it in code. This kind of problem often comes in the form of performing some
given calculation or simulating some process, based on a list of rules stated in the
problem.

The Recipe
Swedish Olympiad in Informatics 2011, School Qualifiers

You have decided to cook some food. The dish you wish to make requires N
different ingredients. For every ingredient, you know the amount you have at
home, how much you need for the dish, and how much it costs to buy (per unit).

If you do not have a sufficient amount of some ingredient, you need to buy
the remainder from the store. Your task is to compute the cost of buying the
remaining ingredients.

Input
The first line of input is an integer N ≤ 10, the number of ingredients in the dish.

The next N lines contain the information about the ingredients, one per line. An
ingredient is given by three space-separated integers 0 ≤ h,n, c ≤ 200 – the
amount you have, the amount you need, and the cost per unit for this ingredient.

Output
Output a single integer – the cost for purchasing the remaining ingredients needed
to make the dish.

This problem is not particularly hard. For every ingredient, we first calculate the
amount which we need to purchase. The only gotcha in the problem is the mistake of
calculating this as n− h. The correct formula is max(0, n− h), required in case of the

39

DRAFT

40 CHAPTER 3. IMPLEMENTATION PROBLEMS

luxury problem of having more than we need. We then multiply this number by the
ingredient cost, and sum the costs up for all the ingredients.

Algorithm 3.1: The Recipe

procedure RECIPE(N, has h, needs n, costs c)
ans← 0

for i← 0 to N− 1 do
ans← ans + max(0, ni − hi) · ci

return ans

Generally, the implementation problems are the easiest type of problems in a contest.
They do not require much algorithmic knowledge, so more teams are able to solve
them. However, not every implementation problem is easy to code. Just because im-
plementation problems are usually easy to spot, understand and formulate a solution
to, you should not underestimate the difficulty coding them. Implementation prob-
lems are usually failed either because the algorithm you are supposed to implement
is very complicated, with many easy-to-miss details, or because the amount of code
is very large. In the latter case, you are more prone to bugs simply because more lines
of code tend to include more bugs.

Exercise 3.1 — Kattis Exercise

The Recipe – recipe

Let us study a straightforward implementation problem, which turned out to be
rather difficult to code.

Game Rank
Nordic Collegiate Programming Contest 2016

The gaming company Sandstorm is developing an online two player game. You
have been asked to implement the ranking system. All players have a rank
determining their playing strength which gets updated after every game played.
There are 25 regular ranks, and an extra rank, “Legend”, above that. The ranks
are numbered in decreasing order, 25 being the lowest rank, 1 the second highest
rank, and Legend the highest rank.

Each rank has a certain number of “stars” that one needs to gain before advancing
to the next rank. If a player wins a game, she gains a star. If before the game
the player was on rank 6-25, and this was the third or more consecutive win, she
gains an additional bonus star for that win. When she has all the stars for her
rank (see list below) and gains another star, she will instead gain one rank and
have one star on the new rank.

DRAFT

41

For instance, if before a winning game the player had all the stars on her current
rank, she will after the game have gained one rank and have 1 or 2 stars (depend-
ing on whether she got a bonus star) on the new rank. If on the other hand she
had all stars except one on a rank, and won a game that also gave her a bonus
star, she would gain one rank and have 1 star on the new rank.

If a player on rank 1-20 loses a game, she loses a star. If a player has zero stars on
a rank and loses a star, she will lose a rank and have all stars minus one on the
rank below. However, one can never drop below rank 20 (losing a game at rank
20with no stars will have no effect).

If a player reaches the Legend rank, she will stay legend no matter how many
losses she incurs afterwards.

The number of stars on each rank are as follows:

• Rank 25-21: 2 stars

• Rank 20-16: 3 stars

• Rank 15-11: 4 stars

• Rank 10-1: 5 stars

A player starts at rank 25 with no stars. Given the match history of a player, what
is her rank at the end of the sequence of matches?

Input
The input consists of a single line describing the sequence of matches. Each
character corresponds to one game; ‘W’ represents a win and ‘L’ a loss. The length
of the line is between 1 and 10 000 characters (inclusive).

Output
Output a single line containing a rank after having played the given sequence of
games; either an integer between 1 and 25 or “Legend”.

A very long problem statement! The first hurdle is finding the energy to read it from
start to finish, without skipping any details. Not much creativity is needed here –
indeed, the algorithm to implement is given in the statement. Despite this, it is not as
easy as one would think. At the contest where it was used, it was the second most
solved problem, but also the one with the worst success ratio. On average, a team
needed 3.59 attempts before getting a correct solution, compared to the runner-up at
2.92 attempts. None of the top 6 teams in the contest got the problem accepted on their
first attempt. Failed attempts cost a lot. Not only in absolute time, but many forms of
competition include additional penalties for submitting incorrect solutions.

Implementation problems get much easier when you know your programming lan-
guage well, and can use it to write good, structured code. Split code into functions,

DRAFT

42 CHAPTER 3. IMPLEMENTATION PROBLEMS

use structures and give your variables good names and implementation problems
will become easier to code. A solution to the Game Rank problem which attempts to
use this approach is given here:

1 #include <bits/stdc++.h>
2

3 using namespace std;
4

5 int curRank = 25, curStars = 0, conseqWins = 0;
6

7 int starsOfRank() {
8 if (curRank >= 21) return 2;
9 if (curRank >= 16) return 3;

10 if (curRank >= 11) return 4;
11 if (curRank >= 1) return 5;
12 assert(false);
13 }
14

15 void addStar() {
16 if (curStars == starsOfRank()) {
17 --curRank;
18 curStars = 0;
19 }
20 ++curStars;
21 }
22

23 void addWin() {
24 int curStarsWon = 1;
25 ++conseqWins;
26 if (conseqWins >= 3 && curRank >= 6) curStarsWon++;
27

28 for (int i = 0; i < curStarsWon; i++) {
29 addStar();
30 }
31 }
32

33 void loseStar() {
34 if (curStars == 0) {
35 if (curRank == 20) return;
36 ++curRank;
37 curStars = starsOfRank();
38 }
39 --curStars;
40 }
41

42 void addLoss() {
43 conseqWins = 0;
44 if (curRank <= 20) loseStar();
45 }
46

47 int main() {
48 string seq;

DRAFT

43

49 cin >> seq;
50 for (char res : seq) {
51 assert(1 <= curRank && curRank <= 25);
52 if (res == ’W’) addWin();
53 else addLoss();
54 if (curRank == 0) break;
55 assert(0 <= curStars && curStars <= starsOfRank());
56 }
57 if (curRank == 0) cout << "Legend" << endl;
58 else cout << curRank << endl;
59 }

Note the use of the assert() function. The function takes a single boolean parameter,
and crashes the program with an assertion failure if the parameter evaluated to false.
This is helpful when solving problems, since it allows us to verify that assertions we
make regarding the internal state of the program indeed holds. In fact, when the
above solution was written, the assertions in it actually managed to catch some bugs
before submitting the problem!

Exercise 3.2 — Kattis Exercise

Game Rank – gamerank

Next, we will work through a complex implementation problem, starting with a long,
hard-to-read solution with a few bugs. Then, we will refactor it a few times until it is
correct and easy to read.

Mate in One
Introduction to Algorithms at Danderyds Gymnasium

"White to move, mate in one."

When you are looking back in old editions of the New in Chess magazine, you
find loads of chess puzzles. Unfortunately, you realize that it was way too long
since you played chess. Even trivial puzzles such as finding a mate in one now
far exceed your ability.

But, perseverance is the key to success. You realize that you can instead use your
new-found algorithmic skills to solve the problem by coding a program to find
the winning move.

You will be given a chess board, which satisfy:

• No player may castle.

• No player can perform an en passant1.

• The board is a valid chess position.

DRAFT

44 CHAPTER 3. IMPLEMENTATION PROBLEMS

• White can mate black in a single, unique move.

Write a program to output the move white should play to mate black.

Input
The board is given as a 8× 8 grid of letters. The letter . represent an empty space,
the characters pbnrqk represent a white pawn, bishop, knight, rook, queen and
king, and the characters PBNRQK represents a black pawn, bishop, knight, rook,
queen and king.

Output
Output a move on the form a1b2, where a1 is the square to move a piece from
(written as the column, a-h, followed by the row, 1-8) and b2 is the square to
move the piece to.

1 #include <bits/stdc++.h>
2 using namespace std;
3

4 #define rep(i,a,b) for (int i = (a); i < (b); ++i)
5 #define trav(it, v) for (auto& it : v)
6 #define all(v) (v).begin(), (v).end()
7 typedef pair<int, int> ii;
8 typedef vector<ii> vii;
9 template <class T> int size(T &x) { return x.size(); }

10

11 char board[8][8];
12

13 bool iz_empty(int x, int y) {
14 return board[x][y] == ’.’;
15 }
16

17 bool is_white(int x, int y) {
18 return board[x][y] >= ’A’ && board[x][y] <= ’Z’;
19 }
20

21 bool is_valid(int x, int y) {
22 return x >= 0 && x < 8 && y >= 0 && y < 8;
23 }
24

25 int rook[8][2] = {
26 {1, 2},
27 {1, -2},
28 {-1, 2},
29 {-1, -2},
30

31 {2, 1},
32 {-2, 1},
33 {2, -1},

1If you are not aware of this special pawn rule, do not worry – knowledge of it is irrelevant with
regard to the problem.

DRAFT

45

34 {-2, -1}
35 };
36

37 void display(int x, int y) {
38 printf("%c%d", y + ’a’, 7 - x + 1);
39 }
40

41 vii next(int x, int y) {
42 vii res;
43

44 if (board[x][y] == ’P’ || board[x][y] == ’p’) {
45 // pawn
46

47 int dx = is_white(x, y) ? -1 : 1;
48

49 if (is_valid(x + dx, y) && iz_empty(x + dx, y)) {
50 res.push_back(ii(x + dx, y));
51 }
52

53 if (is_valid(x + dx, y - 1) && is_white(x, y) != is_white(x + dx, y - 1)) {
54 res.push_back(ii(x + dx, y - 1));
55 }
56

57 if (is_valid(x + dx, y + 1) && is_white(x, y) != is_white(x + dx, y + 1)) {
58 res.push_back(ii(x + dx, y + 1));
59 }
60

61 } else if (board[x][y] == ’N’ || board[x][y] == ’n’) {
62 // knight
63

64 for (int i = 0; i < 8; i++) {
65 int nx = x + rook[i][0],
66 ny = y + rook[i][1];
67

68 if (is_valid(nx, ny) && (iz_empty(nx, ny) || is_white(x, y) != is_white(nx, ny))) {
69 res.push_back(ii(nx, ny));
70 }
71 }
72

73 } else if (board[x][y] == ’B’ || board[x][y] == ’b’) {
74 // bishop
75

76 for (int dx = -1; dx <= 1; dx++) {
77 for (int dy = -1; dy <= 1; dy++) {
78 if (dx == 0 && dy == 0)
79 continue;
80

81 if ((dx == 0) != (dy == 0))
82 continue;
83

84 for (int k = 1; ; k++) {
85 int nx = x + dx * k,

DRAFT

46 CHAPTER 3. IMPLEMENTATION PROBLEMS

86 ny = y + dy * k;
87

88 if (!is_valid(nx, ny)) {
89 break;
90 }
91

92 if (iz_empty(nx, ny) || is_white(x, y) != is_white(nx, ny)) {
93 res.push_back(ii(nx, ny));
94 }
95

96 if (!iz_empty(nx, ny)) {
97 break;
98 }
99 }

100 }
101 }
102

103 } else if (board[x][y] == ’R’ || board[x][y] == ’r’) {
104 // rook
105

106 for (int dx = -1; dx <= 1; dx++) {
107 for (int dy = -1; dy <= 1; dy++) {
108 if ((dx == 0) == (dy == 0))
109 continue;
110

111 for (int k = 1; ; k++) {
112 int nx = x + dx * k,
113 ny = y + dy * k;
114

115 if (!is_valid(nx, ny)) {
116 break;
117 }
118

119 if (iz_empty(nx, ny) || is_white(x, y) != is_white(nx, ny)) {
120 res.push_back(ii(nx, ny));
121 }
122

123 if (!iz_empty(nx, ny)) {
124 break;
125 }
126 }
127 }
128 }
129

130 } else if (board[x][y] == ’Q’ || board[x][y] == ’q’) {
131 // queen
132

133 for (int dx = -1; dx <= 1; dx++) {
134 for (int dy = -1; dy <= 1; dy++) {
135 if (dx == 0 && dy == 0)
136 continue;
137

DRAFT

47

138 for (int k = 1; ; k++) {
139 int nx = x + dx * k,
140 ny = y + dy * k;
141

142 if (!is_valid(nx, ny)) {
143 break;
144 }
145

146 if (iz_empty(nx, ny) || is_white(x, y) != is_white(nx, ny)) {
147 res.push_back(ii(nx, ny));
148 }
149

150 if (!iz_empty(nx, ny)) {
151 break;
152 }
153 }
154 }
155 }
156

157

158 } else if (board[x][y] == ’K’ || board[x][y] == ’k’) {
159 // king
160

161 for (int dx = -1; dx <= 1; dx++) {
162 for (int dy = -1; dy <= 1; dy++) {
163 if (dx == 0 && dy == 0)
164 continue;
165

166 int nx = x + dx,
167 ny = y + dy;
168

169 if (is_valid(nx, ny) && (iz_empty(nx, ny) || is_white(x, y) != is_white(nx, ny))) {
170 res.push_back(ii(nx, ny));
171 }
172 }
173 }
174 } else {
175 assert(false);
176 }
177

178 return res;
179 }
180

181 bool is_mate() {
182

183 bool can_escape = false;
184

185 char new_board[8][8];
186

187 for (int x = 0; !can_escape && x < 8; x++) {
188 for (int y = 0; !can_escape && y < 8; y++) {
189 if (!iz_empty(x, y) && !is_white(x, y)) {

DRAFT

48 CHAPTER 3. IMPLEMENTATION PROBLEMS

190

191 vii moves = next(x, y);
192 for (int i = 0; i < size(moves); i++) {
193 for (int j = 0; j < 8; j++)
194 for (int k = 0; k < 8; k++)
195 new_board[j][k] = board[j][k];
196

197 new_board[moves[i].first][moves[i].second] = board[x][y];
198 new_board[x][y] = ’.’;
199

200 swap(new_board, board);
201

202

203 bool is_killed = false;
204 for (int j = 0; !is_killed && j < 8; j++) {
205 for (int k = 0; !is_killed && k < 8; k++) {
206 if (!iz_empty(j, k) && is_white(j, k)) {
207 vii nxts = next(j, k);
208

209 for (int l = 0; l < size(nxts); l++) {
210 if (board[nxts[l].first][nxts[l].second] == ’k’) {
211 is_killed = true;
212 break;
213 }
214 }
215 }
216 }
217 }
218

219 swap(new_board, board);
220

221 if (!is_killed) {
222 can_escape = true;
223 break;
224 }
225 }
226

227 }
228 }
229 }
230

231 return !can_escape;
232 }
233

234 int main()
235 {
236 for (int i = 0; i < 8; i++) {
237 for (int j = 0; j < 8; j++) {
238 scanf("%c", &board[i][j]);
239 }
240

241 scanf("\n");

DRAFT

49

242 }
243

244 char new_board[8][8];
245 for (int x = 0; x < 8; x++) {
246 for (int y = 0; y < 8; y++) {
247 if (!iz_empty(x, y) && is_white(x, y)) {
248

249 vii moves = next(x, y);
250

251 for (int i = 0; i < size(moves); i++) {
252

253 for (int j = 0; j < 8; j++)
254 for (int k = 0; k < 8; k++)
255 new_board[j][k] = board[j][k];
256

257 new_board[moves[i].first][moves[i].second] = board[x][y];
258 new_board[x][y] = ’.’;
259

260 swap(new_board, board);
261

262

263 if (board[moves[i].first][moves[i].second] == ’P’ && moves[i].first == 0) {
264

265 board[moves[i].first][moves[i].second] = ’Q’;
266 if (is_mate()) {
267 printf("%c%d%c%d\n", y + ’a’, 7 - x + 1,
268 moves[i].second + ’a’, 7 - moves[i].first + 1);
269 return 0;
270 }
271

272 board[moves[i].first][moves[i].second] = ’N’;
273 if (is_mate()) {
274 printf("%c%d%c%d\n", y + ’a’, 7 - x + 1,
275 moves[i].second + ’a’, 7 - moves[i].first + 1);
276 return 0;
277 }
278

279 } else {
280 if (is_mate()) {
281 printf("%c%d%c%d\n", y + ’a’, 7 - x + 1,
282 moves[i].second + ’a’, 7 - moves[i].first + 1);
283 return 0;
284 }
285 }
286

287 swap(new_board, board);
288 }
289 }
290 }
291 }
292

293 assert(false);

DRAFT

50 CHAPTER 3. IMPLEMENTATION PROBLEMS

294

295 return 0;
296 }

That is a lot of code! Note how there are a few obvious mistakes which makes the
code harder to read, such as typo of iz_empty instead of is_empty, or how the list of
moves for the knight is called rook. Our final solution will reduce this to about 100
lines.

First of, let us clean up the move generation a bit. Currently, it is implemented as the
function next, together with some auxillary data (lines 25-179). It is not particularly
abstract, with a lot of code duplication. First of, almost all the moves of the pieces can
be described as: “pick a direction out of a list D, and move at most L steps along this
direction, stopping either before exiting the board or taking your own piece, or when
taking another piece.”. For the king and queen, D is all 8 directions one step away,
with L = 1 for the king and L =∞ for the queen.

Implementing this abstraction is done with little code.

const vii DIAGONAL = {{-1, 1}, {-1, 1}, {1, -1}, {1, 1}};
const vii CROSS = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}};
const vii ALL_MOVES = {{-1, 1}, {-1, 1}, {1, -1}, {1, 1},
{0, -1}, {0, 1}, {-1, 0}, {1, 0}};

const vii KNIGHT = {{-1, -2}, {-1, 2}, {1, -2}, {1, 2},
{-2, -1}, {-2, 1}, {2, -1}, {2, 1}};

vii directionMoves(const vii& D, int L, int x, int y) {
vii moves;
trav(dir, D) {
rep(i,1,L+1) {
int nx = x + dir.first * i, ny = y + dir.second * i;
if (!isValid(nx, ny)) break;
if (isEmpty(nx, ny)) moves.emplace_back(nx, ny);
else {
if (isWhite(x, y) != isWhite(nx, ny)) moves.emplace_back(nx, ny);
break;

}
}

}
return moves;

}

A short and sweet abstraction, that will prove very useful. This will handle all possible
moves, except for pawns. These have a few special cases.

vii pawnMoves(int x, int y) {
vii moves;

DRAFT

51

if (x == 0 || x == 7) {
vii queenMoves = directionMoves(ALL_MOVES, 16, x, y);
vii knightMoves = directionMoves(KNIGHT, 1, x, y);
queenMoves.insert(queenMoves.begin(), all(knightMoves));
return queenMoves;

}
int mv = (isWhite(x, y) ? - 1 : 1);
if (isValid(x + mv, y) && isEmpty(x + mv, y)) {
moves.emplace_back(x + mv, y);
bool canMoveTwice = (isWhite(x, y) ? x == 6 : x == 1);
if (canMoveTwice && isValid(x + 2 * mv, y) && isEmpty(x + 2 * mv, y)) {
moves.emplace_back(x + 2 * mv, y);

}
}
auto take = [&](int nx, int ny) {
if (isValid(nx, ny) && !isEmpty(nx, ny)
&& isWhite(x, y) != isWhite(nx, ny))
moves.emplace_back(nx, ny);

};
take(x + mv, y - 1);
take(x + mv, y + 1);
return moves;

}

This pawn implementation also takes care of promotion, rendering the logic previ-
ously implementing this obsolete.

The remainder of the move generation is now implemented as:

vii next(int x, int y) {
vii moves;
switch(toupper(board[x][y])) {
case ’Q’: return directionMoves(ALL_MOVES, 16, x, y);
case ’R’: return directionMoves(CROSS, 16, x, y);
case ’B’: return directionMoves(DIAGONAL, 16, x, y);
case ’N’: return directionMoves(KNIGHT, 1, x, y);
case ’K’: return directionMoves(ALL_MOVES, 1, x, y);
case ’P’: return pawnMoves(x, y);

}
return moves;

}

These make up a total of about 50 lines – a reduction to a third of how the move
generation was implemented before. The trick was to rework all code duplication
into a much cleaner abstraction.

DRAFT

52 CHAPTER 3. IMPLEMENTATION PROBLEMS

We also have a lot of code duplication in the main (lines 234-296) and is_mate (lines
181-232) functions. Both functions loops over all possible moves, with lots of duplica-
tion. First of all, let us further abstract the move generation to not only generate the
moves a certain piece can make, but all the moves a player can make. This is done in
both functions, so we should be able to extract this logic into only one place:

vector<pair<ii, ii>> getMoves(bool white) {
vector<pair<ii, ii>> allMoves;
rep(x,0,8) rep(y,0,8) if (!isEmpty(x, y) && isWhite(x, y) == white) {

vii moves = next(x, y);
trav(it, moves) allMoves.emplace_back(ii{x, y}, it);

}
return allMoves;

}

We also have some duplication in the code making the moves. Before extracting this
logic, we will change the structure used to represent the board. A char[8][8] is a
tedious structure to work with. It is not easily copied or sent as parameter. Instead,
we will use a vector<string>, typedef’d as Board:

typedef vector<string> Board;

We then add a function to make a move, returning a new board:

Board doMove(pair<ii, ii> mv) {
Board newBoard = board;
ii from = mv.first, to = mv.second;
newBoard[to.first][to.second] = newBoard[from.first][from.second];
newBoard[from.first][from.second] = ’.’;
return newBoard;

}

Hmm... there should be one more thing in common between the main and is_mate
functions. Namely, to check if the current player is in check after a move. However, it
seems this is not done in the main function – a bug. Since we do need to do this twice,
it should probably be its own function:

bool inCheck(bool white) {
trav(mv, getMoves(!white)) {
ii to = mv.second;
if (!isEmpty(to.first, to.second)

&& isWhite(to.first, to.second) == white
&& toupper(board[to.first][to.second]) == ’K’) {

return true;
}

}

DRAFT

53

return false;
}

Now, the long is_mate function is much shorter and readable, thanks to our refactor-
ing:

bool isMate() {
if (!inCheck(false)) return false;
Board oldBoard = board;
trav(mv, getMoves(false)) {
board = doMove(mv);
if (!inCheck(false)) return false;
board = oldBoard;

}
return true;

}

A similar transformation is now possible of the main function, that loops over all
moves white make and checks if black is in mate:

int main() {
rep(i,0,8) {

string row;
cin >> row;
board.push_back(row);

}
Board oldBoard = board;
trav(mv, getMoves(true)) {

board = doMove(mv);
if (inCheck(true)) goto skip;
if (isMate()) {

outputSquare(mv.first.first, mv.first.second);
outputSquare(mv.second.first, mv.second.second);
cout << endl;
break;

}
skip: board = oldBoard;
}
return 0;

}

Now, we have actually rewritten the entire solution. From the 300-line behemoth
with gigantic functions, we have refactored the solution into few, short functions with
are easy to follow. The rewritten solution is less than half the size, clocking in at less
than 140 lines. Learning to code such structured solutions comes to a large extent

DRAFT

54 CHAPTER 3. IMPLEMENTATION PROBLEMS

from experience. During a competition, we might not spend time thinking about how
to structure our solutions, instead focusing on getting it done as soon as possible.
However, spending 1-2 minutes thinking about how to best implement a complex
solution could pay off not only in faster implementation times (such as halving the
size of the program), but also in being less buggy.

To sum up: implementation problems should not be underestimated in terms of
implementation complexity. Work on your coding best practices and spend time prac-
ticing coding complex solutions, and you will see your implementation performance
improve.

3.1 Additional Exercises
Exercise 3.3

Flexible Spaces – flexiblespaces

Sort of Sorting – sortofsorting

Permutation Encryption – permutationencryption

Jury Jeopardy – juryjeopardy

Fun House – funhouse

Settlers of Catan – settlers2

Cross – cross

Basic Interpreter – basicinterpreter

Cat Coat Colors – catcoat

3.2 Chapter Notes

Many good sources exist to become more proficient at writing readable, simple code.
Clean Code[13] describes many principles that helps in writing better code. It includes
good walk-throughs on refactoring, and shows in a very tangible fashion how coding
cleanly also makes coding easier.

Code Complete[14] is a huge tome on improving your programming skills. While much
of the content is not particularly relevant to coding algorithmic problems, chapters
5-19 give many suggestions on coding style.

Different languages have different best practices. Some resources on improving your
skills in whatever language you code in are:

DRAFT

3.2. CHAPTER NOTES 55

C++ Effective C++[16], Effective Modern C++[17], Effective STL[15], by Scott Meyers,

Java Effective Java[3] by Joshua Bloch,

Python Effective Python[21] by Brett Slatkin, Python Cookbook[2] by David Beazley and
Brian K. Jones.

DRAFT

56 CHAPTER 3. IMPLEMENTATION PROBLEMS

DRAFT
Chapter 4

Time Complexity

How do you know if your algorithm is fast enough before you have coded it? In
this chapter, we will look at this question from the perspective of time complexity,
a common tool of algorithm analysis to determine roughly how fast an algorithm
is.

We will start our study of complexity by looking at a new sorting algorithm – insertion
sort. Just like selection sort, which we studied in Chapter 1, insertion sort works by
iteratively sorting the array.

4.1 The Complexity of Insertion Sort

The insertion sort algorithm works by ensuring that all of the first i elements of the
input sequence are sorted. First for i = 1, then for i = 2, etc, up to i = n, at which
point the entire sequence is sorted.

Algorithm 4.1: Insertion Sort

Assume we wish to sort the list a0, a1, ..., aN−1 of N integers. If we know that the
first K elements a0, ..., aK−1 numbers are sorted, we can make the list a0, ..., aK
sorted by taking the element aK and inserting it into the correct position of the
already-sorted prefix a0, ..., aK−1.

For example, we know that a list of a single element is always sorted, so we can
use that a0 is sorted as a base case. We can then sort a0, a1 by checking whether
a1 should be to the left or to the right of a0. In the first case, we swap the two
numbers.

Once we have sorted a0, a1, we will insert a2 into the sorted list. If it is larger

57

DRAFT

58 CHAPTER 4. TIME COMPLEXITY

than a1, it is already in the correct place. Otherwise, we swap a1 and a2, and keep
going until we either find the correct location, or determine that the number was
the smallest one, in which case the correct location is in the beginning.

In this section, we will determine how long time insertion sort takes to run. When
analyzing an algorithm, we generally do not attempt to compute the actual wall
clock time an algorithm takes. Indeed, this would be nearly impossible a priori –
modern computers are complex beasts with often unpredictable behavior. Instead,
we try to approximate the growth of the running time, as a function of the size of the
input. When sorting fixed-size integers, this would be the number of elements we are
sorting,N. We denote the time the algorithm takes in relation toN as T(N). Note that
this is the worst-case time, over every instance of N elements.

5 2 4 1 3 0 t0 = 0

5 2 4 1 3 0 t1 = 1

2 5 4 1 3 0 t2 = 1

2 4 5 1 3 0 t3 = 3

1 2 4 5 3 0 t4 = 2

1 2 3 4 5 0 t5 = 5

Figure 4.1: Insertion Sort sorting the sequence 2, 1, 4, 5, 3, 0.

To properly analyze an algorithm, we need to be more precise about exactly what it
does. We give the following pseudo code for insertion sort:

Algorithm 4.2: Insertion sort

procedure INSERTIONSORT(A) . Sorts the sequence A containing N elements
for i← 0 to N− 1 do
j← i

while j > 0 and A[j] < A[j− 1] do
Swap A[j] och A[j− 1]
j← j− 1

DRAFT

4.1. THE COMPLEXITY OF INSERTION SORT 59

To analyze the running time of the algorithm, we make the assumption that any
“sufficiently small” operation takes the same amount of time – exactly 1 (of some
undefined unit). We have to be careful in what assumptions we make regarding what
a sufficiently small operation means. For example, sorting N numbers is not a small
operation, while adding or multiplying two fixed-size numbers is. Multiplication
of integers of arbitrary size is not a small operation (see the Karatsuba algorithm,
Chapter 8).

In our program, every line happens to represent a small operation. However, the
two loops may cause some lines to execute more than once. The outer for loop will
execute N times. The number of times the inner loop runs depends on how the input
looks. We will introduce the notation ti to mean the number of iterations the inner
loop runs during the i’th iteration of the outer loop. These are included in figure 4.1
for every iteration.

Let us take our pseudo code, and write how many times each line execute:

Algorithm 4.3: Insertion sort

1: procedure INSERTIONSORT(A). Sorts the sequence A containingN elements
2: for i← 0 to N− 1 do . Runs N times, cost 1
3: j← i . Runs N times, cost 1
4: while j > 0 and A[j] < A[j− 1] do . Runs

∑N−1
i=0 ti times, cost 1

5: Swap A[j] och A[j− 1] . Runs
∑N−1

i=0 ti times, cost 1
6: j← j− 1 . Runs

∑N−1
i=0 ti times, cost 1

We can now express T(N) as

T(N) = N+N+

(
N−1∑
i=0

ti

)
+

(
N−1∑
i=0

ti

)
+

(
N−1∑
i=0

ti

)

= 3

(
N−1∑
i=0

ti

)
+ 2N

We still have some ti variables left, so we do not truly have a function of N. We can
eliminate this by realizing that in the worst case, we have ti = i. This happens when
the list we are sorting is in descending order. Then, each element must be moved to
the front, which requires i swaps.

This substitution gives us a way to simplify the expression:

T(N) = 3

(
N−1∑
i=0

i

)
+ 2N

DRAFT

60 CHAPTER 4. TIME COMPLEXITY

= 3
(N− 1)N

2
+ 2N

=
3

2
(N2 −N) + 2N

=
3

2
N2 −

N

2

This function grows quadratically with the number of elements of N. Since we assign
the approximate growth of the time a function takes such importance, a notation was
developed for it.

4.2 Asymptotic Notation

Most of the time when we express the running time of an algorithm, we use what
is called asymptotic notation. The notation captures the behavior of a function as its
arguments grow. For example, the function T(N) = 3

2
N2 − N

2
which described the

running time of insertion sort, is bounded by c ·N2 for large N, for some constant c.
We write

T(N) = O(N2)

to state this fact.

Similarly, the linear function 2N+ 15 is bounded by c ·N for large N, with c = 3. We
also have that 2N+ 15 = O(N2), since the asymptotic notation only concerns upper
bounds. However, N2 is not bounded by c ·N for any constant c when N is large, so
we have that N2 6= O(N).

Definition 4.1 —O-notation
Let f and g be non-negative functions from R≥0 to R≥0. If there exists positive
constants n0 and c such that f(n) ≤ cg(n) whenever n ≥ n0, we say that f(n) =
O(g(n)).

Intuitively, the notation means that f(n) grows slower than or as fast as g(n), within a
constant. Any quadratic function an2+bn+c = O(n2). Similarly, any linear function
an+ b = O(n2) as well. This definition implies that for two functions f and g which
are always within a constant of each other, we have that both f(n) = O(g(n)) and
g(n) = O(f(n)).

We can use this definition to prove that the running time of insertion sort is bounded
O(N2) in the worst case.

DRAFT

4.2. ASYMPTOTIC NOTATION 61

Example 4.1 Prove that 3
2
N2 − N

2
= O(N2).

Proof. When N ≥ 0, we have 3
2
N2 − N

2
≤ 3

2
N2. Using the constants c = 3

2
and

n0 = 1we fulfill the condition from the definition.

For a constant k, we say that k = O(1). This is a slight abuse of notation, but a
well-established abuse. We are basically using the symbol 1 to mean the constant
function of value 1 – maybe it should be written 1(N) instead.

Competitive Tip

The following table describes approximately what complexity you need to solve
a problem of size n if your algorithm has a certain complexity, with a time limit
of about 1 second.

Complexity n

O(logn) 2(10
7)

O(
√
n) 1014

O(n) 107

O(n logn) 106

O(n
√
n) 105

O(n2) 5 · 103
O(n2 logn) 2 · 103
O(n3) 300

O(2n) 24

O(n2n) 20

O(n22n) 17

O(n!) 11

Table 4.1: Approximations of needed time complexities
Note that this is in no way a general rule – while complexity will not bother about
constant factors, wall clock time does!

Complexity analysis can also be used to determine lower bounds of the time an al-
gorithm takes. To reason about lower bounds, we use Ω-notation. It is similar to
O-notation, except it describes the reverse relation.

Definition 4.2 —Ω-notation
Let f and g be non-negative functions from R≥0 to R≥0. If there exists positive
constants n0 and c such that cg(n) ≤ f(n) whenever n ≥ n0, we say that f(n) =
O(g(n)). If cg(n) ≤ f(n) for every n ≥ n0, where c and n0 are positive constants
of our choice, we say that f(n) = Ω(g(n)).

DRAFT

62 CHAPTER 4. TIME COMPLEXITY

We know that the complexity of insertion sort has an upper bound of O(N2) in the
worst-case, but does it have a lower bound? In fact, it has the same lower bound, i.e.
T(N) = Ω(N2).

Example 4.2 Prove that 3
2
N2 − N

2
= Ω(N2).

Proof. When N ≥ 1, we have 3
2
N2 − N

2
≥ N2 since N2 ≥ N. Using the constants

c = 1 and n0 = 1we fulfill the condition from the definition.

In this case, both the lower and the upper bound of the worst-case running time of
insertion sort coincided (asymptotically). We have another notation for when this is
the case:

Definition 4.3 —Θ-notation
If f(n) = O(g(n)) and f(n) = Ω(g(n)), we say that f(n) = Θ(g(n)).

Thus, the worst-case running time for insertion sort is Θ(n2).

There are many ways of computing the time complexity of an algorithm. The most
common case is when a program has K nested loops, each of with performs O(M)
iterations. The complexity of these loops are then O(MK · f(N)) if the inner-most
operation takesO(f(N)) time. In Chapter 8, you will also see some ways of computing
the time complexity of a particular type of recursive solution, called Divide and
Conquer algorithms.

4.3 NP-complete problems

Of particular importance in computer science are the problems that can be solved algo-
rithms running in polynomial time (often considered to be the “tractable” problems).
There are a number of problems for which we do not yet know if there is an algorithm
whose time complexity is bounded by a polynomial. One particular class of these
are the NP-complete problems. They have the property that they are all reducible
to one another, in the sense that a polynomial-time algorithm to any one of them
yields a polynomial-time algorithm to all the others. Many of these NP-complete
problems appear in algorithmic problem solving, so it is good to know that they exist
and that it is unlikely you will find a polynomial-time solution. During the course
of this book, you will occasionally see such problems, with their NP-completeness
mentioned.

DRAFT

4.4. OTHER TYPES OF COMPLEXITIES 63

4.4 Other Types of Complexities

There are several other types of complexities aside from the time complexity. For
example, the memory complexity of an algorithm measures the amount of memory
it uses. We use the same asymptotic notation when analyzing memory complexity.
In most modern programming competitions, the allowed memory usage is high
enough for the memory complexity not be a problem. However, it is still of interest in
computer science (and thus algorithmic problem solving) and computer engineering
in general.

Another common type of complexity is the query complexity. In some problems
(like the Guessing Problem from chapter 1), we are given access to some kind of
external procedure (called an oracle) that computes some value given parameters
that we provide. Such a procedure call is called a query. The number of queries that
an algorithm makes to the oracle is called its query complexity. Problems where
the algorithm is allowed access to an oracle often bound the number of queries the
algorithm may make. In these problems, the query complexity of the algorithm is of
interest.

4.5 Exercises
Exercise 4.1

Find a lower and an upper bound that coincide for the best-case running time for
insertion sort.

Exercise 4.2

Give an O(n) algorithm and an O(1) algorithm to compute the sum of the n first
integers.

Exercise 4.3

Prove, using the definition, that 10n2 + 7n− 5+ log2 n = O(n2). What constants
c, n0 did you get?

Exercise 4.4

Prove that f(n) + g(n) = Θ(max{f(n), g(n)}) for non-negative functions f and g.

DRAFT

64 CHAPTER 4. TIME COMPLEXITY

Exercise 4.5

Is 2n+1 = O(2n)? Is 22n = O(2n)?

Exercise 4.6

Prove that (n+ a)b = O(nb) for positive constants a, b > 0.

4.6 Chapter Notes

Advanced algorithm analysis sometimes use rather complicated discrete mathematics,
such as number theoretical (as in Chapter 14) or combinatorial (as in Chapter 13)
facts. Concrete Mathematics [7] by Donald Knuth, et al, does a thorough job on both
accounts.

An Introduction to the Analysis of Algorithms [8] by Sedgewick and Flajolet has a
more explicit focus on the analysis of algorithms, mainly discussing combinatorial
analysis.

The study of various kinds of complexities forms a research area called computational
complexity theory. Computational Complexity [18] by Papadimitriou is a classical intro-
duction to computational complexity, although Computational Complexity: A Modern
Approach [1] by Arora and Barak is a more modern textbook, with recent results that
the book by Papadimitriou lack.

While complexity theory is mainly concerned about the limits of specific computa-
tional models on problems that can be solved within those models, what can not be
done by computers is also interesting. This is somewhat out of scope for an algo-
rithmic problem solving book (since we are interested in those problems which can
be solved), but is still of general interest. A book on e.g. automata theory (such as
Introduction to Automata Theory, Languages, and Computation [24] by Ullman et al) can
be a good compromise, mixing both some foundations of the theory of computation
with topics more applicable to algorithms (such as automatons and languages).

DRAFTPart II

Basics

65

DRAFT

DRAFT
Chapter 5

Brute Force

Many problems are solved by testing a large number of possibilities. For example,
chess engines work by testing countless variations of moves and choosing the ones
resulting in the “best” positions. This approach is called brute force. Brute force
algorithms exploit that computers are fast, resulting in you having to be less smart.
Just as with chess engines, brute force solutions might still require some ingenuity. The
same brute force problem might have a simple algorithm which requires a computer
to evaluate 240 options, while some deeper analysis might be able to reduce this to 220.
This would be a huge reduction in running time. Different approaches to brute force
may be the key factor in reaching the latter case instead of the former. In this chapter,
we will study a few such techniques.

5.1 Optimization Problems

In an optimization problem, we have some solution set S and a value function f. The
goal is to find an x ∈ Swhich maximize f(x), i.e., optimizing the function.

Optimization problems constitute a large class of the problems that we solve in
algorithmic problem solving, such as the Max Clique problem and the Buying Books
problems we will study in this chapter. One of the most famous optimization problems
is the NP-complete Travelling Salesman Problem. The problem seeks the shortest cycle
that visits all vertices of a weighted graph. The practical applications of this problem
are many. A logistics company that must perform a number of deliveries probably
want to minimize the distance traveled when visiting all the points of delivery. When
planning your backpacking vacation, you may prefer to minimize the cost of travelling
between all your destinations. In this problem, the solution set S would consist of all
cycles in the graph that visit all the vertices, with f(x) being the sum of all edges in
the cycle x.

67

DRAFT

68 CHAPTER 5. BRUTE FORCE

The brute force technique essentially consists of evaluating f(x) for a large number
(sometimes even all) of x ∈ S. For large S, this is slow.

The focus of this chapter and the chapters on Greedy Algorithms (Chapter 6) and Dy-
namic Programming (Chapter 7) will be to develop techniques that exploit particular
structures of optimization problems to avoid evaluating the entire set S.

5.2 Generate and Test

Our first brute force method is the generate and test method. This particular brute
force strategy consists of generating solutions – naively constructing candidate so-
lutions to a problem – and then testing them – removing invalid solutions. It is
applicable whenever the number of candidate solutions is quite small.

Max Clique
In a graph, a subset of the vertices form a clique if each pair of vertices is connected
by an edge. Given a graph, determine the size of the largest clique.

Input
The first line of input contains an integerN andM – the number of vertices and the
number of edges of the graph. The vertices are numbered 0, 1, . . . ,N−1. The next
M lines contain the edges of the graph. An edge is given as two space-separated
integers A and B – the endpoints of the graph.

Output
Output a single number – the size of the largest clique in the graph.

This problem is one of the so-called NP-complete problems we mentioned in Chap-
ter 4. Thus, a polynomial-time solution is out of reach. We will solve the problem for
N ≤ 15.
Let us analyze whether a generate and test approach is suitable. First of all, we must
define what our candidate solutions are. In this problem, only one object comes
naturally; subsets of vertices. For every such candidate, we must first test whether
it is a clique, and then compute its size, picking the largest clique to arrive at our
answer.

In the Max Clique problem, there are only 2N subsets of vertices (and thus candidate
solutions), which is a quite small number. Given such a set, we can verify whether
it is a clique in O(N2) time, by checking if every pair of vertices in the candiate set
has an edge between them. To perform this check in Θ(1) time, we keep a 2D vector
adj such that adj[i][j] is true if and only if vertices i and j are adjacent to each other.
This gives us a total complexity of O(2N ·N2). According to our table of complexities

DRAFT

5.2. GENERATE AND TEST 69

(Table 4.1), this should be fast enough for N = 15. A C++ implementation for this
can be seen in Algorithm 5.1. Note the nifty use of integers interpreted as bitsets to
easily iterate over every possible subset of an N-element set, a common technique of
generate and test solutions based on subsets.

Algorithm 5.1: Max Clique

1 int main() {
2 int N, M;
3 cin >> N >> M;
4 vector<vector<bool>> adj(N, vector<bool>(N));
5 rep(i,0,M) {
6 int A, B;
7 cin >> A >> B;
8 adj[A][B] = adj[B][A] = true;
9 }

10 rep(i,0,N) adj[i][i] = true;
11 rep(i,0,1<<N) {
12 rep(j,0,N) {
13 if (!(i & (1 << j))) continue;
14 rep(k,0,N) {
15 if (!(i & (1 << k))) continue;
16 if (!adj[j][k]) goto skip;
17 }
18 }
19 ans = max(ans, __builtin_popcount(i));
20 skip:;
21 }
22 cout << ans << endl;
23 }

This kind of brute force problem is often rather easy to spot. There will be a very
small input limit on the parameter you are to brute force over. The solution will often
be subsets of some larger base set (such as the vertices of a graph).

Exercise 5.1 — Kattis Exercises

4 thought – 4thought

Lifting Walls – walls

Let us look at another example of this technique, where the answer is not just a
subset.

The Clock
Swedish Olympiad in Informatics 2004, School Qualifiers

When someone asks you what time it is, most people respond “a quarter past

DRAFT

70 CHAPTER 5. BRUTE FORCE

five”, “15:29” or something similar. If you want to make things a bit harder, you
can answer with the angle between the minute and the hour hands, since this
uniquely determines the time. However, many people are unused to this way of
specifying the time, so it would be nice to have a program which translates this
to a more common format.

We assume that our clock have no seconds hand, and only display the time at
whole minutes (i.e., both hands only move forward once a minute). The angle is
determined by starting at the hour hand and measuring the number of degrees
clockwise to the minute hand. To avoid decimals, this angle will be specified in
tenths of a degree.

Input
The first and only line of input contains a single integer 0 ≤ A < 3600, the angle
specified in tenths of a degree.

Output
Output the time in the format hh:mm between 00:00 and 11:59.

It is difficult to come up with a formula that gives the correct times as a function of
the angles between the hands on a clock. Instead, we can turn the problem around. If
we know what the time is, can we compute the angle between the two hands of the
clock?

Assume that the time is currently h hours andmminutes. The minutes hand will then
be at angle 360

60
m = 6m degrees. Similarly, the hour hand moves 360

12
h = 30h degrees

due to the hours, and 360
12

1
60
m = 0.5m degrees due to the minute. While computing

the current time directly from the angle is difficult, computing the angle directly from
the current time is easy.

Our solution will be to test the 60 · 12 = 720 different times, and pick the one which
matched the given angle (Algorithm 5.2).

Algorithm 5.2: The Clock

procedure CLOCK(A)
for h← 0 to 11 do

form← 0 to 59 do
hourAng← 300h+ 5m
minuteAng← 60m

angBetween← (hourAng − minuteAng + 3600)mod 3600
if angBetween = A then

return h:m

DRAFT

5.3. BACKTRACKING 71

Competitive Tip

Sometimes, competitions pose problems which are solvable quite fast, but a brute
force algorithm will suffice as well. As a general rule, code the simplest correct
solution that is fast enough, even if you see a faster one.

Exercise 5.2 — Kattis Exercises

All about that base – allaboutthatbase

Natjecanje – natjecanje

Perket – perket

5.3 Backtracking

Backtracking is a variation of the generate and test method. Most of the time it is
faster, but it can sometimes be more difficult to code (in particular when the solutions
are subsets).

Let us return to the Max Clique problem. In the problem, we generated all the
candidate solutions (i.e., subsets of vertex) by using bitsets. In problems where the
candidate solutions are other objects than subsets, or the number of subsets is too
large to iterate through, we need to construct the solutions in another way. Generally,
we do this recursively. For example, when generating subsets, we would go through
every element one at a time, and decide whether to include it. Backtracking extends
generate and test to not only testing all the candidate solutions, but also these partial
candidates. Thus, a backtracking approach can be faster than an iterative approach,
by testing fewer candidate solutions.

For example, assume that two vertices a and b are not connected by an edge in the
graph. If we decide to include a in our solution, we already know that a candidate
solution can not include b. Thus, we have managed to reduce four choices – including
or excluding a and b – to three choices, by eliminating the inclusion of both vertices.
Algorithm 5.3 contains a C++ implementation of this.

Algorithm 5.3: Max Clique, Recursive Variant

1 // excluded is a bit set containing the vertices with a chosen neighbour
2 int best(int at, int excluded, int clique, const vector<int>& adjacent) {
3 if (at == sz(adjacent)) return clique;
4 // Case 1: Not including the current vertex
5 int answer = best(at + 1, excluded, clique, adjacent);
6 // Case 2: We can include the current vertex

DRAFT

72 CHAPTER 5. BRUTE FORCE

7 if (!((1 << at)&excluded)) {
8 answer = max(answer,
9 best(at + 1, excluded | ~adjacent[at], clique + 1, adjacent));

10 }
11 return answer;
12 }
13

14 int main() {
15 int N, M;
16 cin >> N >> M;
17 vector<int> adjacent(N);
18 rep(i,0,M) {
19 int A, B;
20 cin >> A >> B;
21 adjacent[A] |= 1 << B;
22 adjacent[B] |= 1 << A;
23 }
24 cout << best(0, 0, 0, adjacent) << endl;
25 }

As written, this version has the same complexity as the generate-and-test version.
Our improvement only generated fewer branches whenever the graph contained
edges. In the case where the graph consists of N vertices and no edges, this is not the
case. The recursion then degenerates to branching twiceN times, resulting in a Θ(2n)
complexity.

Backtracking works whenever we can construct our solutions iteratively (as in con-
structing it part by part), and quickly determine whether such a partial solution can
possibly be completed to an admissible solution.

Exercise 5.3 — Kattis Exercises

Class Picture – classpicure

Boggle – boggle

Geppetto – geppetto

Map Colouring – mapcolouring

Sudokunique – sudokunique

All Friends – friends

As a general principle, backtracking seems simple enough. Some backtracking solu-
tions require a bit more ingenuity, as in the next problem.

DRAFT

5.3. BACKTRACKING 73

Basin City Surveillance
Nordic Collegiate Programming Contest 2014 – Pål G. Drange and Markus S. Dregi

BASIN CITY is known for her incredibly high crime rates. The police see no
option but to tighten security. They want to install traffic drones at different
intersections to observe who’s running on a red light. If a car runs a red light,
the drone will chase and stop the car to give the driver an appropriate ticket.
The drones are quite stupid, however, and a drone will stop before it comes to
the next intersection as it might otherwise lose its way home, its home being the
traffic light to which it is assigned. The drones are not able to detect the presence
of other drones, so the police’s R&D department found out that if a drone was
placed at some intersection, then it was best not to put any drones at any of the
neighbouring intersections. As is usual in many cities, there are no intersections
in Basin City with more than four other neighbouring intersections.

The drones are government funded, so the police force would like to buy as many
drones as they are allowed to. Being the programmer-go-to for the Basin City
Police Department, they ask you to decide, for a given number of drones, whether
it is feasible to position exactly this number of drones.

Input
The first line contains an integer k (0 ≤ k ≤ 15), giving the number of drones
to position. Then follows one line with 1 ≤ n ≤ 100 000, the total number of
intersections in Basin City. Finally follow n lines describing consecutive intersec-
tions. The i’th line describes the i’th intersection in the following format: The
line starts with one integer d (0 ≤ d ≤ 4) describing the number of intersections
neighbouring the i’th one. Then follow d integers denoting the indices of these
neighbouring intersections. They will be all distinct and different from i. The
intersections are numbered from 1 to n.

Output
If it is possible to position k drones such that no two neighbouring intersections
have been assigned a drone, output a single line containing possible. Otherwise,
output a single line containing impossible.

At a first glance, it is not even obvious whether the problem is a brute force problem,
or if some smarter principle should be applied. After all, 100 000 vertices is a huge
number of intersections! We can make the problem a bit more reasonable with our
first insight. If we have a large number of intersections, and every intersection is
adjacent to very few other intersection, it is probably very easy to place the drones at
appropriate intersections. To formalize this insight, consider what happens when we
place a drone at an intersection.

By placing a drone at the intersection marked in black in Figure 5.1, at most five
intersections are affected – the intersection we placed the drone at, along with its

DRAFT

74 CHAPTER 5. BRUTE FORCE

Figure 5.1: The intersections affected by placing a drone at an intersection.

neighbouring intersections. If we would remove these five intersections, we would
be left with a new city where we need to place k− 1 drones. This simple fact – which
is the basis of a recursive solution to the problem – tells us that if we haveN ≥ 5k− 4
intersections, we immediately know the answer is possible. The −4 terms comes from
the fact that when placing the final drone, we no longer care about removing its
neighbourhood, since no further placements will take place.

Therefore, we can assume that the number of vertices is less than 5 · 15− 4 = 71, i.e.,
n ≤ 70. This certainly makes the problem seem much more tractable. Now, let us
start developing solutions to the problem.

First of all, we can attempt to use the same algorithm as we used for the Max Clique
problem. We could recursively construct the set of our k drones by, for each intersec-
tion, try to either place a drone there or not. If placing a drone at an intersection, we
would forbid placing drones at any neighbouring intersection.

Unfortunately, this basically means that we are testing every intersection when
placing a certain drone somewhere. This would give us a complexity of O(nk).
More specifically, the execution time T(n, k) would satisfy T(n, k) ≈ T(n − 1, k) +
T(n−1, k−1), which implies T(n, k) ≈

(
n
k

)
= Ω(nk) (see Section 13.4 for more details).

For n = 70, k = 15, this will almost certainly be way too high. The values of n and k
do suggest that an exponential complexity is in order, just not of this kind. Instead,
something similar to O(ck) where c is a small constant would be a better fit. One way
of achiving such a complexity would be to limit the number of intersections we must
test to place a drone at before trying one that definitely works. If we could manage to
test only c such intersections, we would get a complexity of O(ck).

The trick, yet again, comes from Figure 5.1. Assume that we choose to include this

DRAFT

5.3. BACKTRACKING 75

intersection in our solution, but still can not construct a solution. The only reason
this case can happen is (aside from bad previous choices) that no optimal solution
includes this intersection. What could possibly stop this intersection from being
included in an optimal solution? Basically, one of its neighbours would have to be
included in every optimal solution. Fortunately for us, this gives us just what we
need to improve our algorithm – either a given intersection, or one of its neighbours,
must be included in any optimal solution.

We have accomplished our goal of reducing the number of intersections to test for
each drone to a mere 5, which will give us a complexity of about O(5k) (possibly with
an additional polynomial factor in n depending on implementation). This is still too
much, unless, as the jury, noted, some “clever heuristics” are applied. Fortunately for
us, applying a common principle will speed things up dramatically (even giving us a
better time complexity).

First of all, we can partition the intersections into sets that are connected by sequences
by roads. These sets are all independent of each other, so we can solve them separately
by computing the maximal number of drones we can place in every such set, until we
have processed enough sets to place k drones.

With this in hand, we can use the following insight: if we at every step branch on the
intersection with the fewest neighbours, we will instead achieve a complexity ofO(4k).
After branching on the first drone, there will always be one intersection with at most
3 neighbours – leaving us with only 4 choices we must test when placing a drone. We
can prove this easily by contradiction. Assume that after placing a number of drones,
every intersection has exactly 4 neighbours. Then, none of these intersections can be
the neighbour of an intersection we have removed so far. However, this means the
set of intersections removed so far and the remaining intersections are disconnected,
a contradiction.

While such an algorithm would be significantly faster than the O(5k), further im-
provements are possible. Again, let us consider under what circumstances a certain
intersection is excluded from any optimal solution. We have already concluded that
if this is the case, then one of its neighbours must be included in any optimal solution.
Can it ever be the case that only one of its neighbours are included in an optimal
solution, as in Figure 5.2?

Clearly, this is never the case. We can simply move the drone to the intersection
from its neighbour, since there is no other neighbour causing problems. Now, we are
basically done. For any intersection, there will either be an optimal solution including
it, or two of its neighbours. Since an intersection has at most 4 neighbours, it has at
most 6 pairs of neighbours. This means our recursion will take time T(k) = T(k−1)+
6T(k− 2) in the worst case. This recurrence has the solution 3k, since 3k−1 + 6 · 3k−2 =
3k−1 + 2 · 3k−1 = 3 · 3k−1 = 3k. A final improvement would be to combine this insight
with the independence of the connected subsets of intersections. The second term of

DRAFT

76 CHAPTER 5. BRUTE FORCE

Figure 5.2: Placing a drone at a single neighbour of an intersection.

the time recurrence would then be a 3 instead of a 6 (as 3 neighbours make 3 pairs).
Solving this recurrence would give us the complexity O(2.31k) instead.

The general version of this problem (without the bounded degree) is called Independent
Set

So, what is the take-away regarding backtracking? First of all, find a way to construct
candidate solutions iteratively. Then, try to integrate the process of testing the validity
of a complete solution with the iterative construction, in the hope of significantly
reducing the number of candidate solutions which need evaluating. Finally, we
might need to use some additional insights, such as what to branch on (which can
be something complicated like the neighborhood of a vertex), deciding whether to
backtrack or not (i.e., improving the testing part) or reducing the number of branches
necessary (speeding up the generation part).

Exercise 5.4 — Kattis Exercises

Domino – domino

Fruit Baskets – fruitbaskets

Infiltration – infiltration

Vase Collection – vase

DRAFT

5.4. FIXING PARAMETERS 77

5.4 Fixing Parameters

The parameter fixing technique is also similar to the generate and test method, but is
not used to test the solution set itself. Instead, you perform brute force to fix some
parameter in the problem by trying possible values they can assume. Hopefully,
fixing the correct parameters allows you to solve the remaining problem easily. The
intuition is that while any particular choice of parameter may be wrong, testing every
choice allows us to assume that we at some point used the correct parameter.

Buying Books
Swedish Olympiad in Informatics 2010, Finals

You are going to buyN books, and are currently checking the different internetM
book shops for prices. Each book is sold by at least one book store, and can vary
in prices between the different stores. Furthermore, if you order anything from a
certain book store, you must pay for postage. Postage may vary between book
stores as well, but is the same no matter how many books you decide to order.
You may order books from any number of book stores. Compute the smallest
amount of money you need to pay for all the books.

Input
The first line contains two integers 1 ≤ N ≤ 100 – the number of books, and
1 ≤M ≤ 15 – the number of book stores.

Then,M descriptions of the book stores follow. The description of the i’th store
starts with a line containing two integers 0 ≤ Pi ≤ 1 000 (the postage for this
book store), and 1 ≤ Li ≤ N (the number of books this store sells). The next
L lines contains the books sold by the store. The j’th book is described by two
integers 0 ≤ Bi,j < N – the (zero-indexed) number of a book being sold here, and
1 ≤ Ci,j ≤ 1000 – the price of this book at the current book store.

Output
Output a single integer – the smallest amount of money you need to pay for the
books.

If we performed naive generate and test on this problem, we would probably get
something like 15100 solutions (testing every book shop for every book). This is
infeasible. So, why can we do better than this? There must be some hidden structure
in the problem which makes testing all those possibilities unnecessary. To find this
structure, we will analyze a particular candidate solution as given by the naive
generate and test method. Can we find a simple criteria for when a solution obvious
cannot be optimal?

It turns out that yes, we can. Assume that we, in a particular solution, bought a book
from some book store A, but it was available for a lower price at book store B. If this
is an optimal solution we must not have bought any books from B.

DRAFT

78 CHAPTER 5. BRUTE FORCE

When this happens, i.e., you notice very simple constraints which immediately dis-
qualify many of the solution candidates from being optimal, it is a good sign you may
be able to restructure your brute force in order to avoid evaluating many of them. In
our case, this observation hints that making a choice for every book is not particularly
good.

We could decide to use this fact to turn our generate and test into a backtracking
algorithm, by pruning away any solution where we have bought a book which is
available at a cheaper price from another book store we also used. Unfortunately,
this is easily defeated by giving most of the books equal prices at most of the book
stores.

Instead, let us use the observation differently. The entirety of the observation quite
plainly told us that we do not really have any choice in where we buy the books!
Indeed, once we know what book stores we have bought from, we are forced to buy
the book from the cheapest store that is used. At this point, we are basically done.
We have reduced the amount of information we need to fix to solve the problem to
“which book stores will we purchase from?”. This parameter has only 215 possibilities.
After fixing it, we can compute the rest of the answer using the “cheapest store for
each book” rule. Since we test every possible such parameter, we must also include
the optimal one. The pseudo code for this solution is in Algorithm 5.4.

Algorithm 5.4: Buying Books

procedure BUYINGBOOKS(books N, storesM, costs C, postages P)
answer←∞
for every S ⊆ [M] do

cost← 0

for every s ∈ S do
cost← cost + Ps

for every b ∈ [N] do
cost← cost + mini∈SCi,b

answer← min(answer, cost)
return answer

Alternatively, we could have come to the same insight by simply asking ourselves
“can we bruteforce over the number of book shops?”. Whenever you have a parameter
about this size in such a problem, this is a question worth asking. However, the
parameter to brute force over is not always this explicit, as in the following problem,
which asks us to find all integer solutions to an equation in a certain interval.

Integer Equation
Codeforces Round #262, Problem B

DRAFT

5.5. MEET IN THE MIDDLE 79

Find all integers 0 < x < 109 which satsify the equation

x = a · s(x)b + c

where a, b and c are given integers, and s(x) is the digit sum of x.

Input
The input contains the three integers a, b, and c such that

|a| ≤ 10 000

1 ≤ b ≤ 5
|c| ≤ 10 000

Output
Output a single integer – number of integer solutions x to the equation.

In this problem, the only explicit object we have is x. Unfortunately, 109 is a tad too
many possibilities. If we study the equation a bit closer, we see that s(x) also varies
as a function of x. This is helpful, since s(x) has far fewer options than x. In fact, a
number bounded by 109 has at most 9 digits, meaning it has a maximum digit sum of
9 · 9 = 81. Thus, we can solve the problem by looping over all the possibles values
of s(x). This uniquely fixes our right hand side, which equals x. Given x, we verify
that s(x) has the correct value. Whenever we have such a function, i.e., one with a
large domain (like x in the problem) but a small image (like s(x) in the problem), this
technique can be used by brute forcing over the image instead.

Exercise 5.5 — Kattis Exercises

Shopping Plan – shoppingplan

5.5 Meet in the Middle

The meet in the middle technique is essentially a special case of the parameter fixing
technique. The general theme will be to fix half of the parameter space and build some
fast structure such that when testing the other half of the parameter space, we can
avoid explicitly re-testing the first half. It is a space-time tradeoff, in the sense that we
improve the time usage (testing half of the parameter space much faste much faster),
by paying with increased memory usage (to save the pre-computed structures).

DRAFT

80 CHAPTER 5. BRUTE FORCE

Subset Sum
Given a set of integers S, is there some subset A ⊆ Swith a sum equal to T?

Input
The first line contains an integer N, the size of S, and T . The next line contains
N integers s1, s2, ..., sN , separated by spaces – the elements of S. It is guaranteed
that si 6= sj for i 6= j.
Output
Output possible if such a subset exists, and impossible otherwise.

In this problem, we have N parameters in our search space. For each element of S,
we either choose to include it in A or not – a total of two choices for each parameter.
This naive attempt at solving the problem (which amounts to computing the sum of
every subset) gives us a complexity of O(2N). While sufficient for e.g. N = 20, we can
make an improvement that makes the problem tractable even for N = 40.

As it happens, our parameters are to a large extent independent. If we fix e.g. the N
2

first parameters, the only constraint they place on the remaining N
2

parameters is the
sum of the integers in subset they decide. This latter constraint takes O(2

N
2) time to

check for each choice of the first half of parameters if we use brute force. However,
the computation performed is essentially the same, only differing in what sum we
try to find. We will instead trade away some memory in order to only compute
this information once, by first computing all possible sums that the latter half of the
elements can form. This information can be inserted into a hash set, which allows
us to determine if a sum can be formed by the elements in Θ(1) instead. Then, the
complexity is instead Θ(N2

N
2) in total.

Algorithm 5.5: Subset Sum

procedure SUBSETSUM(set S, target T)
N← |S|

left← N
2

right← N− left
Lset← the left first elements of S
Rset← S \ Lset
Lsums← new set

for each L ⊆ Lset do
Lsums.insert(

∑
l∈L l)

for each R ⊆ Rset do
sum←∑r∈R r

if Lsums.contains(T − sum) then
output true

DRAFT

5.6. CHAPTER NOTES 81

return
output false

Exercise 5.6 — Kattis Exercises

Closest Sums – closestsums

Maximum Loot – maxloot

Celebrity Split – celebritysplit

Circuit Counting – countcircuits

Indoorienteering – indoorienteering

Key to Knowledge – keytoknowledge

Knights in Fen – knightsfen

Rubrik’s Revenge in ... 2D!? 3D? – rubriksrevenge

5.6 Chapter Notes

write chapter
notes
write chapter
notes

DRAFT

82 CHAPTER 5. BRUTE FORCE

DRAFT
Chapter 6

Greedy Algorithms

In this chapter, we are going to look at another standard technique to solve some
categories of search and optimization problems faster than naive bruteforce, by
exploiting properties of local optimality.

6.1 Optimal Substructure

Most optimization problems we study consist of making a series of sequential choices.
They are often be of the following form: Given a weighted, directed acyclic graph
(DAG) on N vertices, what is the “best” path from a vertex S to another vertex T?
This graph is almost never be given explicitly. Instead, it hides behind the problem as
a set of states (the vertices). At each state, we are to make some choice that takes us
to another state (traversing an edge). If the path consists of edges e1, e2, . . . , ek, the
function we are to maximize will be of the form

G(e1, e2, . . . , ek) = g(e1, g(e2, g(. . . , g(ek, 0))))

where g is a function from E× R to R. We will denote B(v) as the maximum value of
G(e1, e2, . . . , ek) over all paths from v to T . Often, g will be the negative sum of the
edge weights, meaning we look for the shortest path from S to T . If g(e, x) is increasing
in x, we say that problems exhibiting this property has optimal substructure.

One way to solve the problem would be to evaluate G for every path in the graph.
Unfortunately, the number of paths in a general graph can be huge (growing expo-
nentially with the number of vertices). However, the optimal substructure property
allows us to make a simplification. Assume that S has neighbors v1, v2, ..., vm. Then by
the definition of B and g, B(s) = max(g({s, vi}, B(vi)). Thus, we can solve the problem
by first solving the same problem on all vertices vi instead.

83

DRAFT

84 CHAPTER 6. GREEDY ALGORITHMS

Change-making Problem, Denominations 1, 2, 5
Given an infinite number of coins of denominations 1, 2, 5, determine the smallest
number of coins needed to sum up to T .

Input
The input contains a single integer 1 ≤ T ≤ 106.
Output
Output a single integer, the minimum number of coins needed.

We can phrase this problem using the kind of graph we previously discussed. Let the
graph have vertices labeled 0, 1, 2, ..., T , representing the amount of money we wish
to sum up to. For a vertex labeled x, we add edges to vertices labeled x − 1, x − 2,
x− 5 (if those vertices exist), weighted 1. Traversing such an edge represents adding
a coin of denomination 1, 2 or 5. Then, the Change-making Problem can be phrased
as computing the shortest path from the vertex T to 0. The corresponding graph for
T = 5 can be seen in Figure 6.1.

5 4
-1

3

-1

0

-1

-1
2

-1

-1
1

-1

-1

-1

-1

Figure 6.1: The Change-making Problem, formulated as finding the shortest path in a
DAG, for K = 5.

So, how does this graph formulation help us? Solving the problem on the graph as
before using simple recursion would be very slow (with an exponential complexity,
even). In Chapter 7 on Dynamic Programming, we will see how to solve such prob-
lems in polynomial time. For now, we will settle with solving problems exhibiting yet
another property besides having optimal substructure – that of local optimality.

Exercise 6.1

Compute the shortest path from each vertex in Figure 6.1 to T using the optimal
substructure property.

DRAFT

6.2. LOCALLY OPTIMAL CHOICES 85

6.2 Locally Optimal Choices

Greedy algorithms solve this kind of problem by making what is called a locally
optimal choice. We generally construct our shortest path iteratively, one edge at a
time. We start out at the first vertex, S, and need to choose an edge to traverse. A
greedy algorithm chooses the edge which locally looks like a good choice, without
any particular thought about future edges.

For example, consider how you would solve the Change-making Problem yourself.
You would probably attempt to add the 5 coin as many times as possible, until you
need to add less than 5. This makes sense locally, since 5 is the largest amount we
may charge at a time. When we need to add less than 5, we would probably instead
add coins worth 2, until we need to add either 0 or 1. In the latter case, we would add
a final 1 coin.

Intuitively, this makes sense. Adding the highest amount every time ought to be the
best possible. For this problem, this is actually true. However, if the denominations
were different, this could fail (Exercise 6.2).

Exercise 6.2

Prove that the greedy choice may fail if the coins have denominations 1, 6 and 7.

Assume that the optimal solution uses the 1, 2 and 5 coins a, b and c times respectively.
We then have that either:

a = 1, b ≤ 1 If b ≥ 2, we could exchange one 1 coin and two 2 coins for one 5
coin.

a = 0, b ≤ 2 If b ≥ 3, we could exchange three 2 coins one 1 coin and one 5
coin.

If a ≥ 2, we could instead add a single 2 coin instead of two 1 coins.

This means that the possibilities for a and b are few:

• a = 0, b = 0: value 0

• a = 1, b = 0: value 1

• a = 0, b = 1: value 2

• a = 1, b = 1: value 3

• a = 0, b = 2: value 4

DRAFT

86 CHAPTER 6. GREEDY ALGORITHMS

Now, assume that we use exactly c coins of value 5, so that T = 5c + r. We know
that 0 ≤ r < 5. Otherwise, we would be summing up to an amount larger than 4
without using any 5 coins, but this is impossible based on the above list. This means
c must be as large as possible, i.e. it is optimal to add as many 5 coins as possible –
which the greedy choice will. Then, only the cases 0, 1, 2, 3 and 4 remain. Looking
at the list of those cases, we see that their optimal solutions correspond to how the
greedy algorithm works. Thus, the greedy algorithm will always give the optimal
answer.

Competitive Tip

If you have the choice between a greedy algorithm and another algorithm (such
as one based on brute force or dynamic programming), use the other algorithm
unless you are certain the greedy choice works.

Proving the correctness of a locally optimal choice is sometimes very cumbersome. In
the remainder of the chapter, we are going to look at a few standard problems that
are solvable using a greedy algorithm. Take note of the kind of arguments we are
going to use – there are a few common types of proofs which are often used in proofs
of greedy algorithms.

6.3 Scheduling

Scheduling problems are a class of problems which deals with constructing large
subsets of non-overlapping intervals, from some given set of intervals.

The classical Scheduling Problem is the following.

Scheduling Problem
Given is a set of half-open (being open on the right) intervals S. Determine the
largest subset A ⊆ S of non-overlapping intervals.

Input
The input contains the set of intervals S, where |S|.

Output
The output should contain the subset A.

We will construct the solution iteratively, adding one interval at a time. When looking
for greedy choices to perform, extremal cases are often the first ones you should
consider. Hopefully, one of these extremal cases can be proved to be included in an
optimal solution. For intervals, some extremal cases would be:

DRAFT

6.3. SCHEDULING 87

[) [) [) [)

[)

[)

[)

[)

[)

[)

[)

0 1 2 3 4 5 6 7 8

Figure 6.2: An instance of the scheduling problem, with the optimal solution at the
bottom.

• a shortest interval,

• a longest interval,

• an interval overlapping as few other intervals as possible,

• an interval with the leftmost left endpoint (and symmetrically, the rightmost
right endpoint),

• an interval with the leftmost right endpoint (and symmetrically, the rightmost
left endpoint).

As it turns out, we can always select an interval satisfying the fifth case. In the
example instance in Figure 6.2, this results in four intervals. First, the interval with
the leftmost right endpoint is the interval [1, 2). If we include this in the subset A,
intervals [0, 3) and [1, 6) must be removed since they overlap [1, 2). Then, the interval
[3, 4) would be the one with the leftmost right endpoint of the remaining intervals.
This interval overlaps no other interval, so it should obviously be included. Next,
we would choose [4, 6) (overlapping with [4, 7)), and finally [7, 8). Thus, the answer

DRAFT

88 CHAPTER 6. GREEDY ALGORITHMS

would be A = {[1, 2), [3, 4), [4, 6), [7, 8)}.

Algorithm 6.1: Scheduling

procedure SCHEDULING(set S)
ans← new set

Sort S by right endpoint
highest←∞
for each interval [l, r) ∈ S do

if l ≥ highest then
ans.insert([l, r))
highest← r

Lsums.insert(
∑

l∈L l)

return ans

We can prove that this strategy is optimal using a swapping argument, one of the
main greedy proof techniques. In a swapping argument, we attempt to prove that
given any solution, we can always modify it in such a way that our greedy choice is
no worse. This is what we did in the Change-making Problem, where we argued that
an optimal solution had to conform to a small set of possibilities, or else we could
swap some set of coins for another (such as two coins worth 1 for a single coin worth
2).

Assume that the optimal solution does not contain the interval [l, r), an interval with
the leftmost right endpoint. The interval [l ′, r ′) that has the leftmost right endpoint
of the intervals in the solution, must have r ′ > r. In particular, this means any other
interval [a, b) in the solution must have a ≥ r ′ (or else the intervals would overlap).
However, this means that the interval [l, r) does not overlap any other interval either,
since a ≥ r ′ > r so that a ≥ r. Then, swapping the interval [l, r) for [l ′, r ′) still
constitute a valid solution, of the same size. This proves that we could have included
the interval [l, r) in the optimal solution. Note that the argument in no way say
that the interval [l, r) must be in an optimal solution. It is possible for a scheduling
problem to have many distinct solutions. For example, in the example in Figure 6.2,
we might just as well switch [4, 6) for [4, 7) and still get an optimal solution.

This solution can be implemented in Θ(|S| log |S|) time. In Algorithm 6.1, this is
accomplished by sort performing a sort (in Θ(|S| log |S|)), followed by a loop for each
interval, where each iteration takes Θ(1) time.

Exercise 6.3

For each of the first four strategies, find a set of intervals where they fail to find an
optimal solution.

DRAFT

6.4. CHAPTER NOTES 89

We can extend the problem to choosing exactly K disjoint subsets of non-overlapping
intervals instead, maximizing the sum of their sizes. The solution is similar to the
original problem, in that we always wish to include the interval with the leftmost
right endpoint in one of the subsets if possible. The question is then, what subset?
Intuitively, we wish to choose a subset there the addition of our new interval causes as
little damage as possible. This subset is the one with the rightmost right endpoint that
we can place the interval in. Proving this is similar to the argument we used when
deciding what interval to choose, and is a good exercise to practice the swapping
argument.

Exercise 6.4

Prove that choosing to place the interval in the subset with the rightmost right
endpoint is optimal.

Exercise 6.5 — Kattis Exercises

Entertainment Box – entertainmentbox

Disastrous Downtime – downtime

6.4 Chapter Notes

Determining whether coins of denominations D can even be used to construct an
amount T is an NP-complete problem in the general case[12]. It possible to determine
what cases can be solved using the greedy algorithm described in polynomial time
though[4]. Such a set of denominations is called a canonical coin system.

Introduction to Algorithms[5] also treats the scheduling problem in its chapter in greedy
algorithms. It also brings up the connection between greedy problems and a concept
known as matroids, which is well worth studying.

DRAFT

90 CHAPTER 6. GREEDY ALGORITHMS

DRAFT
Chapter 7

Dynamic Programming

This chapter will study a technique called dynamic programming (often abbreviated
DP). In one sense, it is simply a technique to solve the general case of the best path
in a directed acyclic graph problem (Section 6.1) in cases where the graph does not
admit locally optimal choices, in time approximately equal to the number of edges in
the graph. For graphs which are essentially trees with a unique path to each vertex,
dynamic programming is no better than brute force. In more interconnected graphs,
where many paths lead to the same vertex, the power of dynamic programming
shines through. It can also be seen as a way to speed up recursive functions (called
memoization), which will be our first application.

First, we will see a familiar example – the Change-making problem, with a different
set of denominations. Then, we will discuss a little bit of theory, and finally round of
with a few concrete examples and standard problems.

7.1 Best Path in a DAG

We promised a generalization that can find the best path in a DAG that exhibit
optimal substructure even when locally optimal choices does not lead to an optimal
solution. In fact, we already have such a problem – the Change-making Problem from
Section 6.1, but with certain other sets of denominations. Exercise 6.2 even asked you
to prove that the case with coins worth 1, 6 and 7 could not be solved in the same
greedy fashion.

So, how can we adapt our solution to this case? The secret lies in the graph formulation
of the problem which we constructed (Figure 6.1). For the greedy solution, we
essentially performed a recursive search on this graph, except we always knew which
edge to pick. When we do not know, the solution ought to be obvious – let us test all

91

DRAFT

92 CHAPTER 7. DYNAMIC PROGRAMMING

the edges.

Algorithm 7.1: Change-making Problem

procedure CHANGEMAKING(denominations D, target T)
if T = 0 then

return 0
ans←∞
for denomination d ∈ {1, 6, 7} do

if T ≥ d then
ans = min(ans, 1+ ChangeMaking(D, T − d)

return ans

This solution as written is actually exponential in T (it isΩ(3
T
7)). The recursion tree

for the case T = 10 can be seen in Figure 7.1.

8 1 02

1 0

7 0

1 0

6 0

5 4 3 2 1 0

Figure 7.1: The recursion tree for the Change-making problem with T = 10.

The key behind the optimal substructure property is that the answer for any particular
call in this graph with the same parameter c is the same, independently of the
previous calls in the recursion. Right now, we perform calls with the same parameters
multiple times. Instead, we can save the result of a call the first time we perform it
(Algorithm 7.2).

Algorithm 7.2: Change-making Problem, memoizatoin

memo = new int[T + 1]
set memo[i] = −1 for all i
procedure CHANGEMAKING(denominations D, target T)

if T = 0 then
return 0

DRAFT

7.2. DYNAMIC PROGRAMMING 93

if memo[T] 6= −1 then
return memo[T]

ans←∞
for denomination d ∈ D do

if T ≥ d then
ans = min(ans, 1+ ChangeMaking(D, T − d)

memo[T]← ans
return ans

Theis new algorithm is actually linear in T instead of exponential. The call graph
now looks very different (Figure 7.2), since all calls with the same parameter will be
merged (as such calls are only evaluated once).

8 7 6 5 4 3 2 1 0

Figure 7.2: The recursion tree for the Change-making problem with T = 10, with
duplicate calls merged.

Note the similarity between this graph and our previous DAG formulation of the
Change-making problem (Figure 6.1).

7.2 Dynamic Programming

With these examples in hand, we are ready to give a more concrete characterization of
dynamic programming. In principle, it can be seen as solving the kind of “sequence
of choices” problems that we used bruteforce to solve, but where different choices
can result in the same situation. For example, in the Change-making Problem, after
adding two coins worth 1 and 6, we might just as well have added a 7 coin instead.
After we have performed a sequence of choices, how we got to the resulting state is
no longer relevant – only where we can go from there. Basically, we throw away the
information (what exact coins we used) that is no longer needed. This view of dy-
namic programming problems as having a “forgetful” property, that the exact choices

DRAFT

94 CHAPTER 7. DYNAMIC PROGRAMMING

we have made do not affect the future, is useful in most dynamic programming
problems.

Another, more naive view, is that dynamic programming solutions are simple recur-
sions, where we happen to solve the same recursive subproblem a large number of
times. In this view, a DP solution is basically nothing more than a recursive solution –
find the correct base cases, a fast enough recursion, and memoize the results.

More pragmatically, DP consists of two important parts – the states of the DP, and
the computation of a state. Both of these parts are equally important. Fewer states
generally mean less computations to make, and a better complexity per state gives a
better complexity overall.

7.2.1 Bottom-Up Computation

When applied to a dynamic programming problem, memoization is sometimes called
top-down dynamic programming instead. The name is inspired from the way we com-
pute the solution to our problem by starting at the largest piece at the top of the
recursion tree, and recursively breaking it down to smaller and smaller pieces.

There is an alternative way of implementing a dynamic programming solution, which
(not particularly surprisingly) is called bottom-up dynamic programming. This method
instead constructs the solutions to our sub-problems in the other order, starting with
the base case and iteratively computing solutions to larger sub-problems.

For example, we might just as well compute the solution to the Change-making
problem the following way:

Algorithm 7.3: Change-making Problem, Bottom-Up

procedure CHANGEMAKING(denominations D, target T)
ans = new int[T + 1]
set ans[i] =∞ for all i
set ans[0] = 0
for i = 1 to T do

for denomination d ∈ D do
if i ≥ d then

ans[i] = min(ans[i], 1+ ans[i− d])
return ans[T]

How do you choose between bottom-up and top-down? Mostly, it comes down
to personal choice. A dynamic programming solution will almost always be fast
enough no matter if you code it recursively or iteratively. There are some performance
concerns, both ways. A recursive solution is affected by the overhead of recursive

DRAFT

7.2. DYNAMIC PROGRAMMING 95

function calls. This problem is not as bad in C++ as in many other languages, but it
is still noticeable. When you notice that the number of states in your DP solution is
running a bit high, you might want to consider coding it iteratively. Top-down DP,
on the other hand, has the upside that only the states reachable from the starting state
will be visited. In some DP solutions, the number of unreachable states which are still
in some sense “valid” enough to be computed bottom-up is significant enough that
excluding them weighs up for the function call overhead. In extreme cases, it might
turn out that an entire parameter is uniquely given by other parameters (such as the
Ferry Loading problem in Section 7.3). While we probably would notice when this is
the case, the top-down DP saves us when we do not.

7.2.2 Order of Computation and Memory Usage

For top-down DP, the memory usage is often quite clear and unavoidable. If a DP
solution has N states, it will have anΩ(N) memory usage. For a bottom-up solution,
the situation is quite different.

Firstly, let us consider one of the downsides of bottom-up DP. When coding a top-
down DP, you do not need to bother with the structure of the graph you are solving
your problem on. For a bottom-up DP, you need to ensure that whenever you solve a
subproblem, you have already solved its subproblems too. This requires you to define
an order of computation, such that if the subproblem a is used in solving subproblem b,
a is computed before b.

In most cases, such an order is quite easy to find. Most parameters can simply be
increasing or decreasing, using a nested loop for each parameter. When a DP is done
over intervals, the order of computation is often over increasing or decreasing length
of the interval. DP over trees usually require a post-order traversal of the tree. In
terms of the recurring graph representation we often use for DP problems, the order
of computation must be a topological ordering of the graph.

While this order of computation business may seem to be nothing but a nuisance
that bottom-up users have to deal with, it is related to one of the perks of bottom-up
computation. If the order of computation is chosen in a clever way, we need not
save every state during our computation. Consider e.g. the Change-making Problem
again, which had the following recursion:

change(n) =

{
0 if n = 0

min(change(n− 1), change(n− 6), change(n− 7)) if n > 0

It should be clear that using the order of computation 0, 1, 2, 3, ..., once we have
computed e.g. change(k), the subproblems change(k− 7), change(k− 8), ... etc. are
never used again.

DRAFT

96 CHAPTER 7. DYNAMIC PROGRAMMING

Thus, we only need to save the value of 7 subproblems at a time. This Θ(1) memory
usage is pretty neat compared to the Θ(K) usage needed to compute change(K)
otherwise.

Competitive Tip

Generally, memory limits are very generous nowadays, somewhat diminishing
the art of optimizing memory in DP solutions. It can still be a good exercise to
think about improving the memory complexity of the solutions we will look at,
for the few cases where these limits are still relevant.

7.3 Multidimensional DP

Now, we are going to look at a DP problem where our state consists of more than one
variable. The example will demonstrate the importance of carefully choosing your
DP parameters.

Ferry Loading
Swedish Olympiad in Informatics 2013, Online Qualifiers

A ferry is to be loaded with cars of different lengths, with a long line of cars
currently queued up for a place. The ferry consists of four lanes, each of the same
length. When the next car in the line enters the ferry, it picks one of the lanes
and parks behind the last car in that line. There must be safety margin of 1 meter
between any two parked cars.

Given the length of the ferry and the length of the cars in the queue, compute the
maximal amount of cars that can park if they choose the lanes optimally.

Figure 7.3: An optimal placement on a ferry of length 5meters, of the cars with
lengths 2, 1, 2, 5, 1, 1, 2, 1, 1, 2meters. Only the first 8 cars could fit on the ferry.

Input
The first line contains the number of cars 0 ≤ N ≤ 200 and the length of the ferry
1 ≤ L ≤ 60. The second line contains N integers, the length of the cars 1 ≤ ai ≤ L.

DRAFT

7.3. MULTIDIMENSIONAL DP 97

Output
Output a single integer – the maximal amount of cars that can be loaded on the
ferry.

The ferry problem looks like a classical DP problem. It consists of a large number
of similar choices. Each car has 4 choices – one of the lanes. If a car of length m
chooses a lane, the remaining length of the chosen lane is reduced bym+ 1 (due to
the safety margin). After the first c cars have parked on the ferry, the only thing that
has changed are the lengths of the ferry. As a simplification, we increase the initial
length of the ferry by 1, to accommodate an imaginary safety margin for the last car
in a lane in case it is completely filled.

This suggests a DP solution with nL4 states, each state representing the number of
cars so far placed and the lengths of the four lanes:

Algorithm 7.4: Ferry Loading

1 int dp[201][62][62][62][62] = {-1};
2

3 int ferry(int c, vi used, const vi& A) {
4 if (c == sz(A)) return 0;
5 int& ans = dp[c][left[0]][left[1]][left[2]][left[3]];
6 if (ans != -1) return ans;
7 rep(i,0,4) {
8 if (used[i] + A[i] + 1 > L + 1) continue;
9 used[i] += A[i] + 1;

10 ans = max(ans, ferry(c + 1, left, A) + 1);
11 used[i] -= A[i] + 1;
12 }
13 return ans;
14 }

Unfortunately, memoizing this procedure would not be sufficient. The size of our
memoization array is 200 · 604 ≈ 2.6 · 109, which needs many gigabytes of mem-
ory.

The trick in improving this is basically the same as the fundamental principle of DP.
In DP, we reduce a set of choices to a smaller set of information, which represent the
effects of those choices. This removes information which turned out to be redundant.
In our case, we do not care about what lanes cars chose, only their remaining lengths.
Our suggested solution still has some lingering redundancy though.

In Figure 7.3 from the problem statement, we have an example assignment of the cars
2, 1, 2, 5, 1, 1, 2, 1. These must use a total of 3+2+3+6+2+2+3+2 = 23meters of space
on the ferry. We define U(c) to be the total usage (i.e., lengths plus the safety margin)
of the first c cars. Note that U(c) is a strictly increasing function in c, meaning it is in

DRAFT

98 CHAPTER 7. DYNAMIC PROGRAMMING

bijection to [n]. Let u1(c), u2(c), u3(c), u4(c) be the usage of the four lanes individually
in some given assignment. Then, we have that U(c) = u1(c) + u2(c) + u3(c) + u4(c).
The four terms on the right are four parameters in our memoization. The left term is
not, but it has a bijection with c, which is a parameter in the memoization. Thus, we
actually have a redundancy in our parameters. We can eliminate the parameter c, since
it is uniquely defined given the values u1(c), u2(c), u3(c), u4(c). This simplification
leaves us with 604 ≈ 13 000 000 states, which is well within reason.

7.4 Subset DP

Another common theme of DP is subsets, where the state represents a subset of
something. The subset DP is used in many different ways. Sometimes (as in Subsec-
tion 7.6.3), the problem itself is about sets and subsets. Another common usage is to
reduce a solution which requires us to test permutations of something into instead
constructing permutations iteratively, using DP to remember only what elements so
far used in the permutation, and not the exact assignment.

Amusement Park
Swedish Olympiad in Informatics 2012, Online Qualifiers

Lisa has just arrived at an amusement park, and wants to visit each of the N
attractions exactly once. For each attraction, there are two identical facilities at
different locations in the park. Given the locations of all the facilities, determine
which facility Lisa should choose for each attraction, in order to minimize the
total distance she must walk. Originally, Lisa is at the entrance at coordinates
(0, 0). Lisa must return to the entrance once she has visited every attraction.

Input
The first line contains the integer 1 ≤ N ≤ 15, the number of attractions Lisa
wants to visit. Then, N lines follow. The i’th of these lines contains four integers
−106 ≤ x1, y1, x2, y2 ≤ 106. These are the coordinates (x1, y1) and (x2, y2) for the
two facilities of the i’th attraction.

Output
First, output the smallest distance Lisa must walk. Then, output N lines, one
for each attraction. The i’th line should contain two numbers a and f – the i’th
attraction Lisa visited (a number between 1 and N), and the facility she visited (1
or 2).

Consider a partial walk, where we have visited a set S of attractions and currently
stand at coordinates (x, y). Then, any choice up to this point is irrelevant for the
remainder of the problem, which suggests that these parameter S, x, y is a good DP
state. Note that (x, y) only have at most 31 possibilities – two for each attraction,

DRAFT

7.5. DIGIT DP 99

plus the entrance at (0, 0). Since we have at most 15 attractions, the set S of visited
attractions has 215 possibilities. This gives us 31 · 215 ≈ 106 states. Each state can be
computed in Θ(N) time, by choosing what attraction to visit next. All in all, we get a
complexity of Θ(N22N). When coding DP over subsets, we generally use bitsets to
represent the subset, since these map very cleanly to integers (and therefore indices
into a vector):

Algorithm 7.5: Amusement Park

1 double best(int at, int visited) {
2 // 2N is the number given to the entrance point
3 if (visited == (1<<N) - 1) return dist(at, 2*N);
4 double ans = inf;
5 rep(i,0,N) {
6 if (visited&(1<<N)) continue;
7 rep(j,0,2) {
8 //2i + j is the number given to the j’th facility of the i’th attraction
9 int nat = 2 * i + j;

10 ans = min(ans, dist(at + nat) + best(nat, visited | (1<<i)));
11 }
12 }
13 return ans;
14 }

7.5 Digit DP

Digit DP are a class of problems where we count numbers with certain properties
that contain a large number of digits, up to a certain limit. These properties are
characterized by having the classical properties of DP problems, i.e. being easily
computable if we would construct the numbers digit-by-digit by remembering very
little information about what those numbers actually were.

Palindrome-Free Numbers
Baltic Olympiad in Informatics 2013 – Antti Laaksonen

A string is a palindrome if it remains the same when it is read backwards. A
number is palindrome-free if it does not contain a palindrome with a length
greater than 1 as a substring. For example, the number 16276 is palindrome-free
whereas the number 17276 is not because it contains the palindrome 727. The
number 10102 is not valid either, since it has 010 as a substring (even though 010
is not a number itself).

Your task is to calculate the total number of palindrome-free numbers in a given
range.

DRAFT

100 CHAPTER 7. DYNAMIC PROGRAMMING

Input
The input contains two numbers 0 ≤ a ≤ b ≤ 1018.
Output
Your output should contain one integer: the total number of palindrome-free
numbers in the range a, a+ 1, ..., b− 1, b (including a and b).

First, a common simplification when solving counting problems on intervals. Instead
of computing the answer for the range a, a+ 1, ..., b− 1, b, we will solve the problem
for the intervals [0, a) and [0, b + 1). The answer is then the answer for the second
interval with the answer for the first interval removed. Our lower limit will then be 0
rather than a, which simplifies the solution.

Next up, we need an essential observation to turn the problem into a standard
application of digit DP. Palindromes as general objects are very unwieldly in our
situation. Any kind of iterative construction of numbers would have to bother with
digits far back in the number since any of them could be the edge of a palindrome.
Fortunately, it turns out that any palindrome must contain a rather short palindromic
subsequence, namely one of length 2 (for even-length palindromes), or length 3 (for
odd-length palindromes). This means that when constructing the answer recursively,
we only need to care about the last two digits. When adding a digit to a partially
constructed number, it may not be equal to either of the last two digits.

Before arriving at the general solution, we will solve the problem when the upper
limit was 999...999 – the sequence consisting of n nines. In this case, a simple recursive
function will do the trick:

Algorithm 7.6: Palindrome-Free Numbers

1 ll sol(int at, int len, int b1, int b2) {
2 if (at == len) return 1; // we have successfully constructed a number
3 ll ans = 0;
4 rep(d,0,10) {
5 // this digit would create a palindrome
6 if (d == b2 || d == b1) continue;
7 // let -1 represent a leading 0, to avoid the palindrome check
8 bool leadingZero = b2 == -1 && d == 0;
9 ans += sol(at + 1, len, b2, leadingZero ? -1 : d);

10 }
11 return ans;
12 }
13

14 // initially, the empty number has length 0 and consists only of leading zeroes
15 sol(0, n, true, -1, -1);

We fix the length of all numbers to have length n, by giving shorter numbers leading
zeroes. Since leading zeroes in a number are not subject to the palindrome restriction,

DRAFT

7.6. STANDARD PROBLEMS 101

they must be treated differently. In our case, they are given the special digit −1
instead, resulting in 11 possible “digits”. Once this function is memoized, it will have
n · 2 · 11 · 11 different states, with each state using a loop iterating only 10 times. Thus,
it uses on the order of 1000n operations. In our problem, the upper limit has at most
19 digits. Thus, the solution only requires about 20 000 operations.

Once a solution has been formulated for this simple upper limit, extending it to a
general upper limit is quite natural. First, we will save the upper limit as a sequence
of digits L. Then, we need to differentiate between two cases in our recursive function.
The partially constructed number is either equal to the corresponding partial upper
limit, or it is less than the limit. In the first case, we are still constrained by the upper
limit – the next digit of our number can not exceed the next digit of the upper limit.
In the other case, the the upper limit is no longer relevant. If a prefix of our number
is strictly lower than the prefix of the upper limit, our number can never exceed the
upper limit.

This gives us our final solution:

Algorithm 7.7: Palindrome-Free Numbers, General Case

1 vector<int> L;
2

3 ll sol(int at, int len, bool limEq, int b1, int b2) {
4 if (at == len) return 1;
5 ll ans = 0;
6 // we may not exceed the limit for this digit if equal to the prefix of the limit
7 rep(d,0,(limEq ? L[at] + 1 : 10)) {
8 if (d == b2 || d == b1) continue;
9 // the next step will be equal to the prefix if it was now,

10 // and our added digit was exactly the limit
11 bool limEqNew = limEq && d == L[at];
12 bool leadingZero = b2 == -1 && d == 0;
13 ans += sol(at + 1, len, limEqNew, b2, leadingZero ? -1 : d);
14 }
15 return ans;
16 }
17

18 // initially, the number is equal to the prefix limit (both being the empty number)
19 sol(0, n, true, true, -1, -1);

7.6 Standard Problems

Many problems are variations of known DP problems, or have them as parts of their
solutions. This section will walk you through a few of them.

DRAFT

102 CHAPTER 7. DYNAMIC PROGRAMMING

7.6.1 Knapsack

The knapsack problem is one of the most common standard DP problem. The problem
itself has countless variations. We will look at the “original” knapsack problem, with
constraints making it suitable for a dynamic programming approach.

Knapsack
Given is a knapsack with an integer capacity C, and n different objects, each with
an integer weight and value. Your task is to select a subset of the items with
maximal value, such that the sum of their weights does not exceed the capacity
of the knapsack.

Input
The integer C giving the capacity of the knapsack, and an integer n, giving the
number of objects. This is followed by the n objects, given by their value vi and
weight wi.

Output
Output the indicies of the chosen items.

We are now going to attempt to formulate an O(nC) solution. As is often the case
when the solution is a subset of something in DP solutions, we solve the problem
by looking at the subset as a sequence of choices – to either include an item in the
answer or not. In this particular problem, our DP state is rather minimalistic. Indeed,
after including a few items, we are left only with the remaining items and a smaller
knapsack to solve the problem for.

Letting K(c, i) be the maximum value using at most weight c and the i first items, we
get the recursion

K(c, i) = max

{
K(c, i− 1)

K(c−wi, i− 1) + vi if wi ≤ c

Translating this recursion into a bottom-up solution gives a rather compact algorithm
(Algorithm 7.8).

Algorithm 7.8: Knapsack

procedure KNAPSACK(capacity C, items n, values V , weightsW)
best← new int[n+ 1][C+ 1]
fill best with −∞
best[0][C] = 0
for i from 0 to n− 1 do

for j from 0 to C do
if j ≥W[i] then

DRAFT

7.6. STANDARD PROBLEMS 103

best[i+ 1][j]← max(best[i][j], best[i][j−W[i]] + V[i]])
return best

However, this only helps us compute the answer. The problem asks us to explicitly
construct the subset. This step, i.e., tracing what choices we made to arrive at an
optimal solution is called backtracking.

For this particular problem, the backtracking is relatively simple. One usually pro-
ceeds by starting at the optimal state, and then consider all transitions that lead to this
state. Among these, the “best” one is picked. In our case, the transitions correspond
to either choosing the current item, or not choosing it. Both lead to two other states
which are simple to compute. In the first case, the state we arrived from must have
the same value and capacity, while in the second case the value should differ by V[i]
and the weight byW[i]:

Algorithm 7.9: Knapsack Construction

procedure KNAPSACKCONSTRUCT(capacity C, items n, values V , weightsW)
best← Knapsack(C,n, V,W)
bestCap← C

for i from C to 0 do
if best[N][i] > best[N][bestCap] then

bestCap← i
for i from N to 1 do

ifW[i] ≤ bestCap then
newVal← best[i− 1][bestCap −W[i]]
if newVal = best[i][bestCap] + V[i] then

ans.add(i)
bestCap← bestCap −W[i]

output ans

Exercise 7.1 — Kattis Exercise

Knapsack – knapsack

Walrus Weights – walrusweights

7.6.2 Longest Common Subsequence

Longest Common Subsequence
A sequence a1, a2, ..., an has c1, c2, ..., ck as a subsequence if there exists indices
p1 < p2 < ..., < pk such that api = ci. For example, the sequence 〈1, 1, 5, 3, 3, 7, 5〉,

DRAFT

104 CHAPTER 7. DYNAMIC PROGRAMMING

has 〈1, 3, 3, 5〉 as one of its sub-sequences.

Given two sequences A = 〈a1, a2, ..., an〉 and B = 〈b1, b2, ..., bm〉, find the longest
sequence c1, ..., ck that is a subsequence of both A and B.

When dealing with DP problems on pairs of sequences, a natural subproblem is to
solve the problem for all prefixes of A and B. For the subsequence problem, some
reasoning about what a common subsequence is leads to a recurrence expressed
in this way. Basically, we can do a case analysis on the last letter of the strings A
and B. If the last letter of A is not part of a longest increasing subsequence, we can
simply ignore it, and solve the problem on the two strings where the last letter of A is
removed. A similar case is applicable when the last letter of B is not part of a longest
increasing subsequence. A single case remains – when both the last letter ofA and the
last letter of B are part of a longest increasing subsequence. In this case, we argue that
these two letters must correspond to the same letter ci in the common subsequence.
In particular, they must correspond to the final character of the subsequence (by the
definition of a subsequence). Thus, whenever the two final letters are equal, we may
have the case that they are the last letter of the subsequence, and that the remainder
of the subsequence is the longest common subsequence of A and B with the final
letter removed.

This yields a simple recursive formulation, which takes Θ(|A||B|) to evaluate (since
each state takes Θ(1) to evaluate).

lcs(A,B, n,m) = max

0 if n = 0 orm = 0

lcs(A,B, n− 1,m) if n > 0
lcs(A,B, n,m− 1) ifm > 0

lcs(A,B, n− 1,m− 1) + 1 if an = bm

Exercise 7.2 — Kattis Exercise

Longest Increasing Subsequence – longincsubseq

7.6.3 Set Cover

In the set cover problem, we are given a family of subsets S1, S2, ..., Sk of some larger
set S of size n. We seek a minimal choice of subsets Sa1 , Sa2 , ..., Sal such that

l⋂
i=1

Sai = S

i.e. we want to cover the set S by taking the union of as few of the subsets Si as
possible.

DRAFT

7.6. STANDARD PROBLEMS 105

For small k and large n, we can solve the problem in Θ(n2k), by simply testing
each of the 2k covers. In the case where we have a small n but k can be large, this
becomes intractable. Instead, let us apply the principle of dynamic programming. In
a brute force approach, we would perform k choices. For each subset, we would try
including it or excluding it. After deciding which of the first m subsets to include,
what information is relevant? Well, if we consider what the goal of the problem is
– covering S – it would make sense to record what elements have been included so
far. This little trick leaves us with a DP of Θ(k2n) states, one for each subset of Swe
might have reached, plus counting how many of the subsets we have tried to use so
far. Computing a state takes Θ(n) time, by computing the union of the current cover
with the set we might potentially add. The recursion thus looks like:

cover(C, k) =

{
0 if C = S

min(cover(C, k+ 1), cover(C ∪ Sk, k+ 1)) else

This is a fairly standard DP solution. The interesting case occurs when n is small, but
k is really large, say, k = Θ(2n). In this case, our previous complexity Θ(nk2n) turns
into Θ(n4n). Such a complexity is unacceptable for anything but very small n. To
avoid this, we must rethink our DP a bit.

The second term of the recursive case of cover(C, k), i.e. cover(C∪ Sk, k+ 1), actually
degenerates to cover(C, k+ 1) if Sk ⊆ C. When k is large, this means many states are
essentially useless. In fact, at most n of our k choices will actually result in us adding
something, since we can only add a new element at most n times.

We have been in a similar situation before, when solving the backtracking problem
Basin City Surveillance in Section 5.3. We were plagued with having many choices at
each state, where a large number of them would fail. Our solution was to limit our
choices to a set where we knew an optimal solution would be found.

Applying the same change to our set cover solution, we should instead do DP over
our current cover, and only try including sets which are not subsets of the current
cover. So, does this help? How many subsets are there, for a given cover C, which
are not its subsets? If the size of C is m, there are 2m subsets of C, meaning 2n − 2m

subsets can add a new element to our cover.

To find out how much time this needs, we will use two facts. First of all, there are(
n
m

)
subsets of size m of a size n set. Secondly, the sum

∑n
m=0

(
n
m

)
2m = 3m. If you

are not familiar with this notation or this fact, you probably want to take a look at
Section 13.4 on binomial coefficients.

So, summing over all possible extending subsets for each possible partial C, we
get:

n∑
m=0

(
n

m

)
(2n − 2m) = 2n · 2n − 3n = 4n − 3n

DRAFT

106 CHAPTER 7. DYNAMIC PROGRAMMING

Closer, but no cigar. Intuitively, we still have a large number of redundant choices.
If our cover contains, say, n − 1 elements, there are 2n−1 sets which can extend our
cover, but they all extend it in the same way. This sounds wasteful, and avoiding it
probably the key to getting an asymptotic speedup.

It seems that we are missing some key function which can respond to the question:
“is there some subset Si, that could extend our cover with some subset A ⊆ S?”. If we
had such a function, computing all possible extensions of a cover of size m would
instead take time 2n−m – the number of possible extensions to the cover. Last time we
managed to extend a cover in time 2n − 2m, but this is exponentially better!

In fact, if we do our summing this time, we get:

n∑
m=0

(
n

m

)
2n−m =

n∑
m=0

(
n

n−m

)
2n−m

=

n∑
m=0

(
n

m

)
2m

= 3n

It turns out our exponential speedup in extending a cover translated into an exponen-
tial speedup of the entire DP.

We are not done yet – this entire algorithm depended on the assumption of our
magical “can we extend a cover with a subset A?” function. Sometimes, this function
may be quick to compute. For example, if S = {1, 2, ..., n} and the family Si consists of
all sets whose sum is less than n, an extension is possible if and only if its sum is also
less than n. In the general case, our Si are not this nice. Naively, one might think that
in the general case, an answer to this query would take Θ(nk) time to compute, by
checking if A is a subset of each of our k sets. Yet again, the same clever trick comes
to the rescue.

If we have a set Si of size m available for use in our cover. just how many possible
extensions could this subset provide? Well, Si itself only have 2m subsets. Thus, if we
for each Si mark for each of its subsets that this is a possible extension to a cover, this
precomputation only takes 3n time (by the same sum as above).

Since both steps are O(3n), this is also our final complexity.

Exercise 7.3 — Kattis Exercises

Square Fields (Easy) – squarefieldseasy

Square Fields (Hard) – squarefieldshard

DRAFT

7.7. CHAPTER NOTES 107

7.7 Chapter Notes

write chapter
notes
write chapter
notes

DRAFT

108 CHAPTER 7. DYNAMIC PROGRAMMING

DRAFT
Chapter 8

Divide and Conquer

A recursive algorithm solves a problem by reducing it to smaller subproblems, hoping
that their solutions can be used to solve the larger problem. So far, the subproblems
we have considered have been “almost the same” as the problem at hand. We have
usually recursed on a series of choices, where each recursive step made one choice. In
particular, our subproblems often overlapped – solving two different subproblems
required solving a common, third subproblem. In this chapter, we will take another
approach altogether, by splitting our instance into large, disjoint (or almost disjoint
parts) parts – dividing it – and combining their solutions – conquering it.

8.1 Inductive Constructions

Inductive construction problems compromise a large class of divide and conquer
problems. The goal is often to construct something, such as a tiling of a grid, cycles
in a graph and so on. In these cases, divide and conquer algorithms aim to reduce
the construction of the whole object to instead constructing smaller parts which
can be combined into the final answer. Such constructions are often by-products
of mathematical induction proofs of the existence of such a construction. In the
following example problems, it is not initially clear that the object we are asked to
construct even exists.

Grid Tiling
In a square grid of side length 2n, one unit square is blocked (represented by
coloring it black). Your task is to cover the remaining 4n−1 squares with triominos,
L-shaped tiles consisting of three squares in the following fashion. The triominos
can be rotated by any multiple of 90deg (Figure 8.1).

109

DRAFT

110 CHAPTER 8. DIVIDE AND CONQUER

Figure 8.1: The four rotations of a triomino.

The triominos may not overlap each other, nor cover anything outside the grid. A
valid tiling for n = 2would be

Figure 8.2: A possible tiling for n = 2.

Input
The input consists of three integers 1 ≤ n ≤ 8, 0 ≤ x < 2n and 0 ≤ y < 2n. The
black square has coordinates (x, y).

Output
Output the positions and rotations of any valid tiling of the grid.

When tiling a 2n × 2n grid, it is not immediately clear how the divide and conquer
principle can be used. To be applicable, we must be able to reduce the problem into
smaller instances of the same problem and combine them. The peculiar side length
2n does hint about a possible solution. Aside from the property that 2n × 2n − 1 is
evenly divisible by 3 (a necessary condition for a tiling to be possible), it also gives us
a natural way of splitting an instance, namely into its 4 quadrants.

Figure 8.3: Splitting the n = 3 case into its four quadrants.

DRAFT

8.1. INDUCTIVE CONSTRUCTIONS 111

Each of these have the size 2n−1 × 2n−1, which is also of the form we require of grids
in the problem. The crux lies in that these four new grids does not comply with the
input specification of the problem. While smaller and disjoint, three of them contain
no black square, a requirement of the input. Indeed, a grid of this size without any
black squares can not be tiled using triominos.

The solution lies in the trivial solution to the n = 1 case, where we can easily reduce
the problem to four instances of the n = 0 case:

Figure 8.4: A solution to the n = 1 case.

In the solution, we use a single triomino which blocked a single square of each of
the four quadrants. This gives us four trivial subproblems of size 1× 1, where each
grid has one blocked square. We can actually place such a triomino in every grid by
placing it in the center (the only place where a triomino may cover three quadrants at
once).

Figure 8.5: Placing a triomino in the corners of the quadrants without a black square.

After this transformation, we can now apply the divide and conquer principle. We
split the grid into its four quadrants, each of which now contain one black square. This
allows us to recursively solve four new subproblems. At some point, this recursion
will finally reach the base case of a 1× 1 square, which must already be filled.

Algorithm 8.1: Grid Tiling

procedure TILE(N, (Bx, By), (Tx, Ty))

DRAFT

112 CHAPTER 8. DIVIDE AND CONQUER

if N = 0 then
return

mid← 2N−1

blocked← {(0, 0), (mid− 1, 0), (mid− 1,mid− 1), (0,mid− 1)}
if Bx ≥ mid and By ≥ mid then

blockedQuad← TOP_RIGHT
if Bx < mid and By ≥ mid then

blockedQuad← TOP_LEFT
if Bx < mid and By < mid then

blockedQuad← BOTTOM_LEFT
if Bx ≥ mid and By < mid then

blockedQuad← BOTTOM_RIGHT
place(Tx +mid, Ty +mid, blockedQuad)
tile(N− 1, blocked[0], Tx + mid, Ty + mid)
tile(N− 1, blocked[1], Tx, Ty + mid)
tile(N− 1, blocked[2], Tx, Ty)
tile(N− 1, blocked[3], Tx + mid, Ty)

The time complexity of the algorithm can be computed easily if we use the fact that
each call to tile only takes Θ(1) time except for the four recursive calls. Furthermore,
each call places exactly one tile on the board. Since there are 4n−1

3
tiles to be placed,

the time complexity must be Θ(4n).

Exercise 8.1

It is possible to tile such a grid with triominos colored red, blue and green such
that no two triominos sharing an edge have the same color. Prove this fact, and
give an algorithm to generate such a coloring.

Divisible Subset
Let k = 2n. Given a set A of 2k− 1 integers, find a subset S of size exactly k such
that ∑

x∈S

x

is a multiple of k.

Input
The input contains an integer 1 ≤ k ≤ 215 that is a power of two, followed by the
k elements of A.

Output

DRAFT

8.1. INDUCTIVE CONSTRUCTIONS 113

Output the k elements of S.

When given a problem, it is often a good idea to solve a few small cases by hand.
This applies especially to this kind of construction problems, where constructions for
small inputs often shows some pattern or insight into how to solve larger instances.
The case k = 1 is not particularly meaningful, since it is trivially true (any integer is
a multiple of 1). When k = 2, we get an insight which might not seem particularly
interesting, but is key to the problem. We are given 2 · 2− 1 = 3 numbers, and seek
two numbers whose sum is even. Given three numbers, it must have either two
numbers which both are even, or two odd numbers. Both of these cases yield a pair
with an even sum.

It turns out that this construction generalizes to larger instances. Generally, it is easier
to do the “divide” part of a divide and conquer solution first, but in this problem
we will do it the other way around. The recursion will follow quite naturally after
we attempt to find a way in combining solutions to the smaller instance to a larger
one.

We will lay the the ground work for a reduction of the case 2k to k. First, assume
that we could solve the problem for a given k. The larger instance then contains
2(2k− 1) = 4k− 1 numbers, of which we seek 2k numbers whose sum is a multiple
of 2k. This situation is essentially the same as for the case k = 2, except everything is
scaled up by k. Can we scale our solution up as well?

If we have three sets of k numbers whose respective sums are all multiples of k, we
can find two sets of k numbers whose total sum is divisible by 2k. This construction
essentially use the same argument as for k = 2. If the three subsets have sums
ak, bk, ck and we wish to find two whose sum is a multiple of 2k, this is the same
as finding two numbers of a, b, c whose sum is a multiple of 2. This is possible,
according to the case k = 2.

A beautiful generalization indeed, but we still have some remnants of wishful thinking
we need to take care of. The construction assumes that, given 4k − 1 numbers, we
can find three sets of k numbers whose sum are divisible by k. We have now come to
the recursive aspect of the problem. By assumption, we could solve the problem for
k. This means we can pick any 2k − 1 of our 4k − 1 numbers to get our first subset.
The subset uses up k of our 4k − 1 numbers, leaving us with only 3k − 1 numbers.
We keep going, and pick any 2k− 1 of these numbers and recursively get a second
subset. After this, 2k− 1 numbers are left, exactly how many we need to construct
our third subset.

The division of the problem was thus into four parts. Three subsets of k numbers, and
one set of k− 1which we throw away. Coming up with such a division essentially
required us to solve the combination part first with the generalizing of the case
k = 2.

DRAFT

114 CHAPTER 8. DIVIDE AND CONQUER

Algorithm 8.2: Divisible Subset

1 void fillWith(hashset<int>& toFill, hashset<int>& from, int size) {
2 while (sz(from) < size) {
3 from.insert(toFill.begin());
4 toFill.erase(toFill.begin());
5 }
6 }
7

8 hashset<int> divisbleSubset(int k, hashset<int> A) {
9 if (k == 1) return nums;

10

11 hashset<int> part;
12 // Find three subsets of size k/2 with sums divisible by k/2
13 fillWith(part, A, k - 1);
14 hashset<int> pa = divisibleSubset(k / 2, A);
15 A.erase(all(pa));
16

17 fillWith(part, A, k - 1);
18 hashset<int> pb = divisibleSubset(k / 2, A);
19 A.erase(all(pb));
20

21 fillWith(part, A, k - 1);
22 hashset<int> pc = divisibleSubset(k / 2, A);
23 A.erase(all(pc));
24

25 // Choose two who sum to k/2
26 int as = accumulate(all(pa), 0);
27 int bs = accumulate(all(pa), 0);
28 int cs = accumulate(all(pa), 0);
29

30 hashset<int> ans;
31 if ((as + bs) % k == 0) {
32 ans.insert(all(pa));
33 ans.insert(all(pb));
34 } else if ((as + cs) % k == 0) {
35 ans.insert(all(pa));
36 ans.insert(all(pc));
37 } else {
38 ans.insert(all(pb));
39 ans.insert(all(pc));
40 }
41 return ans;
42 }

This complexity is somewhat more difficult to analyze. Now, each call to divisibleSubset
takes linear time to k, and makes 3 recursive calls with k/2. Thus, the complexity
obeys the recurrence T(k) = 3T(k/2) + Θ(k). By the master theorem, this has com-
plexity Θ(klog2 3) = Θ(3n) where k = 2n.

DRAFT

8.1. INDUCTIVE CONSTRUCTIONS 115

Exercise 8.2

What happens if we, when solving the problem for some k, construct k− 1 pairs of
integers whose sum are even, throw away the remaining element, and scale the
problem down by 2 instead? What is the complexity then?

Exercise 8.3

The problem can be solved using a similar divide and conquer algorithm for any
k, not just those which are powers of 21. In this case, those k which are prime
numbers can be treated as base cases. How is this done for composite k? What is
the complexity?

Exercise 8.4

The knight piece in chess can move in 8 possible ways (moving 2 steps in any one
direction, and 1 step in one of the two perpendicular directions). A closed tour
exists for an 8× 8 grid.

Figure 8.6: A closed tour on an 8× 8 grid.

Give an algorithm to construct a tour for any 2n × 2n grid with n ≥ 3.

Exercise 8.5

An n-bit Gray code is a sequence of all 2n bit strings of length n, such that two
adjacent bit strings differ in only one position. The first and last strings of the

1This result is known as the Erdős–Ginzburg–Ziv theorem

DRAFT

116 CHAPTER 8. DIVIDE AND CONQUER

sequence are considered adjacent. Possible Gray codes for the first few n are

n = 1: 0 1

n = 2: 00 01 11 10

n = 3: 000 010 110 100 101 111 011 001

Give an algorithm to construct an n-bit Gray code for any n.

Exercise 8.6 — Kattis Problems

Bell Ringing – bells

8.2 Merge Sort

Merge sort is a sorting algorithm which uses divide and conquer. It is rather straight-
forward, and works by recursively sorting smaller and smaller parts of the array.
When sorting an array by dividing it into parts and combining their solution, there is an
obvious candidate for how to perform this partitioning. Namely, splitting the array
into two halves and sorting them. When splitting an array in half repeatedly, we will
eventually reach a rather simple base case. An array containing a single element is
already sorted, so it is trivially solved. If we do so recursively, we get the recursion tree
in Figure 8.7. Coding this recursive split is easy.

5 1 6 3 7 2 0 4

5 1 6 3

5 1

5 1

6 3

6 3

7 2 0 4

7 2

7 2

0 4

0 4

Figure 8.7: The recursion tree given when performing a recursive split of the array
[5, 1, 6, 3, 7, 2, 0, 4].

When we have sorted the two halves, we need to combine them to get a sorted version
of the entire array. The procedure to do this is based on a simple insight. If an array
A is partitioned into two smaller arrays P1 and P2, the smallest value of A must be
either the smallest value of P1 or the smallest value of P2. This insight gives rise to a

DRAFT

8.2. MERGE SORT 117

simple iterative procedure, where we repeatedly compare the smallest values of P1
and P2, extract the smaller one of them, and append it to our sorted array.

Algorithm 8.3: Merge Sort

1 void sortVector(vector<int>& a, int l, int r){
2 int m = (l + r)/2;
3 sortVector(a, l, m); // sort left half
4 sortVector(a, m, r); // sort right half
5

6 //combine the answers
7 vector<int> answer;
8 int x = l;
9 int y = m;

10 while(x < m || y < r){
11 if(x == m || (y < r && a[y] < a[x])){
12 answer.push_back(a[y]);
13 y++;
14 } else {
15 answer.push_back(a[x]);
16 x++;
17 }
18 }
19 rep(i,l,r) a[i] = answer[i - l];
20 }

To compute the complexity, consider the recursion tree in Figure 8.7. We make one
call with 8 elements, two calls with 4 elements, and so on. Further, the combining
procedure takes Θ(l) time for a call with l elements. In the general case of n = 2k

elements, this means merge sort takes time

k∑
i=0

2i ·Θ(2k−i) = Θ(k2k)

Since k = log
2
n, this means the complexity is Θ(n logn).

Exercise 8.7

Our complexity analysis assumed that the length of the array is a power of 2. The
complexity is the same in the general case. Prove this fact.

Exercise 8.8

Given an array A of size n, we call the pair i < j an inversion of A if A[i] > A[j].

DRAFT

118 CHAPTER 8. DIVIDE AND CONQUER

Adapt the merge sort algorithm to count the number of inversions of an array in
Θ(n logn).

8.3 Binary Search

The binary search is a common component of other solution. Given a number L and a
non-decreasing function f : R→ R, we wish to find the greatest x such that f(x) ≤ L.
Additionally, we need two numbers lo and hi, such that f(lo) ≤ L < f(hi).

It is not difficult to see how we solve this problem. Consider the numbermid = lo+hi
2

.
If f(lo) ≤ L, then we know that the answer must lie somewhere in the interval [lo, hi).
On the other hand, L < f(lo) gives us a better upper bound on the answer, which
must be contained in [lo, hi). Computing f(mid) allowed us to halve the interval in
which the answer can be.

f
(x
)

x

lo
m
id hi

L

f
(x
)

x

lo

m
id hi

L

f
(x
)

x

lo

m
id hi

L

Figure 8.8: Two iterations of binary search.

We can repeat this step until we get close to x.

Algorithm 8.4: Binary Search

1 const double precision = 1e-7;
2

3 double binarySearch(double lo, double hi, double lim) {
4 while (hi - lo > precision) {
5 double mid = (lo + hi) / 2;

DRAFT

8.3. BINARY SEARCH 119

6 if (lim < f(mid)) hi = mid;
7 else lo = mid;
8 }
9 return lo;

10 }

Notice that we are actually computing an approximation of xwithin some given preci-
sion (10−7 in the example implementation), but this is often useful enough.

Competitive Tip

Remember that the double-precision floating point type only have a precision of
about 1015. If the limits in your binary search are on the order of 10x, this means
that using a binary search precision of something smaller than 10x−15 may cause
an infinite loop. This happens because the difference between lo and the next
possible double is actually larger than your precision.

As an example, the following parameters cause our binary search with precision
10−7 to fail.

1 double f(double x) {
2 return 0;
3 }
4

5 double lo = 1e12;
6 double hi = nextafter(lo, 1e100);
7 binarySearch(lo, hi, 0);

An alternative when dealing with limit precision is to perform binary search a
fixed number of iterations:

1 double binarySearch(double lo, double hi, double lim) {
2 rep(i,0,60) {
3 double mid = (lo + hi) / 2;
4 if (lim < f(mid)) hi = mid;
5 else lo = mid;
6 }
7 return lo;
8 }

The complexity of binary search depends on how good of an approximation we want.
Originally, the interval we are searching in has length hi−lo. After halving the interval
c times, it has size hi−lo

2c
. If we binary search until our interval has some size p, this

means we must choose c such that
hi − lo
2c

≤ p

hi − lo
p2c

≤ 1

DRAFT

120 CHAPTER 8. DIVIDE AND CONQUER

hi − lo
p

≤ 2c

log
2

hi − lo
p

≤ c

For example, if we have an interval of size 109 which we wish to binary search down
to 10−7, this would require log

2
1016 = 54 iterations of binary search.

Now, let us study some applications of binary search.

8.3.1 Optimization Problems

Cutting Hot Dogs
The finals of the Swedish Olympiad in Informatics is soon to be arranged. During
the competition the participants must have a steady supply of hot dogs to get
enough energy to solve the problems. Being foodies, the organizing committee
couldn’t just buy ready-to-cook hot dogs – they have to make them on their own!

The organizing committee has prepared N long rods of hot dog. These rods have
length a1, a2, ..., aN centimeters. It is now time to cut up these rods into actual
hot dogs. A rod can be cut into any number k of hot dogs using k− 1 cuts. Note
that parts of one rod cannot be combined with parts of another rod, due to the
difference in taste. It is allowed to leave leftovers from a rod that will not become
a hot dog.

In total, the contest hasM participants. Each contestant should receive a single
hot dog, and all of their hot dogs should be of the same length. What is the
maximal hot dog length L the committee can use to cutM hot dogs of length L?

Input
The first line contains two integers 1 ≤ N ≤ 10 000 and 1 ≤M ≤ 109.
The next line contains N real numbers 0 < a1, a2, ...,≤ 106, the length of the hot
dog rods in centimeters.

Output
Output a single real number – the maximal hot dog length possible in centimeters.
Any answer with a relative or absolute error of 10−6 is acceptable.

This problem is not only an optimization problem, but a monotone one. The mono-
tonicity lies in that while we only ask for a certain maximal hot dog length, all lengths
below it would also work (in the sense of being able to haveM hot dogs cut of this
length), while all lengths above the maximal length produce less than M hot dogs.
Monotone optimization problems makes it possible to remove the optimization aspect
by inverting the problem. Instead of asking ourselves what the maximum length is,

DRAFT

8.3. BINARY SEARCH 121

we can instead ask how many hot dogs f(x) can be constructed from a given length x.
After this inversion, the problem is now on the form which binary search solves: we
wish to find the greatest x such that f(x) = M (replacing ≤ with = is equivalent in
the cases where we know that f(x) assume the value we are looking for). We know
that this length is at most maxi ai ≤ 106, which gives us the interval (0, 106] to search
in.

What remains is to actually compute the function f(x). In our case, this can be done
by considering just a single rod. If we want to construct hot dogs of length x, we can
get at most bai

x
c hot dogs from a rod of length ai. Summing this for every rod gives

us our solution.

Algorithm 8.5: Cutting Hot Dogs

procedure COUNTRODS(lengths A, minimum lengthM)
dogs← 0

for each l ∈ A do
dogs← dogs + bl/Mc

return dogs
procedure HOTDOGS(lengths A, participantsM)
L← 0,H← 106

while H− L← 10−7 do
mid← (L+H)/2
if CountRods(A,mid) < M then
H← mid

else
L← mid

output L

The key to our problem was that the number of hot dogs constructible with a length x
was monotonically decreasing with x. It allowed us to perform binary search on the
answer, a powerful technique which is a component of many optimization problems.
In general, it is often easier to determine if an answer is acceptable, rather than
computing a maximal answer.

8.3.2 Searching in a Sorted Array

The classical application of binary search is to find the position of an element x in
a sorted array A of length n. Applying binary search to this is straightforward. At
first, we know nothing about location of the element – its position could be anyone
of [0, n). So, we consider the middle element,mid = bn

2
c, and compare A[mid] to x.

Since A is sorted, this leaves us with three cases:

DRAFT

122 CHAPTER 8. DIVIDE AND CONQUER

• A[mid] = x – and we are done

• x < A[mid] – since the array is sorted, any occurrence of x must be to the left of
mid

• A[mid] < x – by the same reasoning, x can only lie to the right ofmid.

The last two cases both halve the size of the sub-array which x could be inside. Thus,
after doing this halving log

2
n times, we have either found x or can conclude that it is

not present in the array.

Algorithm 8.6: Search in Sorted Array

procedure SEARCH(array A, target x)
L← 0,H← |A|

while H− L > 0 do
mid← b(L+H)/2c
if A[mid] = x then

return mid
else if x < A[mid] then
H = mid

else
L = mid + 1

return −1

Competitive Tip

When binary searching over discrete domains, care must be taken. Many bugs
have been caused by improper binary searches2.

The most common class of bugs is related to the endpoints of your interval (i.e.
whether they are inclusive or exclusive). Be explicit regarding this, and take care
that each part of your binary search (termination condition, midpoint selection,
endpoint updates) use the same interval endpoints.

Exercise 8.9 — Kattis Problems

Ballot Boxes – ballotboxes

2In fact, for many years the binary search in the standard Java run-time had a bug: http://bugs.
java.com/bugdatabase/view_bug.do?bug_id=6412541

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6412541
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6412541

DRAFT

8.3. BINARY SEARCH 123

8.3.3 Generalized Binary Search

Binary search can also be used to find all points where a monotone function changes
value (or equivalently, all the intervals on which a monotone function is constant).
Often, this is used in problems on large sequences (often with n = 100 000 elements),
which can be solved by iterating through all contiguous sub-sequences in Θ(n2)
time.

Or Max
Petrozavodsk Winter Training Camp 2015

Given is an array A of integers. Let

B(i, k) = A[i] | A[i+ 1] | ... | A[i+ k− 1]

i.e. the bitwise or of the k consecutive numbers starting with the i’th,

M(i, k) = max{A[i], A[i+ 1], ..., A[i+ k− 1]}

i.e. the maximum of the k consecutive numbers starting with the i’th, and

S(i, k) = B(i, k) +M(i, k)

For each 1 ≤ k ≤ n, find the maximum of S(i, k).

Input
The first line contains the length 1 ≤ n ≤ 105 of A.

The next and last line contains the n values of A (0 ≤ A[i] < 216), separated by
spaces.

Output
Output n integers, the maximum values of S(i, k) for k = 1, 2, ..., n.

As an example, consider the array in Figure 8.9. The best answer for k = 1 would be
S(0, 1), with both maximal element and bitwise or 5, totaling 10. For k = 2, we have
S(6, 2) = 7+ 4 = 11.

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

5 1 4 2 2 0 4 3 1 2

101 001 100 010 010 000 100 011 001 010

Figure 8.9: Example array, with the numbers additionally written in binary.

DRAFT

124 CHAPTER 8. DIVIDE AND CONQUER

This problem can easily be solved in Θ(n2), by computing every S(i, k) iteratively.
We can compute all the B(i, k) andM(i, k) using the recursions

B(i, k) :=

{
0 if k = 0

B(i, k− 1) | A[i+ k− 1] if k > 0

M(i, k) =

{
0 if k = 0

max{M(i, k− 1), A[i+ k− 1]} if k > 0

by looping over k, once we fix an i. With n = 100 000, this approach is too slow.

The difficulty of the problem lies in S(i, k) consisting of two basically unrelated parts
– the maximal element and the bitwise or of a segment. When maximizing sums of
unrelated quantities that put constraints on each other, brute force often seems like a
good idea. This is basically what we did in the Buying Books problem (Section 5.4),
where we minimized the sum of two parts (postage and book costs) which constrained
each other (buying a book forced us to pay postage to its store) by brute forcing over
one of the parts (the set of stores to buy from). Since the bitwise or is much more
complicated than the maximal element – it is decided by an entire interval rather
than a single element – we are probably better of doing brute force over the maximal
element. Our brute force will consist of fixing which element is our maximal element,
by assuming that A[m] is the maximal element.

With this simplification in hand, only the bitwise or remains. We could now solve
the problem by looping over all the left endpoints of the interval and all the right
endpoints of the interval. At a first glance, this seems to actually worsen the com-
plexity. Indeed, this takes quadratic time for each m (on average), resulting in a cubic
complexity.

This is where we use our new technique. It turns out that, once we fix m, there are
only a few possible values for the bitwise or of the intervals containing the m’th
element, Any such interval A[l], A[l+ 1], ..., A[m− 1], A[m], A[m+ 1], ..., A[r− 1], A[r]
can be split into two parts: one to the left, A[l], A[l+ 1], ..., A[i− 1], A[i], and one to
the right, A[i], A[i + 1], ..., A[r − 1], A[r]. The bitwise or of either of these two parts
is actually a monotone function (in their length), and can only assume at most 16
different values!

Studying Figure 8.10 gives a hint about why. The first row shows the binary values
of the array, withm = 6 (our presumed maximal element) marked. The second row
shows the binary values of the bitwise or of the interval [i,m] or [m, i] (depending on
whetherm is the right or left endpoint). The third line shows the decimal values of
the second row.

For example, when extending the interval [2, 6] (with bitwise or 110) to the left, the
new bitwise or will be 110|001. This is the only way the bitwise or can change – when

DRAFT

8.4. KARATSUBA’S ALGORITHM 125

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

101 001 100 010 010 000 100 011 001 010

111 111 110 110 110 100 100 111 111 111

7 7 6 6 6 4 4 7 7 7

Figure 8.10: The bitwise or of the left and right parts, with an endpoint inm = 6

the new value includes bits which so far have not been set. Obviously, this can only
happen at most 16 times, since the values in A are bounded by 216.

For a given m, this gives us a partition of all the elements, by the bitwise or of the
interval [m, i]. In Figure 8.10, the left elements will be partitioned into [0, 1], [2, 4],
[5, 6]. The right elements will be partitioned into [6, 6], [7, 9]. These partitions are
everything we need to compute the final.

For example, if we pick the left endpoint from the part [2, 4] and the right endpoint
from the part [7, 9], we would get a bitwise or that is 6 | 7 = 7, of a length between
4 and 8, together with the 4 as the presumed maximal element. For each maximal
element, we get at most 16·16 such choices, totaling less than 256N such choices. From
these, we can compute the final answer using a simple sweep line algorithm.

8.4 Karatsuba’s algorithm

Karatsuba’s algorithm was developed by Russian mathematician Anatoly Karatsuba
and published in the early 1960’s. It is one of the earliest examples of a divide and
conquer algorithm, and is used to quickly multiply large numbers. While multiplying
small numbers (i.e. those that fit in the integer types of your favorite programming
language) is considered to be a Θ(1) operation, this is not the case for arbitrarily large
integers. We will look at Karatsuba as a way of multiplying polynomials, but this can
easily be extended to multiplying integers.

Polynomial Multiplication
Given two n-degree polynomials (where n can be large) p(x) =

∑n
i=0 x

iai and

DRAFT

126 CHAPTER 8. DIVIDE AND CONQUER

q(x) =
∑n

i=0 x
ibi compute their product

(pq)(x) =

2n∑
i=0

xi(

i∑
j=0

ajbi−j)

The naive multiplication algorithm evaluates this using Θ(n2) multiplications (e.g. by
two nested loops).

It turns out we can do this faster, using a recursive transformation. If we split
the numbers p and q into their upper and lower k = n

2
coefficients (if n is odd,

we pad the polynomials with a leading zero), so that p(x) = pl(x)x
k + pr(x) and

q(x) = ql(x)x
k + qr(x), their product is equal to

(pq)(x) = (pl(x)x
k + pr(x))(ql(x)x

k + qr(x))

= pl(x)ql(x)x
n + (pl(x)qr(x) + pr(x)ql(x))x

k + pr(x)qr(x)

This formula requires multiplying 4 pairs of k-degree polynomials instead, which
we can recursively compute, resulting in the time complexity recurrence T(n) =
4T(n

2
) +Θ(n). Using the master theorem gives us the solution T(n) = Θ(n2), which

is no faster than the naive multiplication.

However, we can compute pl(x)qr(x) + pr(x)ql(x) using only one multiplication
instead of two. Both of these terms are part of the expansion of pq, which is only one
multiplication. That particular multiplication is on n-degree polynomials, but it is not
difficult to see how we can reduce it to a single k-degree multiplication. We simply
throw away the multiplicative factors that makes plxk + pr and qlxk + qr an n-degree
polynomials:

(pl(x) + pr(x))(ql(x) + qr(x)) = pl(x)ql(x) + pl(x)qr(x) + pr(x)ql(x) + pr(x)qr(x)

so that

pl(x)qr(x) + pr(x)ql(x) = (pl(x) + pr(x))(ql(x) + pr(x)) − pl(x)ql(x) − pr(x)qr(x)

This means we only need to compute three k-degree multiplications: (pl(x)+pr(x))(ql(x)+
qr(x)), pl(x)ql(x), pr(x), qr(x) Our time complexity recurrence is then reduced to
T(n) = 3T(n

2
) +O(n), which by the master theorem is Θ(nlog2 3) ≈ Θ(n1.585).

Exercise 8.10

Polynomial Multiplication 2 – polymul2

8.5 Chapter Notes

DRAFT
Chapter 9

Data Structures

Solutions to algorithmic problems consists of two constructs – algorithms and data
structures. Data structures are used to organize the data that the algorithms operate
on. For example, the array is such an algorithm.

Many data structures has been developed to handle particular common operations
we need to perform on data quickly. In this chapter, we will study a few such
structures.

9.1 Disjoint Sets

In the Connectivity Problem, we want to determine whether two vertices in the graph
are in the same connected component. This problem can be solved using a Depth-First
Search (Section 10.2). For now, we will instead focus on an extension of this problem
called the Dynamic Connectivity Problem, Additions only1, where we may also alter the
graph by adding edges.

Dynamic Connectivity, Additions Only
Given a graph G which initially consists of V disconnected vertices, you will
receive Q queries of two types:

1. take two vertices v and w, and add an edge between them

2. determine whether vertices v and w are currently in the same component

This problem can easily be solved in O(Q2), by after each query performing a DFS
to partition the graph into its connected components. Since the graph has at most Q

1The Dynamic Connectivity problem where edges may also be removed can be solved by a data
structured called a Link-Cut tree, which is not discussed in this book.

127

DRAFT

128 CHAPTER 9. DATA STRUCTURES

edges, a DFS takes O(Q) time.

We can improve this by explicitly computing the connected components at each step.
Originally, we have V components of a single vertex each. When adding an edge
between two vertices that are in different components, these components will now
merge. Note that it is irrelevant which vertices we are adding an edge between –
it is only important what components the vertices belong to. When merging two
connected components to one, we iterate through all the vertices of one component
and add them to the other. Since we make at most V joins of different components,
and the components involved contain at most V vertices, these queries only take
O(V2) time. Determining whether two vertices are in the same component can then
be done in O(V), leaving us with a total complexity of O(V(V +Q)). We can speed
this up further by using a simple look-up table comp[v] for the vertices, which stores
some identifier for the component a vertex is in. We can then respond to a connectivity
query in Θ(1) by comparing the value of comp[v] and comp[w]. Our complexity is
then O(V2 +Q) instead.

Finally, we will use a common trick to improve the complexity to O(V logV + Q)
instead. Whenever we merge two components of size a and b, we can do this in
O(min(a, b)) instead of O(a+ b) by merging the smaller component into the larger
component. Any individual vertex can be part of the smaller component at most
O(logV) times. Since the total size of a component is always at least twice the
size of the smaller component, this means that if a vertex is merged as part of the
smaller component k times the new component size must be at least 2k. This cannot
exceed V , meaning k ≤ log

2
V . If we sum this up for every vertex, we arrive at the

O(V logV +Q) complexity.

Algorithm 9.1: Disjoint Set

1 struct DisjointSets {
2

3 vector<vector<int>> components;
4 vector<int> comp;
5 DisjointSets(int elements) : components(elements), comp(elements) {
6 iota(all(comp), 0);
7 for (int i = 0; i < elements; ++i) components[i].push_back(i);
8 }
9

10 void unionSets(int a, int b) {
11 a = comp[a]; b = comp[b];
12 if (a == b) return;
13 if (components[a].size() < components[b].size()) swap(a, b);
14 for (int it : components[b]) {
15 comp[it] = a;
16 components[a].push_back(it);
17 }
18 }

DRAFT

9.1. DISJOINT SETS 129

19

20 };

A somewhat faster2 version of this structure instead performs the merges of compo-
nents lazily. When merging two components, we do not update comp[v] for every
vertex in the smaller component. Instead, if a and b are the representative vertices of
the smaller and the larger component, we only merge a by setting comp[a] = b. How-
ever, we still need to perform the merges. Whenever we try to find the component a
vertex lies in, we perform all the merges we have stored so far.

Algorithm 9.2: Improved Disjoint Set

1 struct DisjointSets {
2

3 vector<int> comp;
4 DisjointSets(int elements) : comp(elements, -1) {}
5

6 void unionSets(int a, int b) {
7 a = repr(a); b = repr(b);
8 if (a == b) return;
9 if (-comp[a] < -comp[b]) swap(a, b);

10 comp[a] += comp[b];
11 comp[b] = a;
12 }
13

14 bool is_repr(int x) { return comp[x] < 0; }
15

16 int repr(int x) {
17 if (is_repr(x)) return x;
18 while (!is_repr(comp[x])) {
19 comp[x] = comp[comp[x]];
20 }
21 return comp[x];
22 }
23

24 };

However, it turns out we can sometimes perform many merges at once. Consider the
case where we have kmerges lazily stored for some vertex v. Then, we can perform
all the merges of v, comp[v], comp[comp[v]], . . . at the same time since they all have the
same representative: the representative of v.

2With regards to actual time, not asymptotically.

DRAFT

130 CHAPTER 9. DATA STRUCTURES

Algorithm 9.3: Performing Many Merges

1 int repr(int x) {
2 if (comp[x] < 0) return x;
3 int par = comp[x];
4 comp[x] = repr(par);
5 return comp[x];
6 }

Intuitively, this should be faster. After all, we would be performing performing at
least k+ (k− 1) + (k− 2) + · · · = O(k2) merges in O(k) time, only for those vertices.
If there were more vertices part of the components merged, this number grows even
more.

It turns out that this change improves the complexity asymptotically.

9.2 Range Queries

Problems often ask us to compute some expression based on some interval of an array.
The expressions are usually easy to compute in Θ(len) where len is the length of the
interval. We will now study some techniques that trade much faster query responses
for a bit of memory and precomputation time.

9.2.1 Prefix Precomputation

Interval Sum
Given a sequence of integers a0, a1, . . . , aN−1, you will be given Q queries of the
form [L, R). For each query, compute S(L, R) = aL + aL+1 + · · ·+ aR−1.

Computing the sums naively would require Θ(N) worst-case time per query if the
intervals are large, for a total complexity of Θ(NQ). If Q = Ω(N) we can improve
this to Θ(N2 +Q) by precomputing all the answers. To do this in quadratic time, we
use the recurrence

S(L, R) =

{
0 if L = R

S(L, R− 1) + aR−1 otherwise

Using this recurrence we can compute the sequence S(L, L), S(L, L + 1), S(L, L +
2), . . . , S(L,N) in average Θ(N) time for every L. This gives us the Θ(N2 +Q) com-
plexity.

DRAFT

9.2. RANGE QUERIES 131

If the function we are computing has an inverse, we can speed this precomputation
up a bit. Assume that we have computed the values P(R) = a0 + a1 + · · ·+ aR−1, i.e.
the prefix sums of ai. Since this function is invertible (with inverse −P(R)), we can
compute S(L, R) = P(R)−P(L). Basically, the interval [L, R) consists of the prefix [0, R)
with the prefix [0, L) removed. As addition is invertible, we could simply remove
the latter prefix P(L) from the prefix P(R) using subtraction. Indeed, expanding this
expression shows us that

P(R) − P(L) = (a0 + a1 + · · ·+ aR−1) − (a0 + a1 + · · ·+ aL−1)
= aL + · · ·+ aR−1 = S(L, R)

Algorithm 9.4: Interval Sums

procedure PREFIXES(sequence A)
P← new int[|A|+ 1]
for i = 0 to |A|− 1 do
P[i+ 1]← P[i] +A[i]

return P
procedure INTERVALSUM(interval [L, R), prefix table P)

return P[R] − P[L]

This same technique works for any invertible operation.

Exercise 9.1

The above technique does not work straight-off for non-commutative operations.
How can it be adapted to this case?

9.2.2 Sparse Tables

The case where a function does not have an inverse is a bit more difficult.

Interval Minimum
Given a sequence of integers a0, a1, . . . , aN−1, you will be given Q queries of the
form [L, R). For each query, computeM(L, R) = min(aL, aL+1, . . . , aR−1).

Generally, you cannot compute the minimum of an interval based only on a constant
number of prefix minimums of a sequence. We need to modify our approach. If we
consider the naive approach, where we simply answer the queries by computing
it explicitly, by looping over all the R − L numbers in the interval, this is Θ(len). A
simple idea will improve the time used to answer queries by a factor 2 compared to

DRAFT

132 CHAPTER 9. DATA STRUCTURES

this. If we precompute the minimum of every pair of adjacent elements, we cut down
the number of elements we need to check in half. We can take it one step further, by
using this information to precompute the minimum of all subarrays of four elements,
by taking the minimum of two pairs. By repeating this procedure for very power
of two, we will end up with a table m[l][i] containing the minimum of the interval
[l, l+ 2i), computable in Θ(N logN).

Algorithm 9.5: Sparse Table

1 vector<vi> ST(const vi& A) {
2 vector<vi> ST(__builtin_popcount(sz(A)), sz(A));
3 ST[0] = A;
4 rep(len,1,ST.size()) {
5 rep(i,0,n - (1 << len) + 1) {
6 ST[len][i] = max(ST[len - 1][i], ST[len - 1][i + 1 << (len - 1)]);
7 }
8 }
9 return ST;

10 }

Given this, we can compute the minimum of an entire interval in logarithmic time.
Consider the binary expansion of the length len = 2k1 + 2k2 + · · ·+ 2kl . This consists
of at most log2len terms. However, this means that the intervals

[L, L+ 2k1)

[L+ 2k1 , L+ 2k1 + 2k2)

. . .

[L+ 2k1 + · · ·+ 2kl−1 , L+ len)

together cover [L, L+ len). Thus we can compute the minimum of [L, L+ len) as the
minimum of log

2
len intervals.

Algorithm 9.6: Sparse Table Querying

1 int rangeMinimum(const vector<vi>& table, int L, int R) {
2 int len = R - L;
3 int ans = std::numeric_limits<int>::max();
4 for (int i = sz(table) - 1; i >= 0; --i) {
5 if (len & (1 << i)) {
6 ans = min(ans, table[i][L]);
7 L += 1 << i;
8 }
9 }

10 return ans;

DRAFT

9.2. RANGE QUERIES 133

11 }

This is Θ((N+Q) logN) time, since the preprocessing uses Θ(N logN) time and each
query requires Θ(logQ) time. This structure is called a Sparse Table, or sometimes just
the Range Minimum Query data structure.

We can improve the query time to Θ(1) by using that the min operation is idempotent,
meaning that min(a, a) = a. Whenever this is the case (and the operation at hand is
commutative), we can use just two intervals to cover the entire interval. If 2k is the
largest power of two that is at most R− L, then

[L, L+ 2k)

[R− 2k, R)

covers the entire interval.

1 int rangeMinimum(const vector<vi>& table, int L, int R) {
2 int maxLen = 31 - __builtin_clz(b - a);
3 return min(jmp[maxLen][L], jmp[maxLen][R - (1 << maxLen)]);
4 }

While most functions either have inverses (so that we can use the prefix precomputa-
tion) or has idempotent (so that we can use the Θ(1) sparse table), some functions do
not. In such cases (for example matrix multiplication), we must use the logarithmic
querying of the sparse table.

9.2.3 Segment Trees

The most interesting range queries occur on dynamic sequences, where values can
change.

Dynamic Interval Sum
Given a sequence of integers a0, a1, . . . , aN−1, you will be given Q queries. The
queries are of two types:

1. Given an interval [L, R), compute S(L, R) = aL + aL+1 + · · ·+ aR−1).
2. Given an index i and an integer v, set ai := v.

To solve the dynamic interval problem, we will use a similar approach as the general
sparse table. Using a sparse table as-is for the dynamic version, we would need
to update Θ(N) intervals, meaning the complexity would be Θ(logN) for interval
queries and Θ(N) for updates. It turns out the sparse table as we formulated it
contains an unnecessary redundancy.

DRAFT

134 CHAPTER 9. DATA STRUCTURES

If we accept using 2 logN intervals to cover each query instead of logN, we can
reduce memory usage (and precomputation time!) to Θ(N) instead of Θ(logN). We
will use the same decomposition as in merge sort (Section 8.2). In Figure 9.1, you can
see this decomposition, with an example of how a certain interval can be covered. In
this context, the decomposition is called a segment tree.

5 1 6 3 7 2 0 4

5 1 6 3

5 1

5 1

6 3

6 3

7 2 0 4

7 2

7 2

0 4

0 4

Figure 9.1: The 2N− 1 intervals to precompute.

Usually, this construction is represented as a flat, 1-indexed array of length 2dlog2Ne.
The extraneous are set to some sentinel value that does not affect queries (i.e. 0 in the
case of sum queries). From this point, we assume N to be a power of two, with the
array padded by these sentinel values.

Algorithm 9.7: Segment Tree Construction

procedure MAKETREE(sequence A)
tree← new int[2|N|]
for i = |N| to 2|N|− 1 do

tree[i]← A[i− |N|]

for i = |N|− 1 to 1 do
tree[i]← tree[2 · i] + tree[2 · i+ 1]

return P

In the construction, we label each interval 1, 2, 3, . . . in order, meaning the entire
interval will have index 1, the two halves indices 2, 3 and so on. This means that the
two halves of the interval numbered i will have indices 2i and 2i+ 1, which explains
the precomputation loop in Algorithm 9.7.

We can compute the sum of each of these intervals in Θ(1), assuming the sum of all
the smaller intervals have already been computed, since each interval is composed by
exactly two smaller intervals (except the length 1 leaves). The height of this tree is
logarithmic in N.

DRAFT

9.2. RANGE QUERIES 135

Note that any particular element of the array is included in logN intervals – one for
each size. This means that updating an element requires only logN intervals to be
updated, which means the update time is Θ(logN) instead of Θ(N) which was the
case for sparse tables.

Algorithm 9.8: Segment Tree Update

procedure UPDATETREE(tree T , index i, value v)
index← i+N
tree[index]← v

while index 6= 0 do
index← index/2
tree[index]← tree[2 · index] + tree[2 · index + 1]

It is more difficult to construct an appropriate cover if the interval we are to compute
the sum of. A recursive rule can be used. We start at the interval [0,N). One of three
cases must now apply:

• We are querying the entire interval [0,N)

• We are querying an interval that lies in either [0, N
2
) or [N

2
, N)

• We are querying an interval that lies in both [0, N
2
) or [N

2
, N)

In the first case, we are done (and respond with the sum of the current interval). In
the second case, we perform a recursive call on the half of the interval that the query
lies in. In the third case, we make the same recursive construction for both the left
and the right interval.

Since there is a possibility we perform two recursive calls, we might think that the
worst-case complexity of this query would take Θ(logN) time. However, the calls
that the third call results in will have a very specific form – they will always have
one endpoint in common with the interval in the tree. In this case, the only time the
recursion will branch is to one interval that is entirely contained in the query, and
one that is not. The first call will not make any further calls. All in all, this means
that there will me at most two branches of logarithmic height, so that queries are
O(logN).

Algorithm 9.9: Segment Tree Query

procedure QUERYTREE(tree T , index i, query [L, R), tree interval [L ′, R ′))
if R ≤ L ′ or L > R ′ then

return 0
if L = L ′ and R = R ′ then

return T [i]

DRAFT

136 CHAPTER 9. DATA STRUCTURES

M = (L+ R)/2
lsum = QueryTree(T, 2i, [L,min(R,M)), [L ′,M))
rsum = QueryTree(T, 2i+ 1, [max(L,M), R), [M,R))
return lsum + rsum

9.3 Chapter Notes

DRAFT
Chapter 10

Graph Algorithms

Graph theory is probably the richest of all algorithmic areas. You are almost guaran-
teed to see at least one graph problem in any given contest, so it is important to be
well versed in the common algorithms that operate on graphs. The most important
such algorithms concern shortest paths from some vertex, which will also be our first
object of study.

10.1 Breadth-First Search

One of the most common basic graph algorithms is the breadth-first search. Its main
usage is to find the distances from a certain vertex in an unweighted graph:

Single-Source Shortest Path, Unweighted Edges
Given an unweighted graph G = (V, E) and a source vertex s, compute the
shortest distances d(s, v) for all v ∈ V .

For simplicity, we will first consider the problem on a grid graph, where the unit
squares constitute vertices, and vertices which share an edge are connected. Addi-
tionally, some squares are blocked (and do not contain a vertex). An example can be
seen in Figure 10.1.

Let us solve this problem inductively. First of all, what vertices have distance 0?
Clearly, this can only be the source vertex s itself. This seems like a reasonable base
case, since the problem is about shortest paths from s. Then, what vertices have
distance 1? These are exactly those with a path consisting of a single edge from s,
meaning they are the neighbors of s (marked in Figure 10.2.

If a vertex v should have distance 2, it must be a neighbor of a vertex u with distance
1 (except for the starting vertex). This is also a sufficient condition, since we can

137

DRAFT

138 CHAPTER 10. GRAPH ALGORITHMS

s

Figure 10.1: An example grid graph, with source marked s.

s1

1

Figure 10.2: The square with distance 1 from the source.

construct a path of length 2 simply by extending the path of any neighbor of distance
1with the edge (u, v).

s1

1

2

2 2

s1

1

2

2 2

3

3

s1

1

2

2 2

3

34

4

Figure 10.3: The squares with distance 2, 3 and 4.

In fact, this reasoning generalizes to any particular distance, i.e., that all the vertices
that have exactly distance k are those that have a neighbor of distance k − 1 but
no neighbor to a vertex with a smaller distance. Using this, we can construct an
algorithm to solve the problem. Initially, we set the distance of s to 0. Then, for every

DRAFT

10.1. BREADTH-FIRST SEARCH 139

dist = 1, 2, . . . , we mark all vertices that have a neighbor with distance dist − 1 as
having dist. This algorithm is called the breadth-first search.

Exercise 10.1

Use the BFS algorithm to compute the distance to every square in the following
grid:

s

Figure 10.4

We can implement this the following way:

Algorithm 10.1: Breadth-First Search

procedure BREADTHFIRSTSEARCH(vertices V , vertex s)
distances← new int[|V |]
fill distances with∞
curDist← 0

curDistVertices← new vector
curDistVertices. add(s)
distances[s] = curDist
while curDistVertices 6= ∅ do

nCurDist = curDist + 1
nCurDistVertices← new vector
for from ∈ curDistVertices do

for v ∈ from.neighbours do
if distances[v] =∞ then

nCurDistVertices. add(v)
distances[v] = nCurDist

curDist = nCurDist
curDistVertices = nCurDistVertices

return distances

Each vertex is added to nCurDistVertices at most once, since it is only pushed if

DRAFT

140 CHAPTER 10. GRAPH ALGORITHMS

distances[v] =∞whereupon it is immediately set to something else. We then iterate
through every neighbor of all these vertices. In total, the number of all neighbours is
2E, so the algorithm in total uses Θ(V + E) time.

Usually, the outer loop are often coded in another way. Instead of maintaining two
separate vectors, we can merge them into a single queue:

Algorithm 10.2: Breadth-First Search, Variant

while curDistVertices 6= ∅ do
from← curDistVertices. front()
curDistVertices.pop()
for from ∈ curDistVertices do

for v ∈ from.neighbours do
if distances[v] =∞ then

curDistVertices. add(v)
distances[v] = distances[from] + 1

The order of iteration is equivalent to the original order.

Exercise 10.2

Prove that the shorter way of coding the BFS loop (Algorithm 10.2) is equivalent to
the longer version (Algorithm 10.1).

In many problems the task is to find a shortest path between some pair of vertices
where the graph is given implicitly:

8-puzzle
In the 8-puzzle, 8 tiles are arranged in a 3× 3 grid, with one square left empty. A
move in the puzzle consists of sliding a tile into the empty square. The goal of
the puzzle is to perform some moves to reach the target configuration. The target
configuration has the empty square in the bottom right corner, with the numbers
in order 1, 2, 3, 4, 5, 6, 7, 8 on the three lines.

2

7

5

1

8

3

4

6

2

7

5

1

8

3

4

6 1 2 3

4 5 6

7 8

Figure 10.5: An example 8-puzzle, with a valid move. The rightmost puzzle
shows the target configuration.

DRAFT

10.1. BREADTH-FIRST SEARCH 141

Given a puzzle, determine how many moves are required to solve it, or if it cannot
be solved.

This is a typical BFS problem, characterized by a starting state (the initial puzzle),
some transitions (the moves we can make), and the task of finding a short sequence
of such transitions to some goal state. We can model such problems using a graph.
The vertices are then the possible arrangements of the tiles in the grid, and an edge
connects two states if the differ by a single move. A sequence of moves from the
starting state to the target configuration then represents a path in this graph. The
minimum number of moves required is thus the same as the distance between those
vertices in the graph, meaning we can use a BFS.

In such a problem, most of the code is usually concerned with the representation of a
state as a vertex, and generating the edges that a certain vertex is adjacent to. When
an implicit graph is given, we generally do not compute the entire graph explicitly.
Instead, we use the states from the problems as-is, and generate the edges of a vertex
only when it is being visited in the breadth-first search. In the 8-puzzle, we can
represent each state as a 3× 3 2D-vector. The difficult part is generating all the states
that we can reach from a certain state.

Algorithm 10.3: Generating 8-puzzle Moves

1 typedef vector<vi> Puzzle;
2

3 vector<Puzzle> edges(const Puzzle& v) {
4 int emptyRow, emptyCol;
5 rep(row,0,3)
6 rep(col,0,3)
7 if (v[row][col] == 0) {
8 emptyRow = row;
9 emptyCol = col;

10 }
11 vector<Puzzle> possibleMoves;
12 auto makeMove = [&](int rowMove, int colMove) {
13 int newRow = row + rowMove;
14 int newCol = col + colMove;
15 if (newRow >= 0 && newCol >= 0 && newRow < 3 && newCol < 3) {
16 Puzzle newPuzzle = v;
17 swap(newPuzzle[emptyRow][emptyCol], newPuzzle[newRow][newCol]);
18 possibleMoves.spush_back(newPuzzle);
19 }
20 };
21 makeMove(-1, 0);
22 makeMove(1, 0);
23 makeMove(0, -1);
24 makeMove(0, 1);

DRAFT

142 CHAPTER 10. GRAPH ALGORITHMS

25 return possibleMoves;
26 }

With the edge generation in hand, the rest of the solution is a normal BFS, slightly
modified to account for the fact that our vertices are no longer numbered 0, . . . , V − 1.
We can solve this by using e.g. maps instead.

Algorithm 10.4: 8-puzzle BFS

1 int puzzle(const Puzzle& S, const Puzzle& target) {
2 map<Puzzle, int> distances;
3 distances[S] = 0;
4 queue<Puzzle> q;
5 q.push(S);
6 while (!q.empty()) {
7 const Puzzle& cur = q.front(); q.pop();
8 int dist = distances[cur];
9 if (cur == target) return dist;

10 for (const Puzzle& move : edges(cur)) {
11 if (distances.find(move) != distances.end()) continue;
12 distances[move] = dist + 1;
13 q.push(move);
14 }
15 }
16 return -1;
17 }

Exercise 10.3 — Kattis Exercises

Button Bashing – buttonbashing

10.2 Depth-First Search

The depth-first search is an analogue to the breadth-first search that visits vertices in
another order. Similarly to how the BFS grows the set of visited vertices using a wide
frontier around the source vertex, the depth-first search proceeds its search by, at
every step, trying to plunge deeper into the graph. This order is called the depth-first
order. More precisely, the search starts at some source vertex s. Then, any neighbor of
s is chosen to be the next vertex v. Before visiting any other neighbor of s, we first
visit any of the neighbours of v, and so on.

Implementing the depth-first search is usually done with a recursive function, using
a vector seen to keep track of visited vertices:

DRAFT

10.2. DEPTH-FIRST SEARCH 143

Algorithm 10.5: Depth-First Search

procedure DEPTH-FIRST SEARCH(vertex at, adjacency list G)
if seen[at] then

return
seen[at] = true
for neighbour ∈ G[at] do

dfs(neighbour, G)

In languages with limited stack space, it is possible to implement the DFS iteratively
using a stack instead, keeping the vertices which are currently open in it.

Due to the simplicity of coding the DFS compared to a BFS, it is usually the algorithm
of choice in problems where we want to visit all the vertices.

Coast Length
KTH Challenge 2011 – Ulf Lundström

The residents of Soteholm value their coast highly and therefore want to maximize
its total length. For them to be able to make an informed decision on their position
in the issue of global warming, you have to help them find out whether their
coastal line will shrink or expand if the sea level rises. From height maps they
have figured out what parts of their islands will be covered by water, under the
different scenarios described in the latest IPCC report on climate change, but they
need your help to calculate the length of the coastal lines.

You will be given a map of Soteholm as an N×M grid. Each square in the grid
has a side length of 1 km and is either water or land. Your goal is to compute the
total length of sea coast of all islands. Sea coast is all borders between land and
sea, and sea is any water connected to an edge of the map only through water.
Two squares are connected if they share an edge. You may assume that the map
is surrounded by sea. Lakes and islands in lakes are not contributing to the sea
coast.

DRAFT

144 CHAPTER 10. GRAPH ALGORITHMS

Figure 10.6: Gray squares are land and white squares are water. The thick black
line is the sea coast.

We can consider the grid as a graph, where all the water squares are vertices, and
two squares have an edge between them if they share an edge. If we surround the
entire grid by an water tiles (a useful trick to avoid special cases in this kind of
grid problems), the sea consists exactly of those vertices that are connected to these
surrounding water tiles. This means we need to compute the vertices which lie in
the same connected component as the sea – a typical DFS task1. After computing this
component, we can determine the coast length by looking at all the squares which
belong to the sea. If such a square share an edge with a land tile, that edge contributes
1 km to the coast length.

Algorithm 10.6: Coast Length

1 const vpi moves = {pii(-1, 0), pii(1, 0), pii(0, -1), pii(0, 1)};
2

3 int coastLength(const vector<vector<bool>>& G) {
4 int H = sz(G) + 4;
5 W = sz(G[0]) + 4;
6 vector<vector<bool>> G2(H, vector<bool>(W, true));
7 rep(i,0,sz(G)) rep(j,0,sz(G[i])) G2[i+2][j+2] = G[i][j];
8 vector<vector<bool>> sea(H, vector<bool>(W));
9

10 function<void(int, int)> floodFill = [&](int row, int col) {
11 if (row < 0 || row >= H|| col < 0 || col >= W) return;
12 if (sea[row][col]) return;
13 sea[row][col] = true;
14 trav(move, moves) floodFill(row + move.first, col + move.second);
15 };
16 dfs(0, 0);
17

18 int coast = 0;
19 rep(i,1,sz(G)+1) rep(j,1,sz(G[0])+1) {
20 if (sea[i][j]) continue;
21 trav(move, moves) if (!sea[i + move.first][j + move.second]) coast++;
22 }
23 return coast;
24 }

Exercise 10.4 — Kattis Exercises

Mårten’s DFS – martensdfs

1This particular application of DFS, i.e. computing a connected area in a 2D grid, is called a flood fill.

DRAFT

10.3. WEIGHTED SHORTEST PATH 145

10.3 Weighted Shortest Path

The theory of computing shortest paths in the case of weighted graphs is a bit more
rich than the unweighted case. Which algorithm to use depends on three factors:

• The number of vertices.

• Whether edge weights are non-negative or not.

• If we seek shortest paths only from a single vertex or between all pairs of
vertices.

There are mainly three algorithms used: Dijkstra’s Algorithm, the Bellman-Ford algo-
rithm, and the Floyd-Warshall algorithm.

10.3.1 Dijkstra’s Algorithm

Dijkstra’s Algorithm can be seen as an extension of the breadth-first search that
works for weighted graphs as well.

Single-Source Shortest Path, non-negative weights
Given a weighted graph G = (V, E) where all weights are non-negative and a
source vertex s, compute the shortest distances d(s, v) for all v ∈ V(G).

It has a similar inductive approach, where we iteratively compute the shortest dis-
tances to all vertices in ordered by distance. The difference lies in that we do not
immediately know when we have found the shortest path to a vertex. For example,
the shortest path from a neighbour to the source vertex may now use several other
vertices in its shortest path to s (Figure ??).

imageimage

However, can this be the case for every vertex adjacent to s? In particular, can the
neighbour to s with the smallest edge weightW to s have a distance smaller than w?
This is never the case in Figure ??, and actually holds in general. Assume that this is
not the case. In Figure ??, this hypothetical scenario is shown. Any such path must
still pass through some neighbour u of s. By assumption, the weight of the edge (s, u)
must be larger than W (which was the minimal weight of the edges adjacent to s).
This reasoning at least allows us to find the shortest distance to one other vertex.

10.3.2 Bellman-Ford

DRAFT

146 CHAPTER 10. GRAPH ALGORITHMS

Single-Source Shortest Path, non-negative weights
Given a weighted graph G = (V, E) where all weights are non-negative and a
source vertex s, compute the shortest distances d(s, v) for all v ∈ V(G).

When edges can have negative weights, the idea behind Dijkstra’s algorithm no
longer works. It is very much possible that a negative weight edge somewhere else
in the graph could be used to construct a shorter path to a vertex which was already
marked as completed. However, the concept of relaxing an edge is still very much
applicable and allows us to construct a slower, inductive solution.

Initially, we know the shortest distances to each vertex, assuming we are allowed to
traverse 0 edges from the source. Assuming that we know these values when allowed
to traverse up to k edges, can we find the shortest paths that traverse up to k + 1
edges? This way of thinking is similar to how to solved the BFS problem. Using a BFS,
we computed the vertices at distance d+ 1 by taking the neighbours of the vertices
at distance d Similarly, we can find the shortest path to a vertex v that traverse up
to k + 1 edges, by attempting to extend the shortest paths using k edges from the
neighbours of v. Letting D(k, v) be the shorter distance to v by traversing up to k
edges, we arrive at the following recursion:

D(k, v) = min

0 if v = s
D(k− 1, v) if k > 0
mine=(u,v)∈ED(k− 1, u) +W(e) if k > 0

Algorithm 10.7: Bellman-Ford

procedure BELLMANFORD(vertices V , edges E, vertex s)
D← new int[|V |][|V |+ 1]
fill Dwith∞
D[0][s]← 0

for k = 1 to |V | do
D[k] = D[k− 1]
for e = (u, v) ∈ E do
D[k][v] = min(D[k][v], D[k− 1][u] +W(e)

return D

All in all, the states D(v, i) for a particular i takes time Θ(|E|) to evaluate. To compute
the distance d(s, v), we still need to know what the maximum possible k needed to
arrive at this shortest path could be. It turns out that this could potentially be infinite,
in the case where the graph contains a negative-weight cycle. Such a cycle can be
exploited to construct arbitrarily short paths.

DRAFT

10.3. WEIGHTED SHORTEST PATH 147

However, of no such cycle exists, k = |V | will be sufficient. If a shortest path uses
more than |V | edges, it must contain a cycle. If this cycle is not of negative weight, we
may simply remove it to obtain a path of at most the same length. Thus, the algorithm
takes OΘ(|V ||E|).

Exercise 10.5

Bellman-Ford can be adapted to instead use only Θ(V) memory, by only keeping
a current know shortest path and repeatedly relaxing every edge. Sketch out the
pseudo code for such an approach, and prove its correctness.

Exercise 10.6

We may terminate Bellman-Ford earlier without loss of correctness, in case D[k] =
D[k − 1]. How can this fact be used to determine whether the graph in question
contains a negative-weight cycle?

10.3.3 Floyd-Warshall

All-Pairs Shortest Paths
Given a weighted graph G = (V, E), compute the shortest distance d(u, v) for
every pair of vertices u, v.

The Floyd-Warshall algorithm is a remarkably short method to solve the all-pairs
shortest paths problem. It basically consists of three nested loops containing a single
statement:

Algorithm 10.8: Floyd-Warshall

procedure FLOYD-WARSHALL(distance matrix D)
for k = 0 to |V |− 1 do

for i = 0 to |V |− 1 do
for j = 0 to |V |− 1 do
D[i][j] = min(D[i][j], D[i][k] +D[k][j])

return D

Initially, the distance matrix D contains the distances of all the edges in E, so that
D[i][j] is the weight of the edge (i, j) if such an edge exists, ∞ if there is no edge
between i and j or 0 if i = j. Note that if multiple edges exists between i and j, D[i][j]
must be given the minimum weight of them all. Additionally, if there is a self-loop (i.e.
an edge from i to i itself) of negative weight, D[i][i] must be set to this value.

DRAFT

148 CHAPTER 10. GRAPH ALGORITHMS

To see why this approach works, we can use the following invariant proven by
induction. After the k’th iteration of the loop, D[i][j] will be at most the minimum
distance between i and j that uses vertices 0, 1, . . . , k− 1. Assume that this is true for
a particular k. After the next iteration, there are two cases for D[i][j]. Either there is
no shorter path using vertex k than those using only vertices 0, 1, . . . , k − 1. In this
case, D[i][j] will fulfill the condition by the induction assumption. If there is a shorter
path between i and j if we use the vertex k, this must have length D[i][k] +D[k][j],
since D[i][k] and D[k][j] both contain the shortest paths between i and k, and k and
j using vertices 0, 1, . . . , k − 1. Since we set D[i][j] = min(D[i][j], D[i][k] +D[k][j]) in
the inner loop, we will surely find this path too in this iteration. Thus, the statement
is true after the k + 1’th iteration too. By induction, it is true for k = |V |, meaning
D[i][j] contains at most the minimum distance between i and j using any vertex in
the graph.

10.4 Minimum Spanning Tree

Using the depth-first search, we were able to find a subtree of a connected graph
which spanned the entire set of vertices. A particularly important such spanning tree
is the minimum spanning tree.

Minimum Spanning Tree
We say that the weight of a spanning tree is the sum of the weights of its edges. A
minimum spanning tree is a spanning tree whose weight is minimal.

A

B

C

D

E

F

1

4

2

3

5
2

1

4

5 A

B

C

D

E

F

1
2

3

2

1

Figure 10.7: A graph with a corresponding minimum spanning tree.

Given a weighted graph, find a minimum spanning tree.

Mainly two algorithms are used to solve the Minimum Spanning Tree (MST) problem:
either Kruskal’s Algorithm which is based on the Union-Find data structure, or
Prim’s Algorithm which is an extension of Dijkstra’s Algorithm. We will demonstrate
Kruskal’s, since it is by far the most common of the two.

DRAFT

10.4. MINIMUM SPANNING TREE 149

Kruskal’s algorithm is based on a greedy, incremental approach that reminds us of
the Scheduling problem (Section 6.3). In the Scheduling problem, we tried to find
any interval that we could prove to be part of an optimal solution, by considering
various extremal cases. Can we do the same thing when finding a minimum spanning
tree?

First of all, if we can always find such an edge, we are essentially done. Given an
edge (a, b) that we know is part of a minimum spanning tree, we can contract the two
vertices a and b to a single vertex ab, with all edges adjacent to the two vertices. Any
edges that go between contracted vertices are ignored. An example of this process
in action be be seen in Figure 10.8. Note how the contraction of an edge reduces the
problem to finding an MST in a smaller graph.

C

D

B

A
E

2

2

2

1
2

3

C

D

B

A
E

2

2

2

1
2

3

C

D

B

A
E

2

2

2

1
2

3

C

D

B

A
E

2

2

2

1
2

3

C

D

B

A
E

2

2

2

1

2

3

Figure 10.8: Incrementally constructing a minimum spanning tree by merging

A natural extremal case to consider is the edge with the minimum weight. After
all, we are trying to minimize the edge sum. Our proof is similar in structure to the
Scheduling problem as well by using a swapping argument.

Assume that a minimum-weight edge {a, b} with weightw is not part of any minimum
spanning tree. Then, consider the spanning tree with this edge appended. The graph
will then contain exactly one cycle. In a cycle, any edge can be removed while
maintaining connectivity. This means that if any edge {c, d} on this cycle have a
weight w ′ larger weight than w, we can erase it. We will thus have replaced the edge
{c, d} by {a, d}, while changing the weight of the tree by w − w ′ < 0, reducing the
sum of weights. Thus, the tree was improved by using the minimum-weight edge,
proving that it could have been part of the tree.

DRAFT

150 CHAPTER 10. GRAPH ALGORITHMS

Exercise 10.7

What happens if all edges on the cycle that appears have weight w? Is this a
problem for the proof?

When implementing the algorithm, the contraction of the edge added to the mini-
mum spanning tree is generally not performed explicitly. Instead, a disjoint set data
structure is used to keep track of which subsets of vertices have been contracted.
Then, all the original edges are iterated through in increasing order of weight. An
edge is added to the spanning tree if and only if the two endpoints of the edge are
not already connected (as in Figure 10.8).

Algorithm 10.9: Minimum Spanning Tree

procedure MINIMUMSPANNINGTREE(vertices V , edges E)
sort E by increasing weight
uf ← new DisjointSet(V)
mst← new Graph
for each edge {a, b} ∈ E do

if not uf . sameSet(a, b) then
mst. append(a, b)
uf . join(a, b)

return mst

The complexity of this algorithm is dominated by the sorting (which is O(E logV)),
since operations on the disjoint set structure is O(logV).

10.5 Chapter Notes

DRAFT
Chapter 11

Maximum Flows

This chapter studies so called flow networks, and algorithms we use to solve the so-
called maximum flow and minimum cut problems on such networks. Flow problems
are common algorithmic problems, particularly in ICPC competitions (while they are
out-of-scope for IOI contests). They are often hidden behind statements which seem
unrelated to graphs and flows, especially the minimum cut problem.

Finally, we will end with a specialization of maximum flow on the case of bipartite
graphs (called bipartite matching).

11.1 Flow Networks

Informally, a flow network is a directed graph that models any kind of network where
paths have a fixed capacity, or throughput. For example, in a road network, each road
might have a limited throughput, proportional to the number of lanes on the road. A
computer network may have different speeds along different connections due to e.g.
the type of material. These natural models are often use when describing a problem
that is related to flows. A more formal definition is the following.

Definition 11.1 — Flow Network
A flow network is a special kind of directed graph (V, E, c), where each edge e is
given a non-negative capacity c(e). Two vertices are designated the source and
the sink, which we will often abbreviate to S and T .

In Figure 11.1, you can see an example of a flow network.

In such a network, we can assign another value to each edge, that models the current
throughput (which generally does not need to match the capacity). These values are
what we call flows.

151

DRAFT

152 CHAPTER 11. MAXIMUM FLOWS

S

a b

c d

T

6

5

6

8

10

3

2
2 7

Figure 11.1: An example flow network.

Definition 11.2 — Flow
A flow is a function f : E→ R≥0, associated with a particular flow network (V, E, c).
We call a flow f admissible if:

• 0 ≤ f(e) ≤ c(e) – the flow does not exceed the capacity

• For every v ∈ V {S, T },
∑

e∈in(v) f(e) =
∑

e∈out(v) – flow is conserved for each
vertex, possibly except the source and sink.

The size of a flow is defined to be the value∑
v∈out(S)

f(v) −
∑
v∈in(S)

f(v)

In a computer network, the flows could e.g. represent the current rate of transfer
through each connection.

Exercise 11.1

Prove that the size of a given flow also equals∑
v∈in(T)

f(v) −
∑

v∈out(T)

f(v)

i.e. the excess flow out from Smust be equal to the excess flow in to T .

In Figure 11.2, flows have been added to the network from Figure 11.1.

Given such a flow, we are generally interested in determining the flow of the largest
size. This is what we call the maximum flow problem. The problem is not only inter-
esting on its own. Many problems which we study might initially seem unrelated to
maximum flow, but will turn out to be reducible to finding a maximum flow.

DRAFT

11.2. EDMONDS-KARP 153

S

a b

c d

T

6/6

1/5

5/6

5/8

1/10

3/3

1/2
1/2 0/7

Figure 11.2: An example flow network, where each edge has an assigned flow. The
size of the flow is 8.

Maximum Flow
Given a flow network (V, E, c, S, T), construct a maximum flow from S to T .

Input
A flow network.

Output
Output the maximal size of a flow, and the flow assigned to each edge in one such
flow.

Exercise 11.2

The flow of the network in Figure 11.2 is not maximal – there is a flow of size 9.
Find such a flow.

Before we study problems and applications of maximum flow, we will first discuss
algorithms to solve the problem. We can actually solve the problem greedily, using
a rather difficult insight, that is hard to prove but essentially gives us the algorithm
we will use. It is probably one of the more complex standard algorithms that is in
common use.

11.2 Edmonds-Karp

There are plenty of algorithms which solve the maximum flow problem. Most of these
are too complicated to be implemented to be practical. We are going to study two
very similar classical algorithms that computes a maximum flow. We will start with
proving the correctness of the Ford-Fulkerson algorithm. Afterwards, a modification
known as Edmonds-Karp will be analyzed (and found to have a better worst-case
complexity).

DRAFT

154 CHAPTER 11. MAXIMUM FLOWS

11.2.1 Augmenting Paths

For each edge, we define a residual flow r(e) on the edge, to be c(e)− f(e). The residual
flow represents the additional amount of flow we may push along an edge.

In Ford-Fulkerson, we associate every edge e with an additional back edge b(e) which
points in the reverse order. Each back edge is originally given a flow and capacity
0. If e has a certain flow f, we assign the flow of the back-edge b(e) to be −f (i.e.
f(b(e)) = −f(e). Since the back-edge b(e) of e has capacity 0, their residual capacity
is r(b(e)) = c(b(e)) − f(b(e)) = 0− (−f(e)) = f(e).

Intuitively, the residual flow represents the amount of flow we can add to a certain
edge. Having a back-edge thus represents “undoing” flows we have added to a
normal edge, since increasing the flow along a back-edge will decrease the flow of its
associated edge.

S

a b

c d

T

6

4

1

1

5

3

5

9

1 3

1 1
1

1

7

Figure 11.3: The residual flows from the network in Figure 11.2.

The basis of the Ford-Fulkerson family of algorithms is the augmenting path. An
augmenting path is a path from S to T in the network consisting of edges e1, e2, ..., el,
such that r(ei) > 0, i.e. every edge along the path has a residual flow. Letting m be
the minimum residual flow among all edges on the path, we can increase the flow of
every such edge withm.

In Figure 11.3, the path S, c, d, b, T is an augmenting path, with minimum residual
flow 1. This means we can increase the flow by 1 in the network, by:

• Increasing the flow from S to c by 1

• Increasing the flow from c to d by 1

• Decreasing the flow from b to d by 1 (since (d, b) is a back-edge, augmenting
the flow along this edge represents removing flow from the original edge)

• Increasing the flow form d to T

The algorithm for augmenting a flow using an augmenting path is implemented in
pseudo code on Algorithm 11.2.

DRAFT

11.2. EDMONDS-KARP 155

Algorithm 11.1: Augmenting a Flow

procedure AUGMENT(path P)
inc←∞
for e ∈ P do

inc← min(inc, c(e) − f(e))
for e ∈ P do

f (e)← f(e) + inc
f (b(e))← f(b(e)) − inc

return inc

Performing this kind of augmentation on an admissible flow will keep the flow
admissible. A path must have either zero or two edges adjacent to any vertex (aside
from the source and sink). One of these will be an incoming edge, and one an outgoing
edge. Increasing the flow of these edges by the same amount conserves the equality
of flows between in-edges and out-edges, meaning the flow is still admissible.

This means that a flow can be maximum only if it contains no augmenting paths.
It turns out this is also a necessary condition, i.e. a flow is maximum if it contains
no augmenting path. Thus, we can solve the maximum flow problem by repeatedly
finding augmenting paths, until no more exists.

11.2.2 Finding Augmenting Paths

The most basic algorithms based on augmenting paths is the Ford-Fulkerson algorithm.
It uses a simple DFS to find the augmenting paths. For integer flows, where the maxi-
mum flow has size m Ford-Fulkerson may require up to O(Em) time. In the worst
case, a DFS takes Θ(E) time to find a path from S to T , and one augmenting path may
contribute only a single unit of flow. For non-integral flows, there are instances where
Ford-Fulkerson may not even terminate (nor converge to the maximum flow).

Algorithm 11.2: Finding an Augmenting Path by DFS

procedure AUGMENTINGPATH(flow network (V, E, c, f, S, T))
bool[] seen← new bool[|V |]
Stack stack← new Stack

found← DFS(S, T, f, c, seen, stack)
if found then

return stack
return Nil

procedure DFS(vertex at, sink T , flow f, capacity c, path p)

DRAFT

156 CHAPTER 11. MAXIMUM FLOWS

p.push(at)
if at = T then

return true
for every out-edge e = (at, v) from at do

if f(e) < c(e) then
if DFS(v, T, f, c, p) then

return true
p.pop()
return false

An improvement to this approach is simply to use a BFS instead. This is what is called
the Edmonds-Karp algorithm. The BFS looks similar to the Ford-Fulkerson DFS, and
is modified in the same way (i.e. only traversing those edges where the flow f(e) is
smaller than the capacity c(e). The resulting complexity is instead O(VE2) (which is
tight in the worst case).

11.3 Applications of Flows

We will now study a number of problems which are reducible to finding a maximum
flow in a network. Some of these problems are themselves considered to be standard
problems.

Maximum-Flowwith Vertex Capacities
In a flow network, each vertex v additionally have a limit Cv on the amount of
flow that can go through it, i.e. ∑

e∈in(v)

f(e) ≤ Cv

Find the maximum flow subject to this additional constraint.

This is nearly the standard maximum flow problem, with the addition of vertex
capacities. We are still going to use the normal algorithms for maximum flow. Instead,
we will make some minor modifications to the network. The additional constraint
given is similar to the constraint placed on an edge. An edge has a certain amount of
flow passing through it, implying that the same amount must enter and exit the edge.
For this reason, it seems like a reasonable approach to reduce the vertex capacity
constraint to an ordinary edge capacity, by forcing all the flow that passes through a
vertex vwith capacity Cv through a particular edge.

DRAFT

11.3. APPLICATIONS OF FLOWS 157

If we partition all the edges adjacent to v into incoming and outgoing edges, it
becomes clear how to do this. We can split up v into two vertices vin and vout, where
all the incoming edges to v are now incoming edges to vin and the outgoing edges
instead become outgoing edges from vout. If we then add an edge of infinite capacity
from vin to vout, we claim that the maximum flow of the network does not change. All
the flow that passes through this vertex must now pass through this edge between
vin and vout. This construction thus accomplish our goal of forcing the vertex flow
through a particular edge. We can now enforce the vertex capacity by changing the
capacity of this edge to Cv.

Maximum Bipartite Matching
Given a bipartite graph, a bipartite matching is a subset of edges in the graph,
such that no two edges share an endpoint. Determine the matching containing
the maximum number of edges.

The maximum bipartite matching problem is probably the most common reduction
to maximum flow in use. Some standard problems additionally reduce to bipartite
matching, making maximum flow even more important. Although there are others
ways of solving maximum bipartite matching than a reduction to flow, this is what
how we are going to solve it.

How can we find such a reduction? In general, we try to find some kind of graph
structure in the problem, and model what it “means” for an edge to have flow pushed
through it. In the bipartite matching problem, we are already given a graph. We
also have a target we wish to maximize – the size of the matching – and an action
that is already associated with edges – including it in the matching. It does not seem
unreasonable that this is how we wish to model the flow, i.e. that we want to construct
a network based on this graph where pushing flow along one of the edges means that
we include the edge in the matching. No two selected edges may share an endpoint,
which brings only a minor complication. After all, this condition is equivalent to each
of the vertices in the graph having a vertex capacity of 1. We already know how to
enforce vertex capacities from the previous problem, where we split each such vertex
into two, one for in-edges and one for out-edges. Then, we added an edge between
them with the required capacity. After performing this modification on the given
graph, we are still missing one important part of a flow network. The network does
not yet have a source and sink. Since we want flow to go along the edges, from one of
the parts to another part of the graph, we should place the source at one side of the
graph and the sink at the other, connecting the source to all vertices on one side and
all the vertices on the other side to the sink.

Minimum Path Cover

DRAFT

158 CHAPTER 11. MAXIMUM FLOWS

In a directed, acyclic graph, find a minimum set of vertex-disjoint paths that
includes every vertex.

This is a difficult problem to derive a flow reduction to. It is reduced to bipartite
matching in a rather unnatural way. First of all, a common technique must be used to
get introduce a bipartite structure into the graph. For each vertex, we split it into two
vertices, one in-vertex and one out-vertex. Note that this graph still have the same
minimum path covers as the original graph.

Now, consider any path cover of this new graph, where we ignore the added edges.
Each vertex is then adjacent to at most a single edge, since paths are vertex-disjoint.
Additionally, the number of paths are equal to the number of in-edges that does not
lie on any path in the cover (since these vertices are the origins of the paths). Thus, we
wish to select a maximum subset of the original edges. Since the subgraph containing
only these edges is now bipartite, the problem reduces to bipartite matching.

Exercise 11.3

The minimum path cover reduction can be modified slightly to find a minimum
cycle cover in a directed graph instead. Construct such a reduction.

11.4 Chapter Notes

The Edmonds-Karp algorithm was originally published in 1970 by Yefim Dinitz. Thereference to
paper
reference to
paper paper by Edmonds and Karp

DRAFT
Chapter 12

Strings

In computing, much of the information we process is text. Therefore, it should not
come as a surprise that many common algorithms and problems focus concerns text
strings. In this chapter, we will study some of the common string algorithms and data
structures.

12.1 Tries

The trie (also called a prefix tree) is the most common string-related data structure. It
represents a set of words as a rooted tree, where every prefix of every word is a vertex,
with children from a prefix P to all strings Pcwhich are also prefixes of a word. If two
words have a common prefix, the prefix only appears once as a vertex. The root of
the tree is the empty prefix. The trie is very useful when we want to associate some
information with prefixes of strings and quickly get the information from neighboring
strings.

The most basic operation of the trie is the insertion of strings, which may be imple-
mented as follows.

Algorithm 12.1: Trie

1 struct Trie {
2 map<char, Trie> children;
3 bool isWord = false;
4

5 void insert(const string& s, int pos) {
6 if (pos != sz(s)) children[s[pos]].insert(s, pos + 1);
7 else isWord = true;
8 }
9

159

DRAFT

160 CHAPTER 12. STRINGS

10 };

We mark those vertices which corresponds to the inserted word using a boolean flag
isWord. Many problems essentially can be solved by very simple usage of a trie, such
as the following IOI problem.

Type Printer
International Olympiad in Informatics 2008

You need to print N words on a movable type printer. Movable type printers are
those old printers that require you to place small metal pieces (each containing
a letter) in order to form words. A piece of paper is then pressed against them
to print the word. The printer you have allows you to do any of the following
operations:

• Add a letter to the end of the word currently in the printer.

• Remove the last letter from the end of the word currently in the printer.
You are only allowed to do this if there is at least one letter currently in the
printer.

• Print the word currently in the printer.

Initially, the printer is empty; it contains no metal pieces with letters. At the end
of printing, you are allowed to leave some letters in the printer. Also, you are
allowed to print the words in any order you like. As every operation requires
time, you want to minimize the total number of operations.

Your task is to output a sequence of operations that prints all the words using the
minimum number of operations needed.

Input
The first line contains the number of words 1 ≤ N ≤ 25 000. The next N lines
contain the words to be printed, one per line. Each word is at most 20 letters long
and consist only of lower case letters a-z. All words will be distinct

Output
Output a sequence of operations that prints all the words. The operations should
be given in order, one per line, starting with the first. Adding a letter c is repre-
sented by outputting c on a line. Removing the last letter of the current word is
represented by a -. Printing the current word is done by outputting P.

Let us start by solving a variation of the problem, where we are not allowed to leave
letters in the printer at the end. First of all, are there actions that never make sense?
For example, what sequences of letters will ever appear in the type writer during an
optimal sequence of operations? Clearly we never wish to input a sequence that is

DRAFT

12.1. TRIES 161

not a prefix of a word we wish to type. For example, if we input abcdef and this is
not a prefix of any word, we must at some point erase the last letter f, without having
printed any words. But then we can erase the entire sequence of operations between
inputting the f and erasing the f, without changing what words we print.

On the other hand, every prefix of a word we wish to print must at some point appear
on the type writer. Otherwise, we would not be able to reach the word we wish to
print. Therefore, the partial words to ever appear on the type printer are exactly the
prefixes of the words we wish to print – strongly hinting at a trie-based solution.

If we build the trie of all words we wish to print, it contains as vertices exactly those
strings which will appear as partial words on the printer. Furthermore, the additions
and removals of letters form a sequence of vertices that are connected by edges in this
trie. We can move either from a prefix P to a prefix Pc, or from a prefix Pc to a prefix
P, which are exactly the edges of a trie. The goal is then to construct the shortest
possible tour starting at the root of the trie and passing through all the vertices of the
trie.

Since a trie is a tree, any such trail must pass through every edge of the trie at least
twice. If we only passed through an edge once, we can never get back to the root
since every edge disconnects the root from the endpoint of the edge further away
from the root. It is actually possible to construct a trail which passes through every
edge exactly twice (which is not particularly difficult if you attempt this task by
hand). As it happens, the depth-first search of a tree passes through an edge exactly
twice – once when first traversing the edge to an unvisited vertex, and once when
backtracking.

The problem is subtly different once we are allowed to leave some letters in the printer
at the end. Clearly, the only difference between an optimal sequence when letters
may remain and an optimal sequence when we must leave the printer empty is that
we are allowed to skip some trailing removal operations. If the last word we print is
S, the difference will be exactly |S| “-” operations. An optimal solution will therefore
print the longest word last, in order to “win” as many “-” operations as possible.
We would like this last word to be the longest word of all the ones we print if possible.
In fact, we can order our DFS such that this is possible. First of all, our DFS starts
from the root and the longest word is s1s2 . . . sn. When selecting which order the DFS
should visit the children of the root in, we can select the child s1 last. Thus, all words
starting with the letter s1 will be printed last. When visiting s1, we use the same trick
and visit the child s1s2 last of the children of s1, and so on. This guarantees S to be the
last word to be printed.

Note that the solution requires no additional data to be stored in the trie – the only
modification to our basic trie is the DFS.

DRAFT

162 CHAPTER 12. STRINGS

Algorithm 12.2: Typewriter

1 struct Trie {
2 ...
3

4 void dfs(int depth, const string& longest) {
5 trav(it, children)
6 if (it->first != longest[depth])
7 dfs2(depth, longest, it->first);
8 dfs2(depth, longest, longest[depth]);
9 }

10

11 void dfs2(int depth, const string& longest, char output) {
12 cout << output << endl;
13 if (isWord) cout << "P" << endl;
14 children[output]->dfs(depth + 1, longest);
15 if (longest[depth] != output) {
16 cout << "-" << endl;
17 }
18 }
19 };

Generally, the uses of tries are not this simple, where we only need to construct the
trie and fetch the answer through a simple traversal. We often need to augment tries
with additional information about the prefixes we insert. This is when tries start to
become really powerful. The next problem requires only a small augmentation of a
trie, to solve a problem which looks complex.

Rareville
In Rareville, everyone must have a distinct name. When a new-born baby is to
be given a name, its parents must first visit NAME, the Naming Authority under
the Ministry of Epithets, to have its name approved. The authority has a long
list of all names assigned to the citizens of Rareville. When deciding whether to
approve a name or not, a case officer uses the following procedure. They start at
the first name in the list, and read the first letter of it. If this letter matches the
first letter of the proposed name, they proceed to read the next letter in the word.
This is repeated for every letter of the name in the list. After reading a letter from
the word, the case officer can sometime determine that this could not possibly be
the same name as the proposed one. This happens if either

• the next letter in the proposed name did not match the name in the list

• there was no next letter in the proposed name

• there was no next letter in the name in the list

When this happen, the case officer starts over with the next name in the list, until

DRAFT

12.1. TRIES 163

exhausting all names in the list. For each letter the case officer reads (or attempts
to read) from a name in the list, one second pass.

Currently, there are N people in line waiting to apply for a name. Can you
determine how long time the decision process will take for each person?

Input
The first line contains integers 1 ≤ D ≤ 200 000 and 1 ≤ N ≤ 200 000, the size of
the dictionary and the number of people waiting in line. The nextD lines contains
one lowercase name each, the contents of the dictionary. The nextN lines contains
one lowercase name each, the names the people in line wish to apply with. The
total size of the lists is at most 106 letters.

Output
For each of the N names, output the time (in seconds) the case officer needs to
decide on the application.

The problem clearly relates to prefixes in some way. Given a dictionary wordA and an
application for a name B, the case officer needs to read letters from A corresponding
to the longest common prefix of A and B, plus 1. Hence, our solution will probably
be to consider all the prefixes of each proposed name, which is exactly what tries are
good at.

Instead of thinking about this process one name a time, we use a common trie
technique and look at the transpose of this problem, i.e. for every i, how many names
Ci have a longest common prefix of length at least i when handling the application
for a name S? This way, we have transformed the problem from being about D
individual processes to |S| smaller problems which treats the dictionary as unified
group of strings. Then, we will have to read C0 + C1 + · · ·+ C|S| letters.

Now, the solution should be clear. We augment the trie vertex for a particular prefix p
with the number of strings Pp in the list that start with this prefix. Initially, an empty
trie has Pp = 0 for every p. Whenever we insert a new wordW = w1w2 . . . in the trie,
we need to increment Pw1 , Pw1w2 , . . . , to keep all the Pp correct, since we have added a
new string which have those prefixes. Then, we have that Ci = Ps1s2...si , so that we
can compute all the numbers Pi by following the word S in the trie. The construction
of the trie is linear in the number of characters we insert, and responding to a query
is linear in the length of the proposed name.

Algorithm 12.3: Rareville

1 struct Trie {
2 map<char, Trie> children;
3 int P = 0;
4

5 void insert(const string& s, int pos) {

DRAFT

164 CHAPTER 12. STRINGS

6 P++;
7 if (pos != sz(s)) children[s[pos]].insert(s, pos + 1);
8 }
9

10 int query(const string& s, int pos) {
11 int ans = P;
12 if (pos != sz(s)) {
13 auto it = children.find(s[pos]);
14 if (it != children.end) ans += it->second.query(s, pos + 1);
15 }
16 return ans;
17 }
18 };

12.2 String Matching

A common problem on strings – both in problem solving and real life – is that of
searching. Not only do we need to check whether e.g. a set of strings contain some
particular string, but also if one string contain another one as a substring. This
operation is ubiquitous; operating systems allow us to search the contents of our files,
and our text editors, web browsers and email clients all support substring searching
in documents. It should come as no surprise that string matching is part of many
string problems.

String Matching
Find all occurrences of the pattern P as a substring in the stringW.

We can solve this problem naively in O(|W| · |P|). If we assume that an occurrence
of P starts at position i inW, we can compare the substringW[i...i+ |P|− 1] to P in
O(|P|) time by looping through both strings, one character at a time.

Algorithm 12.4: Naive String Matching

procedure STRINGMATCHING(pattern P, stringW)
answer← new vector
for outer: i from 0 to |W|− |P| do

for j from 0 to |P|− 1 do
if P[j]! =W[i+ j] then

start next iteration of outer
answer. append(i)

return answer

DRAFT

12.2. STRING MATCHING 165

Intuitively, we should be able to do better. With the naive matching, our problem
is basically that we can perform long stretches of partial matches for every position.
Searching for the string a

n
2 in the string an takes O(n2) time, since each of the n

2

positions where the pattern can appear requires us to look ahead for n
2

characters
to realize we made a match. On the other hand, if we manage to find a long partial
match of length l starting at i, we know what the next l letters of W are – they are
the l first letters of P. With some cleverness, we should be able to exploit this fact,
hopefully avoiding the need to scan them again when we attempt to find a match
starting at i+ 1.

For example, assume we have P = bananarama. Then, if we have performed a
partial match of banana at some position i inW but the next character is a mismatch
(i.e., it is not an r), we know that no match can begin at the next 5 characters. Since
we have matched banana at i, we have that W[i + 1...i + 5] = anana, which does
not contain a b.

As a more interesting example, take P = abbaabborre. This pattern has the property
that the partial match of abbaabb actually contains as a prefix of P itself as a suffix,
namely abb. This means that if at some position i get this partial match but the next
character is a mismatch, we can not immediately skip the next 6 characters. It is
possible that the entire string could have been abbaabbaabborre. Then, an actual
match (starting at the fifth character) overlaps our partial match. It seems that if we
find a partial match of length 7 (i.e. abbaabb), we can only skip the first 4 characters
of the partial match.

For every possible partial match of the pattern P, how many characters are we able
to skip if we fail a k-length partial match? If we could precompute such a table, we
should be able to perform matching in linear time, since we would only have to
investigate every character of W once. Assume the next possible match is l letters
forward. Then the new partial match must consist of the last k − l letters of the
partial match, i.e. P[l . . . k − 1]. But a partial match is just a prefix of P, so we must
have P[l . . . k− 1] = P[0 . . . l− 1]. In other word, for every given k, we must find the
longest suffix of P[0 . . . K− 1] that is also a prefix of P (besides P[0 . . . k− 1] itself, of
course).

We can compute these suffixes rather easily in O(n2). For each possible position for
the next possible match l, we perform a string matching to find all occurrences of
prefixes of P within P.

Algorithm 12.5: Longest Suffix Computation

procedure LONGESTSUFFIXES(pattern P)
T ← new int[|P|+ 1]
for l from 1 to |P|− 1 do

matchLen← 0

DRAFT

166 CHAPTER 12. STRINGS

while l+ matchLen ≤ |W| do
if P[l]! = P[matchLen] then

break
matchLen← matchLen + 1
T [l+ matchLen] = matchLen

return T

A string such as P = bananarama, where no partial match could possibly contain a
new potential match, this table would simply be:

P b a n a n a r a m a

T 0 0 0 0 0 0 0 0 0 0

When P = abbaabborre, the table instead becomes:

P a b b a a b b o r r e

T 0 0 0 1 1 2 3 0 0 0 0

With this precomputation, we can now perform matching in linear time. The matching
is similar to the naive matching, except we can now use this precomputed table to
determine whether there is a new possible match somewhere within the partial match.

Algorithm 12.6: String Matching using Longest Suffixes

procedure STRINGMATCHING(pattern P, textW)
matches← new vector
T ← LongestSuffixes(P)
pos← 0,match← 0

while pos + match < |W| do
if match < |P| andW[pos + match] = P[match] then

match← match + 1
else if match = 0 then

pos← pos + 1
else

pos← pos + match − T [match]
match← T [match]

if match = |P| then
matches. append(match)

return matches

In each iteration of the loop, we see that either match is increased by one, or match is
decreased by match − T [match] and pos is increased by the same amount. Since match

DRAFT

12.2. STRING MATCHING 167

is bounded by P and pos is bounded by |W|, this can happen at most |W|+ |P| times.
Each iteration takes constant time, meaning our matching is Θ(|W|+ |P|) time.

While this is certainly better than the naive string matching, it is not particularly
helpful when |P| = Θ(|W|) since we need an O(|P|) preprocessing. The solution lies
in how we computed the table of suffix matches, or rather, the fact that it is entirely
based on string matching itself. We just learned how to use this table to perform
string matching in linear time. Maybe we can use this table to extend itself and get the
precomputation down to O(|P|)? After all, we are looking for occurrences of prefixes
of P in P itself, which is exactly what string matching does. If we modify the string
matching algorithm for this purpose, we get what we need:

Algorithm 12.7: Improved Longest Suffix Computation

procedure LONGESTSUFFIXES(pattern P)
T ← new int[|P|+ 1]
pos← 1,match← 0

while pos + match < |P| do
if P[pos + match] = P[match] then
T [pos + match]← match + 1
match← match + 1

else if match = 0 then
pos← pos + 1

else
pos← pos + match − T [match]
match← T [match]

if match = |P| then
matches. append(match)

return T

Using the same analysis as for the improved string matching, this precomputation is
instead Θ(|P|). The resulting string matching then takes Θ(|P|+ |W|).

This string matching algorithm is called the Knuth-Morris-Pratt (KMP) algorithm.

Competitive Tip

Most programming languages have functions to find occurrences of a certain
string in another. However, they mostly use the naive O(|W||P|) procedure. Be
aware of this and code your own string matching if you need it to perform in
linear time.

DRAFT

168 CHAPTER 12. STRINGS

12.3 Hashing

Hashing is a concept most familiar from the hash table data structure. The idea
behind the structure is to compress a set S of elements from a large set to a smaller
set, in order to quickly determine memberships of S by having a direct indexing
of the smaller set into an array (which has Θ(1) look-ups). In this section, we are
going to look at hashing in a different light, as a way of speeding up comparisons
of data. When comparing two pieces of data a and b of size n for equality, we need
to use Θ(n) time in the worst case since every bit of data must be compared. This is
fine if we perform only a single comparison. If we instead wish to compare many
pieces of data, this becomes an unnecessary bottleneck. We can use the same kind
of hashing as with hash tables, by defining a “random” function H(x) : S→ Zn such
that x 6= y implies H(x) 6= H(y) with high probability. Such a function allows us
to perform comparisons in Θ(1) time (with linear preprocessing), by reducing the
comparison of arbitrary data to small integers (we often choose n to be on the order
of 232 or 264 to get constant-time comparisons). The trade-off lies in correctness, which
is compromised in the unfortunate event that we perform a comparison H(x) = H(y)
even though x 6= y.

FriendBook
Swedish Olympiad in Informatics 2011, Finals

FriendBook is a web site where you can chat with your friends. For a long time,
they have used a simple “friend system” where each user has a list of which other
users are their “friends”. Recently, a somewhat controversial feature was added,
namely a list of your “enemies”. While the friend relation will always be mutual
(two users must confirm that they wish to be friends), enmity is sometimes one-
way – a person A can have an enemy B, who – by plain animosity – refuse to
accept A as an enemy.

Being a poet, you have lately been pondering the following quote.

A friend is someone who dislike the same people as yourself.

Given a FriendBook network, you wonder to what extent this quote applies. More
specifically, for how many pairs of users is it the case that they are either friends
with identical enemy lists, or are not friends and does not have identical enemy
lists?

Input
The first line contains an integer 2 ≤ N ≤ 5000, the number of friends on Friend-
Book. N lines follow, each containing n characters. The c’th character on the r’th
line Src species what relation person r has to person c. This character is either

V – in case they are friends.

DRAFT

12.3. HASHING 169

F – if r thinks of c as an enemy.

. – r has a neutral attitude towards c.

Sii is always ., and Sij is V if and only if Sji is V.

Output
Output a single integer, the number of pairs of persons for which the quote holds.

This problem lends itself very well to hashing. It is clear that the problem is about
comparisons – indeed, we are to count the number of pairs of persons who are either
friends and have equal enemy lists or are not friends and have unequal enemy lists.
The first step is to extract the enemy lists Ei for each person i. This will be a N-length
string, where the j’th character is F if person j is an enemy of person i, and . otherwise.
Basically, we remove all the friendships from the input matrix. Performing naive
comparisons on these strings would only give us a O(N3) time bound, since we need
to perform N2 comparisons of enemy lists of length N bounded only by O(N) in the
worst case. Here, hashing comes to our aid. By instead computing hi = H(Ei) for
every i, comparisons of enemy lists instead become comparisons of the integers hi –
a Θ(1) operation – thereby reducing the complexity to Θ(N2).

Alternative solutions exist. For example, we could instead have sorted all the enemy
lists, after which we can perform a partitioning of the lists by equality in Θ(N2) time.
However, this takes O(N2 logN) time with naive sorting (or O(N2) if radix sort is
used, but it is more complex) and is definitely more complicated to code than the
hashing approach. Another option is to insert all the strings into a trie, simplifying
this partitioning and avoiding the sorting altogether. This is better, but still more
complex. While it would have the same complexity, the constant factor would be
significantly worse compared to the hashing approach.

This is a common theme among string problems. While most string problems can be
solved without hashes, solutions using them tend to be simpler.

The true power of string hashing is not this basic preprocessing step where we can
only compare two strings. Another hashing technique allows us to compare arbitrary
substring of a string in constant time.

Definition 12.1 — Polynomial Hash
Let S = s1s2 . . . sn be a string. The polynomial hash H(S) of S is the number

H(S) = (s1p
n−1 + s2p

n−2 + · · ·+ sn−1p+ sn)modM

As usual when dealing with strings in arithmetic expressions, we take si to be some
numeric representation of the character, like its ASCII encoding. In C++, char is
actually a numeric type and is thus usable as a number when using polynomial
hashes.

DRAFT

170 CHAPTER 12. STRINGS

Polynomial hashes have many useful properties.

Theorem 12.1 — Properties of the Polynomial Hash
If S = s1 . . . sn is a string and c is a single character, we have that

1. H(S||c) = (pH(S) +H(c))modM

2. H(c||S) = (H(S) +H(c)pn)modM

3. H(s2 . . . sn) = (H(S) −H(s1)p
n−1)modM

4. H(s1 . . . sn−1) = (H(S) −H(sn))p
−1 modM

5. H(slsl+1 . . . sr−2sr−1) = (H(s1 . . . sR−1) −H(s1 − SL−1)p
R−L)modM

Exercise 12.1

Prove the properties of Theorem 12.1

Exercise 12.2

How can we compute the hash of S||T in O(1) given the hashes of the strings S and
T?

Properties 1-4 alone allow us to append and remove characters from the beginning
and end of a hash in constant time. We refer to this property as polynomial hashes
being rolling. This property allows us to String Matching problem with a single
pattern (Section 12.2) with the same complexity as KMP, by computing the hash of
the pattern P and then rolling a |P|-length hash through the string we are searching in.
This algorithm is called the Rabin-Karp algorithm.

Property 5 allows us to compute the hash of any substring of a string in constant
time, provided we have computed the hashes H(S1), H(s1s2), . . . , H(s1s2 . . . sn) first.
Naively this computation would be Θ(n2), but property 1 allows us to compute them
recursively, resulting in Θ(n) precomputation.

Radio Transmission
Baltic Olympiad in Informatics 2009

Given is a string S. Find the shortest string L, such that S is a substring of the
infinite string T = . . . LLLLL

Input
The first and only line of the input contains the string S, with 1 ≤ |S| ≤ 106.

DRAFT

12.3. HASHING 171

Output
Output the string L. If there are multiple strings L of the shortest length, you can
output any of them.

Assume that L has a particular length l. Then, since T is periodic with length l, Smust
be too (since it is a substring of T). Conversely, if S is periodic with some length l, can
can choose as L = s1s2 . . . sl. Thus, we are actually seeking the smallest l such that
S is periodic with length l. The constraints this puts on S are simple. We must have
that

s1 = sl+1 = s2l+1 = . . .

s2 = sl+2 = s2l+2 = . . .

. . .

sl = s2l = s3l = . . .

Using this insight as-is gives us aO(|S|2) algorithm, where we first fix l and then verify
if those constraints hold. The idea is sound, but a bit slow. Again, the problematic
step is that we need to perform many slow, linear-time comparisons. If we look at
what comparisons we actually perform, we are actually comparing two substrings of
Swith each other:

s1s2 . . . sn−l+1 = sl+1sl+2 . . . sn

Thus we are actually performing a linear number of substring comparisons, which we
now know are actually constant-time operations after linear preprocessing. Hashes
thus gave us a Θ(N) algorithm.

Algorithm 12.8: Radio Transmission

1 H lh = 0, Rh = 0;
2 int l = 0;
3 for (int i = 1; i <= n; ++i) {
4 Lh = (Lh * p + S[i]) % M;
5 Rh = (S[n - i + 1] * p^(i - 1) + Rh) % M;
6 if (Lh == Rh) {
7 l = i;
8 }
9 }

10 cout << n - l << endl;

Polynomial hashes are also a powerful tool to compare something against a large
number of strings using hash sets. For example, we could actually use hashing as
a replacement for Aho-Corasick. However, we would have to perform one pass of
rolling hash for each different pattern length. If the string we are searching in isN and
the sum of pattern lengths are P, this is not O(N+ P) however. If we have k different
pattern lengths, their sum must be at least 1+2+ · · ·+k = Θ(k2), so k = O(

√
P).

DRAFT

172 CHAPTER 12. STRINGS

Substring Range Matching
Petrozavodsk Winter Training Camp 2015

Given N strings s1, s2, . . . , sN and a list of queries of the form L, R, S, answer for
each such query the number of strings in sL, sL+1, . . . , sR which contain S as a
substring.

Input
The first line contains 1 ≤ N ≤ 50 000 and the number of queries 0 ≤ Q ≤ 100 000.
The next N lines contains the strings s1, s2, . . . , sN, one per line. The next Q lines
contains one query each. A query is given by the integers 1 ≤ L ≤ R ≤ N and a
string S.

The sum of |S| over all queries is at most 20 000. The lengths |s1|+ |s2|+ · · ·+ |sN|

is at most 50 000.

Output
For each query L, R, S, output a line with the answer to the query.

Let us focus on how to solve the problem where every query has the same string S.
In this case, we would first find which of the strings si that S is contained in using
polynomial hashing. To respond to a query, could for example keep a set of all the i
where si was an occurrence together with how many smaller si contained the string
(i.e. some kind of partial sum). This would allow us to respond to a query where
L = 1 using a upper bound in our set. Solving queries of the form [1, R] is equivalent
to general intervals however, since the interval [L, R] is simply the interval [1, R] with
the interval [1, L− 1] removed. This procedure would take Θ(

∑
|si|) time to find the

occurrences of S, and O(Q logN) time to answer the queries.

When extending this to the general case where our queries may contain different
S, we do the same thing but instead find the occurrences of all the patterns of the
same length p simultaneously. This can be done by keeping the hashes of those
patterns in a map, to allow for fast look-up of our rolling hash. Since there can
only be at most

√
20 000 ≈ 140 different pattern lengths, we must perform about

140 · 50 000 ≈ 7 000 000 set look-ups, which is feasible.

Algorithm 12.9: Substring Range Matching

1 int countInterval(int upTo, const set<pii>& s) {
2 auto it = s.lower_bound(pii(upTo + 1, 0));
3 if (it == s.begin()) return 0;
4 return (--it)->second;
5 }
6

7 int main() {
8 int N, Q;

DRAFT

12.3. HASHING 173

9 cin >> N >> Q;
10 vector<string> s(N);
11 rep(i,0,N) cin >> s[i];
12

13 map<int, set<string>> patterns;
14

15 vector<tuple<int, int, string>> queries;
16 rep(i,0,Q) {
17 int L, R;
18 string S;
19 cin >> L >> R >> S;
20 queries.emplace_back(L, R, S);
21 patterns[sz(s)].insert(S);
22 }
23

24 map<H, set<pii>> hits;
25 trav(pat, patterns) {
26 rep(i,0,N) {
27 vector<H> hashes = rollHash(s[i], pat.first);
28 trav(h, hashes)
29 if (pat.second.count(h))
30 hits[h].emplace(i, sz(hits[h]) + 1);
31 }
32 }
33

34 trav(query, queries) {
35 H h = polyHash(get<2>(query));
36 cout << countInterval(R, hits[h]) - countInterval(L-1, hits[h]) << endl;
37 }
38 }

Exercise 12.3

Hashing can be used to determine which of two substrings are the lexicographically
smallest one. How? Extend this result to a simple Θ(n logS+ S) construction of a
suffix array, where n is the number of strings and S is the length of the string.

12.3.1 The Parameters of Polynomial Hashes

Until now, we have glossed over the choice ofM and p in our polynomial hashing.
These choices happen to be important. First of all, we wantM and p to be relatively
prime. This ensures p has an inverse moduloM, which we use when erasing charac-
ters from the end of a hash. Additionally, pi modM have a smaller period when p
andM share a factor.

We wishM to be sufficiently large, to avoid hash collisions. If we compare the hashes
of c strings, we want M = Ω(

√
c) to get a reasonable chance at avoiding collisions.

DRAFT

174 CHAPTER 12. STRINGS

However, this depends on how we use hashing. pmust be somewhat large as well. If
p is smaller than the alphabet, we get trivial collisions such as H(10) = H(p).

Whenever we perform rolling hashes, we must have (M− 1)p < 264 if we use 64-bit
unsigned integers to implement hashes. Otherwise, the addition of a character would
overflow. If we perform substring hashes, we instead need that (M− 1)2 < 264, since
we perform multiplication of a hash and an arbitrary power of p. When using 32-bit
or 128-bit hashes, these limits change correspondingly. Note that the choice of hash
size depends on how large anMwe can choose, which affect collision rates.

One might be tempted to chooseM = 264 and use the overflow of 64-bit integers as
a cheap way of using hashes modulo 264. This is a bad idea, since it is possible to
construct strings which are highly prone to collisions.

Definition 12.2 — Thue-Morse Sequence
Let the binary sequence τi be defined as

τi =

{
0 if i = 0
τi−1τi−1 if i > 0

The Thue-Morse sequence is the infinite sequence τi as i→∞.

This sequence is well-defined since τi is a prefix of τi−1, meaning each recursive step
only append a string to the sequence. It starts 0, 01, 0110, 01101001, 0110100110010110.

Exercise 12.4

Prove that τ2i is a palindrome.

Theorem 12.2 For a polynomial hash Hwith an odd p, 2
n(n+1)
2 | H(τn) −H(τn).

Proof. We will prove this by induction on n. For n = 0, we have 1| | H(τn) −H(τn)
which is vacuously true.

In our inductive step, we have that

H(τn) = H(τn−1||τn−1) = p
2n−1 ·H(τn−1) +H(τn−1)

and
H(τn) = H(τn−1||τn−1) = p

2n−1 ·H(τn−1) +H(τn−1)

DRAFT

12.3. HASHING 175

Then,

H(τn) −H(τn) = p
2n−1(H(τn−1) −H(τn−1)) + (H(τn−1) −H(τn−1))

= (p2
n−1

− 1)(H(τn−1) −H(τn−1))

Note that p2n−1 − 1 = (p2
n−2

− 1)(p2
n−2

+ 1) If p is odd, the second factor is divisible
by 2. By expanding p2n−2 , we can prove that p2n−1 is divisible by 2n.

Using our induction assumption, we have that

2n · 2 (n−1)n
2 | (p2

n−1

− 1)(H(τn−1) −H(τn−1))

But 2n · 2 (n−1)n
2 = 2

n(n+1)
2 , proving our statement.

This means that we can construct a string of length linear in the bit size of M that
causes hash collisions if we choose M as a power of 2, explaining why it is a bad
choice.

12.3.2 2D Polynomial Hashing

Polynomial hashing can also be applied to pattern matching in grids, by first perform-
ing polynomial hashing on all rows of the grid (thus reducing the grid to a sequence)
and then on the columns.

Surveillance
Swedish Olympiad in Informatics 2016, IOI Qualifiers

Given a matrix of integers A = (ar,c) find all occurrences of another matrix
P = (pr,c) in A which may differ by a constant C. An occurrence (i, j) means that
ai+r,j+c = pr,c + Cwhere C is a constant.

If we assume that C = 0, the problem is reduced to simple 2D pattern matching,
which is easily solved by hashing. The requirement that such a pattern should be
invariant to addition by a constant is a bit more complicated.

How would we solve this problem in one dimension, i.e. when r = 1? In this case,
we have that a match on column jwould imply

a1,j − p1,1 = c

. . .

a1,j+n−1 − p1,n = c

DRAFT

176 CHAPTER 12. STRINGS

Since c is arbitrary, this means the only condition is that

a1,j − p1,1 = · · · = a1,j+n−1 − p1,n = c

Rearranging this gives us that

a1,j − a1,j+1 = p1,1 − p1,2

a1,j+1 − a1,j+2 = p1,2 − p1,3

. . .

By computing these two sequences of the adjacent differences of elements a1,i and r1,j,
we have reduced the problem to substring matching and can apply hashing. In 2D,
we can do something similar. For a match (i, j), it is sufficient that this property holds
for every line and every column in the match. We can then find matches using two
2D hashes.

Exercise 12.5 — Kattis Exercise

Chasing Subs – chasingsubs

12.4 Chapter Notes

rabin karp paper

KMP

hashing

DRAFT
Chapter 13

Combinatorics

Combinatorics deals with various discrete structures, such as graphs and permuta-
tions. In this chapter, we will mainly study the branch of combinatorics known as
enumerative combinatorics – the art of counting. We will count the number of ways to
choose K different candies from N different candies, the number of distinct seating
arrangements around a circular table, the sum of sizes of all subsets of a set and many
more objects. Many combinatorial counting problems are based on a few standard
techniques which we will learn in this chapter.

13.1 The Addition and Multiplication Principles

The addition principle states that, given a finite collection of disjoint sets S1, S2, . . . , Sn,
we can compute the size of the union of all sets by simply adding up the sizes of our
sets, i.e.

|S1 ∪ S2 ∪ · · · ∪ Sn| = |S1|+ |S2|+ · · ·+ |Sn|

Example 13.1 Assume we have 5 different types of chocolate bars (the set C), 3
different types of bubble gum (the set G), and 4 different types of lollipops (the set
L). These form three disjoint sets, meaning we can compute the total number of
snacks by summing up the number of snacks of the different types. Thus, we have
|C|+ |G|+ |L| = 5+ 3+ 4 = 12 different snacks.

Later on, we will see a generalization of the addition principle that handles cases
where our sets are not disjoint.

The multiplication principle, on the other hand, states that the size of the Cartesian
product S1 × S2 × · · · × Sn equals the product of the individual sizes of these sets,

177

DRAFT

178 CHAPTER 13. COMBINATORICS

i.e.
|S1 × S2 × · · · × Sn| = |S1| · |S2| · · · |Sn|

Example 13.2 Assume that we have the same sets of candies C, G and L as in
Example 13.1. We want to compose an entire dinner out of snacks, by choosing
one chocolate bar, one bubble gum and a lollipop. The multiplication principles
tells us that, modeling a snack dinner as a tuple (c, g, l) ∈ C×G× L, we can form
our dinner in 5 · 3 · 4 = 60ways.

The addition principle is often useful when we solve counting problems by case
analysis.

Example 13.3 How many four letter words consisting of the letters a, b, c and d
contain exactly two letters a?

There are six possible ways to place the two letters a:

aa__
a_a_
a__a
aa
_a_a
__aa

For each of these ways, there are four ways of choosing the other two letters (bb,
bc, cb, cc). Thus, there are 4+ 4+ 4+ 4+ 4+ 4 = 6 · 4 = 24 such words.

Let us now apply these basic principle sto solve the following problem:

Kitchen Combinatorics
Northwestern Europe Regional Contest 2015 – Per Austrin

The world-renowned Swedish Chef is planning a gourmet three-course dinner
for some muppets: a starter course, a main course, and a dessert. His famous
Swedish cook-book offers a wide variety of choices for each of these three courses,
though some of them do not go well together (for instance, you of course cannot
serve chocolate moose and sooted shreemp at the same dinner).

Each potential dish has a list of ingredients. Each ingredient is in turn available
from a few different brands. Each brand is of course unique in its own special way,
so using a particular brand of an ingredient will always result in a completely
different dinner experience than using another brand of the same ingredient.

DRAFT

13.1. THE ADDITION AND MULTIPLICATION PRINCIPLES 179

Some common ingredients such as pølårber may appear in two of the three chosen
dishes, or in all three of them. When an ingredient is used in more than one of
the three selected dishes, Swedish Chef will use the same brand of the ingredient
in all of them.

While waiting for the meecaroo, Swedish Chef starts wondering: how many
different dinner experiences are there that he could make, by different choices of
dishes and brands for the ingredients?

Input
The input consists of:

• five integers r, s, m, d, n, where 1 ≤ r ≤ 1 000 is the number of different
ingredients that exist, 1 ≤ s,m, d ≤ 25 are the number of available starter
dishes, main dishes, and desserts, respectively, and 0 ≤ n ≤ 2 000 is the
number of pairs of dishes that do not go well together.

• r integers b1, . . . , br, where 1 ≤ bi ≤ 100 is the number of different brands
of ingredient i.

• s+m+ d dishes – the s starter dishes, then themmain dishes, then the d
desserts. Each dish starts with an integer 1 ≤ k ≤ 20 denoting the number
of ingredients of the dish, and is followed by k distinct integers i1, . . . , ik,
where for each 1 ≤ j ≤ k, 1 ≤ ij ≤ r is an ingredient.

• n pairs of incompatible dishes.

Output
If the number of different dinner experiences Swedish Chef can make is at most
1018, then output that number. Otherwise, output “too many”.

The solution is a similar addition-multiplication principle combo as used in Exam-
ple 13.3. First off, we can simplify the problem considerably by brute forcing over the
coarsest component of a dinner experience, namely the courses included. Since there
are at most 25 dishes of every type, we need to check up to 253 = 15 625 choices of
dishes. By the addition principle, we can compute the number of dinner experiences
for each such three-course dinner, and then sum them up to get the answer. Some
pairs of dishes do not go well together. At this stage in the process we exclude any
triple of dishes that include such a pair. We can perform this check in Θ(1) time if we
save the incompatible dishes in 2D boolean vectors, so that e.g. badStarterMain[i][j]
determines if starter i is incompatible with main dish j.

For a given dinner course consisting of starter a, main dish b and dessert c, only the
set of ingredients of three dishes matters since the chef will use the same brand for
an ingredient even if it is part of two dishes. The next step is thus to compute this
set by taking the union of ingredients for the three included dishes. This step takes
Θ(ka+kb+kc). Once this set is computed, the only remaining task is to choose a brand

DRAFT

180 CHAPTER 13. COMBINATORICS

for each ingredient. Assigning brands is an ordinary application of the multiplication
principle, where we multiply the number of brands available for each ingredient
together.

13.2 Permutations

A permutation of a set S is an ordering of all the elements in the set. For example, the
set {1, 2, 3} has 6 permutations:

123 132
213 231
312 321

Our first “real” combinatorial problem will be to count the number of permutations of
an n-element set S. When counting permutations, we use the multiplication principle.
We will show a procedure that can be used to construct permutations one element
at a time. Assume that the permutation is the sequence 〈a1, a2, . . . , an〉. The first
element of the permutation, a1, can be assigned any of the n elements of S. Once
this assignment has been made, we have n − 1 elements we can choose to be a2
(any element of S except a1). In general, when we are to select the (i + 1)’th value
ai+1 of the permutation, i elements have already been included in the permutation,
leaving n− i options for ai+1. Using this argument for all n elements of the sequence,
we can construct a permutation in n · (n − 1) · · · 2 · 1 ways (by the multiplication
principle).

This number is so useful that it has its own name and notation.

Definition 13.1 — Factorial
The factorial of n, where n is a non-negative integer, denoted n!, is defined as the
product of the first n positive integers, i.e.

n! = 1 · 2 · · ·n =

n∏
i=1

i

For n = 0, we use the convention that the empty product is 1.

This sequence of numbers thus begin 1, 1, 2, 6, 24, 120, 720, 40 320, 362 880, 3 628 800,
39 916 800 for n = 0, 1, 2, . . . , 11. It is good to know the magnitudes of these numbers,
since they are frequent in time complexities when doing brute force over permutations.
Asypmtotically, the grow as nΘ(n). More precisely, the well-used Stirling’s formula1

1Named after James Stirling (who have other important combinatorial objects named after him too),
but stated already by his contemporary Abraham de Moivre.

DRAFT

13.2. PERMUTATIONS 181

gives the approximation

n! =
√
2πn

(n
e

)n(
1+O

(
1

n

))

Exercise 13.1

In how many ways can 8 persons be seated around a round table, if we consider
cyclic rotations of a seating to be different? What if we consider cyclic rotations to
be equivalent?

Exercise 13.2 — Kattis Problems

n’th permutation – nthpermutation

Name That Permutation – namethatpermutation

13.2.1 Permutations as Bijections

The word permutation has roots in Latin, meaning “to change completely”. We are now
going look at permutations in a very different light, which gives some justification to
the etymology of the word.

Given a set such as [5], we can fix some ordering of its elements such as 〈1, 2, 3, 4, 5〉.
A permutation π = 〈1, 3, 4, 5, 2〉 of this set can then be seen as a movement of these
elements. Of course, this same movement can be applied to any other 5-element
set with a fixed permutation, such as 〈a, b, c, d, e〉 being transformed to 〈a, c, d, e, b〉.
This suggests that we can consider permutation as a “rule” which describes how to
move – permute – the elements.

Such a movement rule can also be described as a function π : [n] → [n], where
π(i) describes what element should be placed at position i. Thus, the permutation
〈1, 3, 4, 5, 2〉would have π(1) = 1, π(2) = 3, π(3) = 4, π(4) = 5, π(5) = 2.

i 1 2 3 4 5↓ ↓ ↓ ↓ ↓
π(i) 1 3 4 5 2

Since each element is mapped to a different element, the function induced by a
permutation is actually a bijection. By interpreting permutations as function, all the
theory from functions apply to permutations too.

We call 〈1, 2, 3, 4, . . . , n〉 the identity permutation, since the function given by the iden-
tity permutation is actually the identity function. As a function, we can also consider

DRAFT

182 CHAPTER 13. COMBINATORICS

the composition of two permutations. Given two permutations, α and β, their compo-
sition αβ is also a permutation, given by αβ(k) = α(β(k)). If we let σ = 〈5, 4, 3, 2, 1〉
the composition with π = 〈1, 3, 4, 5, 2〉 from above would then be

i 1 2 3 4 5↓ ↓ ↓ ↓ ↓
π(i) 1 3 4 5 2↓ ↓ ↓ ↓ ↓
σπ(i) 5 3 2 1 4

This is called multiplying permutations, i.e. σπ is the product of σ and π. If we
multiply a permutation π by itself n times, we call the resulting product πn.

An important property regarding the multiplication of permutations follows from
their functional properties, namely their associativity. We have that the permutation
(αβ)γ = α(βγ), so we will take the liberty of dropping the parentheses and writing
αβγ.

Exercise 13.3 — Kattis Problems

Permutation Product – permutationproduct

Permutations also have inverses, which are just the inverses of their functions. The
permutation π = 〈1, 3, 4, 5, 2〉 which we looked at in the beginning thus have the
inverse given by

π−1(1) = 1 π−1(3) = 2 π−1(4) = 3 π−1(5) = 4 π−1(2) = 5

written in permutation notation as 〈1, 5, 2, 3, 4〉. Since this is the functional inverse,
we expect π−1π = id.

i 1 2 3 4 5↓ ↓ ↓ ↓ ↓
π(i) 1 3 4 5 2↓ ↓ ↓ ↓ ↓
π−1π(i) 1 2 3 4 5

Exercise 13.4 — Kattis Problems

Permutation Inverse – permutationinverse

A related concept is that of the cycle decomposition of a permutation. If we start
with an element i and repeatedly apply a permutation on this element (i.e. take
i, π(i), π(π(i)), . . .) we will at some point find that πk(i) = i, at which point we will
start repeating ourselves.

DRAFT

13.2. PERMUTATIONS 183

i 1 2 3 4 5↓ ↓ ↓ ↓ ↓
π(i) 2 1 4 5 3↓ ↓ ↓ ↓ ↓
π2(i) 1 2 5 3 4↓ ↓ ↓ ↓ ↓
π3(i) 2 1 3 4 5↓ ↓ ↓ ↓ ↓
π4(i) 1 2 4 5 3↓ ↓ ↓ ↓ ↓
π5(i) 2 1 5 3 4↓ ↓ ↓ ↓ ↓
π6(i) 1 2 3 4 5

We call the k distinct numbers of this sequence the cycle of i. For π, we have two
cycles: (1, 2) and (3, 4, 5). Note how π(1) = 2 and π(2) = 1 for the first cycle, and
π(3) = 4, π(4) = 5, π(5) = 3. It gives us an alternative way of writing it, namely as
the concatenation of its cycles: (1, 2)(3, 4, 5).

To compute the cycle decomposition of a permutation π, we repeatedly pick any
element of the permutation which is currently not a part of a cycle, and compute the
cycle it is in using the method described above. Since we will consider every element
exactly once, this procedure is Θ(n) for n-element permutations.

Exercise 13.5 — Kattis Problems

Cycle Decomposition – cycledecomposition

Given a permutation π, we define its order, denoted ordπ, as the size of the set
{π, π2, π3, . . . }. For all permutations except for the identity permutation, this is the
smallest integer k > 0 such that πk is the identity permutation. In our example, we
have that ordπ = 6, since π6 was the first power of π that was equal to the identity
permutation. How can we quickly compute the order of π?

The maximum possible order of a permutation happens to grow rather quickly (it
is e(1+o(1))

√
n logn in the number of elements n). Thus, trying to compute the order by

computing πk for every k until πk is the identity permutation is too slow. Instead, we
can use the cycle decomposition. If a permutation has a cycle (c1, c2, . . . cl), we know
that

πl(c1) = c1, π
l(c2) = c2, . . . , π

l(cl) = cl

by the definition of the cycle composition. Additionally, this means that (πl)k(c1) =
(πlk)(c1) = c1. Hence, any power of π that is a multiple of l will act as the identity
permutation on this particular cycle.

This fact gives us an upper bound on the order of π. If its cycle decomposition has

DRAFT

184 CHAPTER 13. COMBINATORICS

cycles of length l1, l2, . . . , lm, the smallest positive number that is the multiple of
every li is lcm(l1, l2, . . . , lm). The permutation π = 〈2, 1, 4, 5, 3〉 had two cycles, one of
length 2 and 3. Its order was lcm(2, 3) = 2 · 3 = 6. This is also a lower bound on the
order, a fact that uses the following fact which is left as an exercise:

Exercise 13.6

Prove that if π has a cycle of length l, we must have l | ordπ.

Exercise 13.7 — Kattis Problems

Order of a Permutation – permutationorder

Dance Reconstruction
Nordic Collegiate Programming Contest 2013 – Lukáš Poláček

Marek loves dancing, got really excited when he heard about the coming wedding
of his best friend Miroslav. For a whole month he worked on a special dance for
the wedding. The dance was performed by N people and there were N marks on
the floor. There was an arrow from each mark to another mark and every mark
had exactly one incoming arrow. The arrow could be also pointing back to the
same mark.

At the wedding, every person first picked a mark on the floor and no 2 persons
picked the same one. Every 10 seconds, there was a loud signal when all dancers
had to move along the arrow on the floor to another mark. If an arrow was
pointing back to the same mark, the person at the mark just stayed there and
maybe did some improvised dance moves on the spot.

Another wedding is now coming up a year later, and Marek would like to do a
similar dance. He found two photos from exactly when the dance started and
when it ended. Marek also remembers that the signal was triggered K times
during the time the song was played, so people moved K times along the arrows.

Given the two photos, can you help Marek reconstruct the arrows on the floor?
On the two photos it can be seen for every person to which position he or she
moved. Marek numbered the people in the first photo from 1 toN and then wrote
the number of the person whose place they took in the second photo.

Marek’s time is running out, so he is interested in any placement of arrows that
could produce the two photos.

Input
Two integers 2 ≤ N ≤ 10 000 and 1 ≤ K ≤ 109. Then, N integers 1 ≤ a1, . . . , aN ≤
N, denoting that dancer number i ended up at the place of dancer number ai.

DRAFT

13.2. PERMUTATIONS 185

Every number between 1 and N appears exactly once in the sequence ai.

Output
If it is impossible to find a placement of arrows such that the dance performed
K times would produce the two photos, print “Impossible”. Otherwise print N
numbers on a line, the i’th number denoting to which person the arrow leads
from person number i.

The problem can be rephrased in terms of permutations. First of all, the dance
corresponds so some permutation π of the dancers, given by where the arrows pointed.
This is the permutation we seek in the problem. We are given the permutation a, so
we seek a permutation π such that πK = a.

When given permutation problems of this kind, we should probably attack it using
cycle decompositions in some way. Since the cycles of π are all independent of each
other under multiplication, it is a good guess that the decomposition can simplify the
problem. The important question is then how a cycle of π is affected when taking
powers. For example, a cycle of 10 elements in πwould decompose into two cycles of
length 5 in π2, and five cycles of length 2 in π5. The general case involves the divisors
of l and K:

Exercise 13.8

Prove that a cycle of length l in a permutation π decomposes into gcd(l, K) cycles
of length l

gcd(l,K) in πK.

This suggests our first simplification of the problem: to consider all cycles of πK

partitioned by their lengths. By Exercise 13.8, cycles of different lengths are completely
unrelated in the cycle decomposition of πK.

The result also gives us a way to “reverse” the decomposition that happens to the
cycles of π. Given l

m
cycles of lengthm in πK, we can combine them into a l-cycle in

π in the case where m · gcd(l, K) = l. By looping over every possible cycle length l
(from 1 to N), we can then find all possible ways to combine cycles of πK into larger
cycles of π. This step takes Θ(N log(N+ K)) due to the GCD computation.

Given all the ways to combine cycles, a knapsack problem remains for each cycle
length of πK. If we have a cycles of length l in πK, we want to partition them into sets
of certain sizes (given by by previous computation). This step takes Θ(a · c) ways, if
there are cways to combine a-length cycles.

Once it has been decided what cycles are to be combined, only the act of computing a
combination of them remains. This is not difficult on a conceptual level, but is a good
practice to do on your own (the solution to Exercise 13.8 basically outlines the reverse
procedure).

DRAFT

186 CHAPTER 13. COMBINATORICS

13.3 Ordered Subsets

A variation of the permutation counting problem is to count the number of ordered
sequences containing exactly k distinct elements, from a set of n. We can compute
this by first consider the permutations of the entire set of n elements, and then group
together those whose k first elements are the same. Taking the set {a, b, c, d} as an
example, it has the permutations:

abcd bacd cabd dabc
abdc badc cadb dacb

acbd bcad cbad dbac
acdb bcda cbda dbca

adbc bdac cdab dcab
adcb bdca cdba dcba

Once we have chosen the first k elements of a permutation, there are (n− k)! ways to
order the remaining n−k elements. Thus, we must have divided our n! permutations
into one group for each ordered k-length sequence, with each group containing
(n− k)! elements. To get the correct total, this means there must be n!

(n−k)!
such groups

– and k-length sequences.

We call these objects ordered k-subsets of an n-element set, and denote the number of
such ordered sets by

P(n, k) =
n!

(n− k)!

Note that this number can also be written as n · (n− 1) · · · (n− k+ 1), which hints at
an alternative way of computing these numbers. We can perform the ordering and
choosing of elements at the same time. The first element of our sequence can be any
of the n elements of the set. The next element any but the first, leaving us with n− 1
choices, and so on. The difference to the permutation is that we stop after choosing
the k’th element, which we can do in (n− k+ 1) ways.

13.4 Binomial Coefficients

Finally, we are going to do away with the “ordered” part of the ordered k-subsets,
and count the number of subsets of size k of an n-element size. This number is called
the binomial coefficient, and is probably the most important combinatorial number
there is.

DRAFT

13.4. BINOMIAL COEFFICIENTS 187

To compute the number of k-subsets of a set of size n, we start with all the P(n, k)
ordered subsets. Any particular unordered k-subset can be ordered in exactly k!
different ways. Hence, there must be P(n,k)

k!
unordered subsets, by the same grouping

argument we used when determining P(n, k) itself.

For example, consider again the ordered 2-subsets of the set {a, b, c, d}, of which there
are 12.

ab ba ca da

ac bc cb db

ad bd cd dc

The subset {a, b} can be ordered in 2! ways - the ordered subsets ab and ba. Since
each unordered subset is responsible for the same number of ordered subsets, we
get the number of unordered subsets by dividing 12 with 2!, giving us the 6 different
2-subsets of {a, b, c, d}.

ab

ac bc

ad bd cd

Definition 13.2 — Binomial Coe�icient
The number of k-subsets of an n-set is called the binomial coefficient(

n

k

)
=

n!

k!(n− k)!

This is generally read as “n choose k”.

Note that (
n

k

)
=

(n− k+ 1) · (n− k+ 2) · · · (n− 1) · n
1 · 2 · · · (k− 1) · k

They are thus the product of k numbers, divided by another k numbers. With this
fact in mind, it does not seem unreasonable that they should be computable in O(k)
time. Naively, one might try to compute them by first multiplying the k numbers in
the nominator, then the k numbers in the denominator, and finally divide them.

DRAFT

188 CHAPTER 13. COMBINATORICS

Unfortunately, both of these numbers grow quickly. Indeed, already at 21! we have
outgrown a 64-bit integer. Instead, we will compute the binomial coefficient by
alternating multiplications and divisions. We will start with storing 1 = 1

1
. Then, we

multiply with n − r + 1 and divide with 1, leaving us with n−r+1
1

. In the next step
we multiply with n− r+ 2 and divide with 2, having computed (n−r+1)·(n−r+2)

1·2 . After
doing this r times, we will be left with our binomial coefficient.

There is one big question mark from performing this procedure - why must our
intermediate result always be integer? This must be true if our procedure is correct, or
we will at some point perform an inexact integer division, leaving us with an incorrect
intermediate quotient. If we study the partial results more closely, we see that they
are binomial coefficients themselves, namely

(
n−r+1
1

)
,
(
n−r+2
2

)
, . . . ,

(
n−1
r−1

)
,
(
n
r

)
. Certainly,

these numbers must be integers. As we just showed, the binomial coefficients count
things, and counting things tend to result in integers.

As a bonus, we discovered another useful identity in computing binomial coeffi-
cients: (

n

r

)
=
n

r

(
n− 1

r− 1

)

Exercise 13.9

Prove this identity combinatorially, by first multiplying both sides with r. (Hint:
both sides count the number of ways to do the same two-choice process, but in
different order.)

We have one more useful trick up our sleeves. Currently, if we want to compute
e.g.

(
109

109−1

)
, we have to perform 109 − 1 operations. To avoid this, we exploit a

symmetry of the binomial coefficient. Assume we are working with subsets of some
n-element set S. Then, we can define a bijection from the subsets of S onto itself
by taking complements. Since a subset T and its complement S \ T are disjoint, we
have |S \ T | = |S| − |T |. This means that every 0-subset is mapped bijectively to
every n-subset, every 1-subset to every (n− 1)-subset, and every r-subset to every
(n− r)-subset.

However, if we can bijectively map r-subsets to (n− r)-subsets, there must be equally
many such subsets. Since there are

(
n
r

)
subsets of the first kind and

(
n
n−r

)
subsets of

the second kind, they must be equal:(
n

r

)
=

(
n

n− r

)
More intuitively, our reasoning is basically “choosing what r elements to include in a
set is the same as choosing what n − r elements to exclude”. This is very useful in

DRAFT

13.4. BINOMIAL COEFFICIENTS 189

our example of computing
(
109

109−1

)
, since this equals

(
109

1

)
= 109. More generally, this

enables us to compute binomial coefficients in O(min {r, n− r}) instead of O(r).

Exercise 13.10 — Kattis Exercises

Binomial Coefficients – binomial

Sjecista
Croatian Olympiad in Informatics 2006/2007, Contest #2

In a convex polygon with N sides, line segments are drawn between all pairs of
vertices in the polygon, so that no three line segments intersect in the same point.
Some pairs of these inner segments intersect, however.

For N = 6, this number is 15.

Figure 13.1: A polygon with 4 vertices.

Given N, determine how many pairs of segments intersect.

Input
The integer 3 ≤ N ≤ 100.
Output
The number of pairs of segments that intersect.

The problem is a classical counting problem. If we compute the answer by hand
starting at N = 0, we get 0, 0, 0, 0, 1, 5, 15, 35. A quick lookup on OEIS2 suggests that
the answer is the binomial coefficient

(
N
4

)
. While this certainly is a legit strategy when

solving problems on your own, this approach is usually not applicable at contests
where access to the Internet tend to be restricted.

Instead, let us find some kind of bijection between the objects we count (intersections
of line segments) with something easier to count. This strategy is one of the basic
principles of combinatorial counting. An intersection is defined by two line segments,

2https://oeis.org/A000332

https://oeis.org/A000332

DRAFT

190 CHAPTER 13. COMBINATORICS

Figure 13.2: Four points taken from Figure 13.1.

of which there are
(
N
2

)
. Does every pair of segments intersect? In Figure 13.2, two

segments (the solid segments) do not intersect. However, two other segments which
together have the same four endpoints do intersect with each other. This suggests
that line segments was the wrong level of abstraction when finding a bijection. On
the other hand, if we choose a set of four points, the segments formed by the two
diagonals in the convex quadrilateral given by those four points will intersect at some
point (the dashed segments in Figure 13.2).

Conversely, any intersection of two segments give rise to such a quadrilateral – the
one given by the four endpoints of the segments that intersect. Thus there exists a
bijection between intersections and quadrilaterals, meaning that there must be an
equal number of both. There are

(
N
4

)
such choices of quadrilaterals, meaning there

are also
(
N
4

)
points of intersection.

Exercise 13.11

Prove that

1)
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
2)
∑n

k=0

(
n
k

)
= 2n

3)
∑n

k=0(−1)
k
(
n
k

)
= 0

4)
∑n

k=0

(
n
k

)
2k = 3n

5)
∑n

k=0

[(
n
k

) (∑k
l=0

(
k
l

)
2l
)]

= 4n

13.4.1 Dyck Paths

In a grid of widthW and height H, we stand in the lower left corner at coordinates
(0, 0), wanting to venture to the upper right corner at (W,H). To do this, we are only
allowed two different moves – we can either move one unit north, from (x, y) to
(x, y+ 1) or one unit east, to (x+ 1, y). Such a path is called a Dyck path.

As is the this spirit of this chapter, we ask how many Dyck paths there are in a grid

DRAFT

13.4. BINOMIAL COEFFICIENTS 191

Figure 13.3: A Dyck path on a grid of width 8 and height 5.

of size W × H. The solution is based on two facts: a Dyck path consists of exactly
H+W moves, and exactlyH of those should be northbound moves, andW eastbound.
Conversely, any path consisting of exactly H+W moves where exactly H of those are
northbound moves is a Dyck path.

If we consider e.g. the Dyck path in Figure 13.3, we can write down the sequence
of moves we made, with the symbolN for northbound moves and E for eastbound
moves:

EENENNEEENEEN

Such a sequence must consist of all H+W moves, with exactly H “N”-moves. There
are exactly

(
H+W
H

)
such sequences, since this is the number of ways we can choose the

subset of positions which should contain the Nmoves.

Figure 13.4: The two options for the last possible move in a Dyck path.

If we look at Figure 13.3, we can find another way to arrive at the same answer.
Letting D(W,H) be the number of Dyck paths in a W ×H grid, some case work on
the last move gives us the recurrence

D(W,H) = D(W − 1,H) +D(W,H− 1)

with base cases
D(0,H) = D(W,0) = 1

We introduce a new function D ′, defined by D ′(W +H,W) = D(W,H). This gives us
the recurrence

D ′(W +H,H) = D ′(W − 1+H,W − 1) +D ′(W +H− 1,H− 1)

DRAFT

192 CHAPTER 13. COMBINATORICS

with base cases
D ′(0, 0) = D ′(H,H) = 0

These relations are satisfied by the binomial coefficients (Exercise 13.11).

Exercise 13.12

Prove that
∑n

i=0

(
n
i

)(
n
n−i

)
=
(
2n
n

)
.

While Dyck paths sometimes do appear directly in problems, they are also a useful
tool to find bijections to other objects.

Sums
In how many ways can the numbers 0 ≤ a1, a2, . . . , ak be chosen such that

k∑
i=1

ai = n

Input
The integers 0 ≤ n ≤ 106 and 0 ≤ k ≤ 106.
Output
Output the number of ways modulo 109 + 7.

Given a Dyck path such as the one in Figure 13.3, what happens if we count the
number of northbound steps we take at each x-coordinate? There are a total of W + 1
coordinates and H northbound steps, so we except this to be a sum of W + 1 (non-
negative) variables with a sum of H. This is indeed similar to what we are counting,
and Figure 13.5 shows this connection explicitly.

a1 a2 a3 a4 a5 a6 a7 a8 a9
0 + 0 + 1 + 2 + 0 + 0 + 1 + 0 + 1 = 5

Figure 13.5: A nine-term sum as a Dyck path.

DRAFT

13.4. BINOMIAL COEFFICIENTS 193

This mapping gives us a bijective mapping between sums of k terms with a sum of n,
to Dyck paths on a grid of size (k− 1)× n. We already know how many such Dyck
paths there are:

(
n+k−1
n

)
.

13.4.2 Catalan Numbers

A special case of the Dyck paths are the paths on a square grid that do not cross the
diagonal of the grid. See Figure 13.6 for an example.

Figure 13.6: A valid path (left) and an invalid path (right).

We are now going to count the number of such paths, the most complex counting
problem we have encountered so far. It turns out there is a straightforward bijection
between the invalid Dyck paths, i.e. those who do cross the diagonal of the grid, to
Dyck paths in a grid of different dimensions. In Figure 13.6, the right grid contained a
path that cross the diagonal. If we take the part of the grid just after the first segment
that crossed the diagonal and mirror it in the diagonal translated one unit upwards,
we get the situation in Figure 13.7.

Figure 13.7: Mirroring the part of the Dyck path after its first diagonal crossing.

We claim that when mirroring the remainder of the path in this translated diagonal,
we will get a new Dyck path on the grid of size (n − 1)× (n + 1). Assume that the
first crossing is at the point (c, c). Then, after taking one step up in order to cross the
diagonal, the remaining path goes from (c, c+ 1) to (n,n). This needs n− c steps to
the right and n−c−1 steps up. When mirroring, this instead turns into n−c−1 steps
up and n− c steps right. Continuing from (c, c+ 1), the new path must thus end at
(c+ (n− c− 1), c+ 1+ (n− c)) = (n− 1, n+ 1). This mapping is also bijective.

DRAFT

194 CHAPTER 13. COMBINATORICS

This bijection lets us count the number of paths that do cross the diagonal: they are(
2n
n+1

)
. The numbers of paths that does not cross the diagonal is then

(
2n
n

)
−
(
2n
n+1

)
.

Definition 13.3 — Catalan Numbers
The number of Dyck paths in an ×n grid is called the n’th Catalan number

Cn =

(
2n

n

)
−

(
2n

n+ 1

)
=

(
2n

n

)
−

n

n+ 1

(
2n

n

)
=

1

n+ 1

(
2n

n

)

The first few Catalan numbers3 are 1, 1, 2, 5, 14, 42, 132, 429, 1430.

Exercise 13.13 — Kattis Exercises

Catalan Numbers – catalan

Catalan numbers count many other objects, most notably the number of balanced
parentheses expressions. A balanced parentheses expression is a string of 2n characters
s1s2 . . . s2n of letters (and), such that every prefix s1s2 . . . sk contain at least as many
letters (as). Given such a string, like (()())(()) we can interpret it as a Dyck path,
where (is a step to the right, and) is a step upwards. Then, the condition that the
string is balanced is that, for every partial Dyck path, we have taken at least as many
right steps as we have taken up steps. This is equivalent to the Dyck path never
crossing the diagonal, giving us a bijection between parentheses expressions and
Dyck paths. The number of such parentheses expressions are thus also Cn.

13.5 The Principle of Inclusion and Exclusion

Often, we wish to compute the size of the union of a collection of sets S1, S2, . . . , Sn,
where these sets are not pairwise disjoint. For this, the principle of inclusion and
exclusion was developed.

Let us consider the most basic case of the principle, using two sets A and B. If we
wish to compute the size of their union |A∪B|, we at least need to count every element
in A and every set in B, i.e. |A|+ |B|. The problem with this formula is that whenever
an element is in both A and B, we count it twice. Fortunately, this is easily mitigated:
the number of elements in both sets equals |A ∩ B| (Figure 13.8). Thus, we see that
|A ∪ B| = |A|+ |B|− |A ∩ B|.
Similarly, we can determine a formula for the union of three sets |A∪B∪C|. We begin
by including every element: |A| + |B| + |C|. Again, we have included the pairwise

3https://oeis.org/A000108

https://oeis.org/A000108

DRAFT

13.5. THE PRINCIPLE OF INCLUSION AND EXCLUSION 195

A BA ∩B

A ∪B

Figure 13.8: The union of two sets A and B.

intersections too many times, so we remove those and get

|A|+ |B|+ |C|− |A ∩ B|− |A ∩ C|− |B ∩ C|

This time, however, we are not done. While we have counted the elements which
are in exactly one of the sets correctly (using the first three terms), and the elements
which are in exactly two of the sets correctly (by removing the double-counting using
the three latter terms), we currently do not count the elements which are in all three
sets at all! Thus, we need to add them back, which gives us the final formula:

|A ∪ B ∪ C| = |A|+ |B|+ |C|− |A ∩ B|− |A ∩ C|− |B ∩ C|+ |A ∩ B ∩ C|

Exercise 13.14

Compute the number of integers between 1 and 1000 that are divisible by 2, 3 or 5.

From the two examples, you can probably guess formula in the general case, which
we write in the following way:∣∣∣∣∣

n⋃
i=1

Si

∣∣∣∣∣ =∑
i

|Si|−
∑
i<j

|Si ∩ Sj|+
∑
i<j<k

|Si ∩ Sj ∩ Sk|− · · ·+ (−1)n+1|S1 ∩ S2 ∩ · · · ∩ Sn|

From this formula, we see the reason behind the naming of the principle. We include
every element, exclude the ones we double-counted, include the ones we removed too
many times, and so on. The principle is based on a very important assumption – that
it is easier to compute intersections of sets than their unions. Whenever this is the
case, you might want to consider if the principle is applicable.

Derangements
Compute the number of permutations π of length N such that π(i) 6= i for every
i = 1 . . .N.

DRAFT

196 CHAPTER 13. COMBINATORICS

This is a typical application of the principle. We will use it on those sets of permuta-
tions be where the condition is false for at least a particular index i If we let these sets
be Di, the set of all permutations where the condition is false is D1 ∪D2 ∪ · · · ∪DN.
This means we seekN!− |D1∪· · ·∪DN|. To apply the inclusion and exclusion formula,
we must be able to compute the size of intersections of the subsets of Di. This task is
simplified greatly since the intersection of k such subsets is entirely symmetrical (it
does not matter for which elements the condition is false, only the number).

If we want to compute the intersection of k such subsets, this means that there are
k indices i where π(i) = i. There are N − k other elements, which can be arranged
in (N − k)! ways, so the intersection of these sets have size (N − k)!. Since we can
choose which k elements that should be fixed in

(
N
k

)
ways, the term in the formula

where we compute all k-way intersections will evaluate to
(
N
k

)
(N − k)! = N!

k!
. Thus,

the formula can be simplified to

N!

1!
−
N!

2!
+
N!

3!
− . . .

Subtracting this from N! means that there are

N!(1− 1+
1

2!
−
1

3!
+ . . .)

This gives us a Θ(N) algorithm to compute the answer.

It is possible to simplify this further, using some insights from calculus. We have
that

e−1 = 1− 1+
1

2
−
1

3
+ . . .

Then, we expect that the answer should converge to N!
e

. As it happens, the answer
will always be N!

e
rounded to the nearest integer.

Exercise 13.15

8 persons are to be seated around a circular table. The company is made up of 4
married couples, where the two members of a couple prefer not to be seated next
to each other. How many possible seating arrangements are possible, assuming
the cyclic rotations of an arrangement are considered equivalent?

13.6 Invariants

Many problems deal with processes which consist of many steps. During such
processes, we are often interested in certain properties that never change. We call
such a property an invariant. For example, consider the binary search algorithm to

DRAFT

13.6. INVARIANTS 197

find a value in a sorted array. During the execution of the algorithm, we maintain
the invariant that the value we are searching for must be contained in some given
segment of the array indexed by [lo, hi) at any time. The fact that this property
is invariant basically constitutes the entire proof of correctness of binary search.
Invariants are tightly attached to greedy algorithms, and is a common tool used in
proving correctness of various greedy algorithms. They are also one of the main
tools in proving impossibility results (for example when to answer NO in decision
problems).

Permutation Swaps
Given is a permutation ai of 〈1, 2, ...,N〉. Can you perform exactly K swaps,
i.e. exchanging pairs of elements of the permutation, to obtain the identity
permutation 〈1, 2, ...,N〉?
Input
The first line of input contains the size of the permutation 1 ≤ N ≤ 100 000. The
next line contains N integers separated, the permutation a1, a2, ..., aN.

Output
Output YES if it is possible, and NO if it is impossible.

First, we need to compute the minimum number of swaps needed.

Assume the cycle decomposition of the permutation consists of C cycles (see 13.2.1
for a reminder of this concept), with lengths b1, b2, .., bC. Then, we need at least

S =

C∑
i=1

bi − 1

swaps to return it to the identity permutation, a fact you will be asked to prove in
the next section on monovariants. This gives us one necessary condition: K ≥ S.
However, this is not sufficient. A single additional condition is needed – that S and
K have the same parity! To prove this, we will look at the number of inversions of a
permutation, one of the common invariant properties of permutations.

Given a permutation ai, we say that the pair (i, j) is an inversion if i < j, but ai > aj.
Intuitively, it is the number of pairs of elements that are “out of place” in relation to
each other.

If we look at Figure 13.9, where we started out with a permutation and performed a
number of swaps (transforming it to the identity permutation), we can spot a simple
invariant. The parity of the number of swaps and the number of inversions seems
to always be the same. This characterization of a permutation is called odd and even
permutations depending on whether the number of inversions is odd or even. Let us
prove that this invariant actually holds.

DRAFT

198 CHAPTER 13. COMBINATORICS

3 5 2 1 4 6 inversions

1 5 2 3 4 3 inversions

1 5 3 2 4 4 inversions

1 5 3 4 2 5 inversions

1 2 3 4 5 0 inversions

Figure 13.9: The number of inversions for permutations differing only by a single
swap.

If this is the case, it is obvious why S and K must have the same parity. Since S
is the number of swaps needed to transform the identity permutation to the given
permutation, it must have the same parity as the number of inversions. By performing
K swaps, K must have the same parity as the number of inversions. As K and S must
have the same parity as the number of inversions, they must have the same parity as
each other.

To see why these two conditions are sufficient, we can, after performing S swaps
to obtain the identity permutation, simply swap two numbers with each other the
remaining swaps. This can be done since K− Swill be an even number due to their
equal parity.

13.7 Monovariants

Another similar tool (sometimes called a monovariant) instead define some kind of
value p(v) to the state v of each step of the process. We choose p such that it is strictly
increasing or decreasing. They are mainly used to prove the finiteness of a process, in
which either:

• The value function assume e.g. integer values, and is easily bounded in the
direction of monotonicity (e.g. an increasing function would have an upper
bound).

• The value function assume can assume any real, but there are only finitely many
states the process can be in. In this case, the monovariant is used to prove that
the process will never return to a previous state since this would contradict the
monotonicity of p.

Let us begin with a famous problem of the first kind.

DRAFT

13.7. MONOVARIANTS 199

Majority Graph Bipartitioning
Given is a graph G. Find a bipartition of this graph into parts U and V , such that
every vertex v has at most |N(v)|

2
neighbors in the same part as v itself.

Input
The first line of input contains integers 1 ≤ V ≤ 100 and 0 ≤ E ≤ V(V−1)

2
– the

number of vertices and edges respectively. The next E lines contain two integers
0 ≤ a 6= b < V , the zero-indexed numbers of two vertices that are connected by
an edge. No pair of vertices will have two edges.

Output
OutputN integers, one for each vertex. The i’th integer should be 1 or 2 if the i’th
vertex is in the first or the second part of the partition, respectively.

As an example, consider the valid and invalid partitionings in Figure 13.10. The
vertices which does not fulfill the neighbor condition are marked in gray.

A

B

C

D

E

F

G

Figure 13.10: An invalid bipartitioning, where vertices B,D,G break the condition.

Problems generally considered greedy algorithms and pure monovariant problems
usually differ in that the choice of next action usually has less thought behind it in
the monovariant problems. We will often focus not on optimally short sequences of
choices as we do with greedy algorithms, but merely finding any valid configuration.
For example, in the problem above, one might try to construct a greedy algorithm
based on for example the degrees of the vertices, which seems reasonable. However,
it turns out there is not enough structure in the problem to find any simple greedy
algorithm to solve the problem.

Instead, we will attempt to use the most common monovariant attack. Roughly, the
process follows these steps:

1. Start with any arbitrary state s.

2. Look for some kind of modification to this state, which is possible if and only
if the state is not admissible. Generally, the goal of this modification is to “fix”
whatever makes the state inadmissible.

3. Prove that there is some value p(s) that must decrease whenever such a modifi-
cation is done.

DRAFT

200 CHAPTER 13. COMBINATORICS

4. Prove that this value cannot decrease infinitely many times.

Using these four rules, we prove the existence of an admissible state. If (and only if)
s is not admissible, by step 2 we can perform some specified action on it, which by
step 3 will decrease the value p(s). Step 4 usually follows from one of the two value
functions discussed previously. Hence, by performing finitely many such actions, we
must (by rule 4) reach a state where no such action is possible. This happens only
when the state is admissible, meaning such a state must exist. The process might seem
a bit abstract, but will become clear once we walk you through the bipartitioning
step.

Our algorithm will work as follows. First, consider any bipartition of the graph.
Assume that this graph does not fulfill the neighbor condition. Then, there must exist
a vertex vwhich has more than |N(v)|

2
vertices in the same part as v itself. Whenever

such a vertex exists, we move any of them to the other side of the partition. See
Figure 13.11 of the this process.

A

B

C

D

E

F

G
A

B

C

D

E

F

G

Figure 13.11: Two iterations of the algorithm, which brings the graph to a valid state.

One question remains – why does this move guarantee a finite process? We now
have a general framework to prove such things, which suggests that perhaps we
should look for a value function p(s) which is either strictly increasing or decreasing
as we perform an action. By studying the algorithm in action in Figure 13.11 we
might notice that more and more edges tend to go between the two parts. In fact, this
number never decreased in our example, and it turns out this is always the case.

If a vertex v has a neighbors in the same part, b neighbors in the other part, and
violates the neighbor condition, this means that a > b. When we move v to the other
part, the b edges from v to its neighbors in the other part will no longer be between
the two parts, while the a edges to its neighbors in the same part will. This means the
number of edges between the parts will change by a− b > 0. Thus, we can choose
this as our value function. Since this is an integer function with the obvious upper
bound of E, we complete step 4 of our proof technique and can thus conclude the
final state must be admissible.

In mathematical problem solving, monovariants are usually used to prove that the an

DRAFT

13.7. MONOVARIANTS 201

admissible state exists. However, such problems are really algorithmic problems in
disguise, since they actually provide an algorithm to construct such an admissible
state.

Let us complete our study of monovariants, by also showing a problem using the
second value function rule.

Water Pistols
N girls and N boys stand on a large field, with no line going through three
different children.

Each girl is equipped with a water pistol, and wants to pick a boy to fire at. While
the boys probably will not appreciate being drenched in water, at least the girls
are a fair menace – the will only fire at a single boy each. Unfortunately, it may be
the case that two girls choose which boys to fire at in such a way that the water
from their pistols will cross at some point. If this happens, they will cancel each
other out, never hitting their targets.

Help the girls choose which boys to fire at, in such a way that no two girls fire at
the same boy, and the water fired by two girls will not cross.

Figure 13.12: An assignment where some beams intersect (left), and an assignment
where no beams intersect (right).

Input
The first line contains the integer N ≤ 200. The next N lines contain two real
numbers −106 ≤ x, y ≤ 106, separated by a space. Each line is the coordinate
(x, y) of a girl. The next and final N lines contain the coordinates of the boys, in
the same format.

Output
Output N lines. The i’th line should contain the zero-indexed number of the boy
which the i’th girl should fire at.

DRAFT

202 CHAPTER 13. COMBINATORICS

C
E

F

D
A

B

Figure 13.13: Swapping the targets of two intersecting beams.

After seeing the solution to the previous problem, the solution should not come as
a surprise. We start by randomly assigning the girls to one boy each, with no two
girls shooting at he same boy. If this assignment contains two girls firing water beams
which cross, we simply swap their targets.

Unless you are geometrically minded, it may be hard to figure out an appropriate
value function. The naive value function of counting the current number of water
beams crossing unfortunately fails – and might even increase after a move.

Instead, let us look closer at what happens when we switch the targets of two girls.
In Figure 13.13, we see the before and after of such an example, as well as the two
situations interposed. If we consider the sum of the two lengths of the water beams
before the swap ((C+D) + (E+ F)) versus the lengths after the swap (A+ B), we see
that the latter must be less than the first. Indeed, we have A < C+D and B < E+ F
by the triangle inequality, which by summing the two inequalities give the desired
result. Thus the sum of all water beam lengths will decrease whenever we perform
such a move. As students of algorithmics, we can make the additional note that
this means the minimum-cost matching of the complete bipartite graph of girls and
boys, with edges given as cost the distance between a particular girl and boy, is a
valid assignment. If this was not the case, we would be able to swap two targets and
decrease the cost of the matching, contradicting the assumption that it was minimum-
cost. Thus, this rather mathematical proof actually ended up giving us a very simple
reduction to min-cost matching.

Exercise 13.16 — Kattis Exercise

Army Division – armydivision

Bread Sorting – breadsorting

DRAFT

13.8. CHAPTER NOTES 203

13.8 Chapter Notes

DRAFT

204 CHAPTER 13. COMBINATORICS

DRAFT
Chapter 14

Number Theory

Number theory is the study of certain properties of integers. It makes an occasional
appearance within algorithmic problem solving, in the form of its subfield computa-
tional number theory. It is within number theory topics such as divisibility and prime
numbers belong.

14.1 Divisibility

All of the number theory in this chapter relate to a single property of integers, divisi-
bility.

Definition 14.1 — Divisibility
An integer n is divisible by an integer d if there is another integer q such that
n = dq. We also say that d is a divisor of n.

We denote this fact with d | n.

Dividing both sides of the equality n = dq with d gives us an almost equivalent
definition, namely that n

d
is an integer. The difference is that the first definition admit

the divisibility by 0 with 0, while the second one does not (zero division is undefined).
When we speak of the divisors of a number in most contexts (as in Example 14.1), we
will generally consider only the non-negative divisors. Since d is a divisor of n if and
only if −d is a divisor of n, this sloppiness lose little information.

Example 14.1 — Divisors of 12
The number 12 has 6 divisors – 1 (1 · 12 = 12), 2 (2 · 6 = 12), 3, (3 · 4 = 12), 4
(4 · 3 = 12), 6 (6 · 2 = 12) and 12 (12 · 1 = 12).

205

DRAFT

206 CHAPTER 14. NUMBER THEORY

12 is not divisible by e.g. 5 – we have 12
5
= 2+ 2

5
, which is clearly not an integer.

Exercise 14.1

Determine the divisors of 18.

The concept of divisibility raises many questions. First and foremost – how do we
check if a number is divisible by another? This question has one short and one
long answer. For small numbers – those that fit inside the native integer types of a
language – checking for divisibility is as simple as using the modulo operator (%) of
your favorite programming language – n is divisible by d if and only if nmodd = 0.
The situation is not as simple for large numbers. Some programming languages, such
as Java and Python, have built-in support for dealing with large integers, but e.g. C++
does not. In Section 14.4 on modular arithmetic, we discuss the implementation of
the modulo operator on large integers.

Secondly, how do we compute the divisors of a number? Every integer has at least
two particular divisors called the trivial divisors, namely 1 and n itself. If we exclude
the divisor n, we get the proper divisors. To find the remaining divisors, we can use
the fact that any divisor d of n must satisfy |d| ≤ |n|. This means that we can limit
ourselves to testing whether the integers between 1 and n are divisors of n, a Θ(n)
algorithm. We can do a bit better though.

Almost Perfect
Baylor Competitive Learning course – David Sturgill

A positive integer p is called a perfect number if all the proper divisors of p sum
to p exactly. Perfect numbers are rare; only 10 of them are known. Perhaps the
definition of perfection is a little too strict. Instead, we will consider numbers
that we’ll call almost perfect. A positive integer p is almost perfect if the proper
divisors of p sum to a value that differs from p by no more than two.

Input
Input consists of a sequence of up to 500 integers, one per line. Each integer is in
the range 2 to 109 (inclusive).

Output
For each input value, output the same value and then one of the following:
“perfect” (if the number is perfect), “almost perfect” (if it is almost perfect but not
perfect), or “not perfect” (otherwise).

In this problem, computing the divisors of the numbers of the input sequence would
be way too slow, requiring upwards of 1011 operations. Hidden in Example 14.1
lies the key insight to speeding this up. It seems that whenever we had a divisor

DRAFT

14.1. DIVISIBILITY 207

d, we were immediately given another divisor q. For example, when claiming 3
was a divisor of 12 since 3 · 4 = 12, we found another divisor, 4. This should not
be a surprise, since our definition of divisibility (Definition 14.1)– the existence of
the integer q in n = dq – is symmetric in d and q, meaning divisors come in pairs
(d, n

d
).

Exercise 14.2

Prove that an integer has an odd number of divisors if and only if it is a perfect
square (except 0, which has an infinite number of divisors).

Since divisors come in pairs, we can limit ourselves to finding one member of each
such pair. Furthermore, one of the elements in each such pair must be bounded by√
n. Otherwise, we would have that n = d · n

d
>
√
n · √n = n, a contradiction (again,

except for 0, which has 0
d
= 0). This limit helps us reduce the time it takes to find the

divisors of a number to Θ(
√
N), which allows us to solve the problem. You can see

the pseudo code for this in Algorithm 14.1

Algorithm 14.1: Almost Perfect

procedure DIVISORS(N)
divisors← new list

for i from 1 up to i2 ≤ N do
if Nmod i = 0 then

divisors.add(i)
if i 6= N/i then

divisors.add(N
i
)

return divisors
procedure ALMOSTPERFECT(N)

divSum← 0

for d ∈ Divisors(N) do
if d 6= N then

divSum← divSum + d
if divSum = N then

output “perfect”
else if |divSum −N| ≤ 2 then

output “almost perfect”
else

output “not perfect”

This also happens to give us some help in answering our next question, regarding the
plurality of divisors. The above result gives us an upper bound of 2

√
n divisors of an

DRAFT

208 CHAPTER 14. NUMBER THEORY

integer n. We can do a little better, with O(n
1
3) being a commonly used bound for the

number of divisors when dealing with integers which fit in the native integer types.1

For example, the maximal number of divisors of a number less than 103 is 32, 106 is
240, 109 is 1 344, 1018 is 103 680.2

A bound we will find more useful when solving problems concerns the average
number of divisors of the integers between 1 and n.

Theorem 14.1 Let d(i) be the number of divisors of i. Then,

n∑
i=1

d(i) ≈ n lnn

Proof. There are approximately n
i

integers between 1 and n divisible by i, since
every i’th integer is divisible by i Thus, the number of divisors of all those integers
is bounded by

n∑
j=1

n

j
= n

n∑
j=1

1

j
≈ n lnn

This proof also suggest a way to compute the divisors of all the integers 1, 2, ..., n
in Θ(n lnn) time. For each integer i, we find all the numbers divisible by i (in Θ(n

i
)

time), which are 0i, 1i, 2i, . . . dn
i
ei. This is an extension of the algorithm commonly

known as the Sieve of Eratosthenes, an algorithm to find the objects which are our
next topic of study – prime numbers.

Exercise 14.3 — Kattis Exercises

Dividing Sequence – sequence

14.2 Prime Numbers

From the concept of divisibility comes the building blocks of the integers, the famous
prime numbers. With divisibility, we got factorizations. For example, given the number
12, we could factor it as 2 · 6, or 3 · 4, or even 2 · 2 · 3. This last factorization is special,
in that no matter how hard we try, it cannot be factored further. It consists only of
prime numbers.

1In reality, the maximal number of divisors of the interval [1, n] grows sub-polynomially, i.e., as
O(nε) for every ε > 0.

2Sequence A066150 from OEIS: http://oeis.org/A066150.

http://oeis.org/A066150.

DRAFT

14.2. PRIME NUMBERS 209

Definition 14.2 — Prime Number
An integer p ≥ 2 is called a prime number if its only positive divisors are 1 and p.

The numbers that are not prime numbers are called composite numbers. There are
an infinite number of primes. This be proven by a simple proof by contradiction.
If p1, p2, ..., pq are the only primes, then P = p1p2 . . . pq + 1 is not divisible by any
prime number (and by extension has no divisors but the trivial ones), so it is not
composite. However, P is larger than any prime, so it is not a prime number either, a
contradiction.

Example 14.2 The first 10 prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. Which is
the next one?

Since the prime numbers have no other divisors besides the trivial ones, a factorization
consisting only of prime numbers is special.

Definition 14.3 — Prime Factorization
The prime factorization of a positive integer n is a factorization of the form pe11 ·
pe22 · · · · · pekk , where pi are all distinct primes. This factorization is unique, except
for a reordering of the pi.

Example 14.3 The prime factorization of 228 is 2 · 2 · 3 · 19.

A List Game
Spotify Challenge 2010 – Per Austrin

You are playing the following simple game with a friend:

1. The first player picks a positive integer X.

2. The second player gives a list of k positive integers Y1, . . . , Yk such that

(Y1 + 1)(Y2 + 1) · · · (Yk + 1) = X

and gets k points.

Write a program that plays the second player.

Input
The input consists of a single integer X satisfying 103 ≤ X ≤ 109, giving the
number picked by the first player.

Output
Write a single integer k, giving the number of points obtained by the second

DRAFT

210 CHAPTER 14. NUMBER THEORY

player, assuming she plays as good as possible.

The problem seeks the factorization of X that contains the largest number of factors,
where every factor is at least 2. This factorization must in fact be the prime factor-
ization of X, which we will prove by contradiction. Assume that the optimal list
of integers Y1, . . . , Yk contains a number Yi that is composite. In this case, it can be
further factored into Yi = ab with a, b > 1. Replacing Yi with the numbers a and b
will keep the product of the list invariant (since Yi = ab), but extend the length of the
list by 1, thus giving a higher-scoring sequence. The only case when this is impossible
is if all the Yi are primes, so the list we seek must indeed be the prime factorization of
X.

This begs the question, how do we compute the prime factorization of a number?
Mainly two different algorithms are used when computing prime factorizations: trial
division and the Sieve of Eratosthenes3. In computing the prime factorization of a
few, large numbers, trial division is used. It runs in O(

√
N) time, and use the same

insight we used in the improved algorithm to compute the divisors of an algorithm.
Since any composite numberNmust have a divisor less than

√
N, it must also have a

prime divisor less than
√
N. Implementing this is straightforward.

The other algorithm is used to factor every number in a large interval.

Product Divisors
Given a sequence of integers a1, a2, . . . an, compute the number of divisors of
A =

∏n
i=1 ai.

Input
Input starts with an integer 0 ≤ n ≤ 1 000 000, the length of the sequence ai. The
next line contains the numbers 1 ≤ a1, . . . , an ≤ 106.
Output
Output a single integer – the number of divisors of n. Since this number can be
very large, output it modulo 109 + 7.

Let A have the prime factorization A = pe11 · pe22 · · · · · pekk . A divisor of A must be
of the form d = p

e ′1
1 · p

e ′2
2 · · · · · p

e ′k
k , where 0 ≤ e ′i ≤ ei. This can be proven using the

uniqueness of the prime factorization, and the fact that A = dq for some integer q.
More importantly, any number of this form is a divisor of A, by the same cancellation
argument used when proving the uniqueness of the prime factorization.

With this in hand, we apply a simple combinatorial argument to count the number of
divisors ofA. Each number e ′i can take any integer value between 0 and ei to fulfill the

3Many more exist, but are too complicated to be used in problem solving context, although they are
very much in use in real-life situations.

DRAFT

14.2. PRIME NUMBERS 211

conditions needed to make d a divisor ofA. This gives us ei+1 choices for the value of
e ′i. Since each e ′i is independent, there are a total of (e1+1)(e2+1) . . . (ek+1) numbers
of this form, and thus divisors of A. We are left with the problem of determining
the prime factorization of A. Essentially, this is tantamount to computing the prime
factorization of every integer between 1 and 106. Once this is done, we can go through
the sequence ai and tally up all primes in their factorization. Since an integer m
has at most log

2
m prime factors, this step is bounded by approximately n log

2
106

operations. This is implemented in Algorithm 14.2.

Algorithm 14.2: Product Divisors

procedure PRODUCTDIVISORS(sequence A)
list of lists factorizations← factorInterval(106 + 1)
map counts← new map

for each a in A do
for each p in factorizations[a] do

counts[p]← counts[p] + 1
ans← 1

for each (key, value) in counts do
ans← (ans · (value+ 1))mod(109 + 7)

return ans

As of now, the crucial step of factoring all integers in [1..106] remains. This is the
purpose of the Sieve of Eratosthenes. We have already seen the basic idea when
computing the divisors of all numbers in the interval [1...n] in Section 14.1. Extending
this to factoring is only a matter of restricting the algorithm to finding prime divisors
(Algorithm 14.3).

Algorithm 14.3: Sieve of Eratosthenes

procedure PRIMESIEVE(limit N)
list nums← new list[N]
for i from 1 to N− 1 do

nums[i]← i

list of lists factorizations← new list of lists[N]
for i from 2 to i2 ≤ N do

if nums[i]! = i then
for j ∈ {i · i, i(i+ 1), i(i+ 2), ...} up to N− 1 do

while nums[j]mod i = 0 do
factorizations[j].add(i)
nums[j] = nums[j]/i

return factors

DRAFT

212 CHAPTER 14. NUMBER THEORY

The complexity of this procedure is a bit tricky to analyze. The important part of the
sieve is the inner loop, which computes the actual factors. Let us count the number of
times a prime p is pushed in this loop. First of all, every p’th integer is divisible by p,
which totals n

p
iterations. However, every p2’th integer integer is divisible by p yet

again, contributing an additional n
p2

iterations, and so on. Summing this over every p
which is used in the sieve gives us the bound

∑
p≤
√
n

(
n

p
+
n

p2
+
n

p3
+ ...

)
= n

∑
p≤
√
n

(
1

p
+
1

p2
+
1

p3
+ ...

)

Using the formula for the sum of a geometric series (1
p
+ 1

p2
+ ... = p

p−1
) gives us the

simplification

n
∑
p≤
√
n

1

p− 1
= Θ

n∑
p≤
√
n

1

p

This last sum is out of reach to estimate with our current tools. It turns out that∑

p≤n
1
p
= O(ln lnn). With this, the final complexity becomes a simpleO(n ln ln

√
n) =

O(n ln lnn).

It is not uncommon for an algorithm to include in its complexity the number of primes
up to a certain limit n. This function is known as π(n), the prime counting function.
We have π(103) = 168, π(106) = 78 498, π(109) ≈ 51 000 000. In general, π(n) ≈ n

lnn
for large n.

Exercise 14.4 — Kattis Exercises

Prime Sieve – primesieve

Happy Happy Prime Prime – happyprime

Prime Path – primepathc

Perfect Pth Powers – perfectpowers

Factovisors – factovisors

Divisors – divisors

14.3 The Euclidean Algorithm

The Euclidean algorithm is one of the oldest known algorithms, dating back to Greek
mathematician Euclid who wrote of it in his mathematical treatise Elements. It regards
those numbers which are divisors two different integers, with an extension capable of
solving integer equations of the form ax+ by = c.

DRAFT

14.3. THE EUCLIDEAN ALGORITHM 213

Definition 14.4 We call an integer d dividing both of the integers a and b a common
divisor of a and b.

The greatest such integer is called the greatest common divisor, or GCD of a and
b. This number is denoted (a, b).

As always, we ask ourselves – how do we compute it?

Greatest Common Divisor
Given to integers a and b, compute (a, b).

We already know of anO(
√
a+
√
b) algorithm to compute (a, b), namely to enumerate

all divisors of a and b. Two simple identities are key to the much faster Euclidean
algorithm.

(a, 0) = |a| (14.1)

(a, b) = (a− b, b) (14.2)

Identity 14.1 is obvious. An integer a cannot have a larger divisor than |a|, and this
is certainly a divisor of a. Identity 14.2 needs a bit more work. We can prove their
equality by proving an even stronger result – that all common divisors of a and b are
also common divisors of a and b− a. Assume d is a common divisor of a and b, so
that a = da ′ and b = db ′ for integers a ′, b ′. Then b − a = db ′ − da ′ = d(b ′ − a ′),
with b ′−a ′ being an integer, is sufficient for d also being a divisor of b−a. Hence the
divisors of a and b are also divisors of a and b−a. In particular, their largest common
divisor is the same. The application of these identities yield a recursive solution to the
problem. If we wish to compute (a, b) where a, b are positive and a > b, we reduce
the problem to a smaller one by instead computing (a, b), we compute (a − b, b).
This gives us a smaller problem, in the sense that a + b decrease. Since both a and
b are non-negative, this means we must at some point arrive at the situation where
either a or b are 0. In this case, we use the base case that is Identity 14.1.

One simple but important step remains before the algorithm is useful. Note how
computing (109, 1) requires about 109 steps right now, since we will do the reductions
(109 − 1, 1), (109 − 2, 1), (109 − 3, 1)... The fix is easy – the repeated application of
subtraction of a number b from a while a > b is exactly the modulo operation,
meaning

(a, b) = (amodb, b)

This last piece of our Euclidean puzzle complete our algorithm, and gives us a
remarkably short algorithm, as seen in Algorithm 14.5.

DRAFT

214 CHAPTER 14. NUMBER THEORY

Algorithm 14.4: Greatest Common Divisor

procedure GCD(A, B)
if B = 0 then

return A
return GCD(B,AmodB)

Competitive Tip

The Euclidean algorithm exists as the built-in function __gcd(a, b) in C++.

Whenever dealing with divisors in a problem, the greatest common divisor may
be useful. This is the case in the next problem, from the Croatian high school
olympiad.

Granica
Croatian Open Competition in Informatics 2007/2008, Contest #6

Given integers a1, a2, ..., an, find all those numbers d such that upon division by
d, all of the numbers ai leave the same remainder.

Input
The first line contains the integer 2 ≤ n ≤ 100, the length of the sequence ai. The
second line contains the integers n integers 1 ≤ a1, a2, . . . , an ≤ 109.
Output
Output all such integers d, separated by spaces.

What does it mean for two numbers ai and aj to have the same remainder when
dividing by d? Letting this remainder be r we can write ai = dn+ r and aj = dm+ r
for integers n and m. Thus, ai − aj = d(n −m) so that d is divisor of ai − aj! This
gives us a necessary condition for our numbers d. Is it sufficient? If ai = dn+ r and
aj = dm + r ′, we have ai − aj = d(n −m) + (r − r ′). Since d is a divisor of ai − aj
it must be a divisor of d(n−m) + (r− r ′) too, meaning r− r ′ = 0 so that r = r ′ and
both remainders were the same. The question then is how we compute

gcd
1≤i<j≤n

ai − aj

which seek the greatest common divisor of many rather than just two numbers.

To our rescue comes the prime factor interpretation of divisors, namely that a divisor
of a number

n = pe11 · · ·pekk

DRAFT

14.3. THE EUCLIDEAN ALGORITHM 215

is of the form
d = p

e ′1
1 · · ·p

e ′k
k

where 0 ≤ e ′i ≤ ei. Then, the requirement for d to be a common divisor of n and
another number

m = pf11 · · ·pf1k
is that 0 ≤ e ′i ≤ min(fi, ei), with e ′i = min(fi, ei) giving us the GCD.

Using this interpretation of the GCD, we can extend the result can be extended
to finding the GCD d of a sequence b1, b2, . . . Consider any prime p, such that
pqi || bi. Then, we must have pmin(q1,q2,...) || d. This suggests the recursion formula
d = gcd(b1, b2, . . .) = gcd(b1,gcd(b2, . . .)).

Algorithm 14.5: Greatest Common Divisor of Several Integers

procedure MULTIGCD(sequence A)
gcd← 0

for each a ∈ A do
gcd← GCD(gcd, a)

return gcd

We only need one more insight to solve the problem, namely that the common divisors
d of a and b are exactly the divisors of (a, b).

A related concept is given if we instead of taking the minimum of prime factors of
two numbers take the maximum.

Definition 14.5 — Least CommonMultiple
The least common multiple of integers a and b is the smallest integerm such that
a | m and b | m.

The computation of the LCM is basically the same as for the GCD.

A multiple d of an integer a of the form

a = pe11 · · ·pekk

must be of the form
d = p

e ′1
1 · · ·p

e ′k
k

where ei ≤ e ′i.
Thus, if d is to be a common multiple of a and

b = pf11 · · ·pf1k

DRAFT

216 CHAPTER 14. NUMBER THEORY

it must be that max(fi, ei) ≤ e ′i, with e ′i = max(fi, ei) giving us the LCM. Since
max(ei, fi) + min(ei, fi) = ei · +fi, we must have that lcm(a, b) · gcd(a, b) = ab.
This gives us the formula lcm(a, b) = a

gcd(a,b)b to compute the LCM. The order of
operations is chosen to avoid overflows in computing the product ab.

Since max is associative just like min, the LCM operation is too, meaning

lcm(a, b, c, . . .) = lcm(a, lcm(b, lcm(c, . . .)))

Next up is the extended Euclidean algorithm.

Diophantine Equation
Given integers a, b, c, find an integer solution x, y to

ax+ by = (a, b)

First of all, it is not obvious such an integer solution exists. This is the case however,
which we will prove constructively thus gaining an algorithm to find such a solution
at the same time. The trick lies in the exact same identities used when we formulated
the Euclidean algorithm. Since (a, 0) = a, the case b = 0 gives us ax = (a, b) = a

with the obvious solution x = 1, y = 0. Furthermore, we have (a, b) = (b, a mod b).
Assume we could compute a solution to bx + (a mod b)y = (b, amodb). Some
rearrangement of this gives us

bx+ (amodb)y = (b, amodb)

bx+ (a− ba
b
cb)y = (b, amodb)

b(x− ba
b
cy) + ay = (b, amodb)

ay+ b(x− ba
b
cy)x = (b, amodb)

ay+ b(x− ba
b
cy)x = (a, b)

meaning (y, x− ba
b
cy) would be a solution to the equation we are actually interested

in.

Given the solution [x, y] to the equation with coefficients [b, amodb] we thus get
the solution [y, x− ba

b
cy] to the equation with coefficients [a, b]. The transformation

[b, amodb]↔ [a, b] happen to be the key step in the Euclidean algorithm. This sug-
gests a recursive solution, where we first perform the ordinary Euclidean algorithm
to find (a, b) and obtain the solution [1, 0] to the equation (a, b)x + 0y = (a, b) and
then use the above trick to iteratively construct a solution to ax+ by = (a, b).

DRAFT

14.3. THE EUCLIDEAN ALGORITHM 217

Example 14.4 — Extended Euclidean algorithm
Consider the equation 15x + 11y = 1. Performing the Euclidean algorithm on
these numbers we find that

(15, 11) = (11, 15mod 11) =

(11, 4) = (4, 11mod 4) =

(4, 3) = (3, 4mod 3) =

(3, 1) = (1, 3mod 1) =

(1, 0) = 1

Originally, we have the solution [1, 0] to the equation with coefficients [1, 0]:

1 · 1+ 0 · 0 = (1, 0)

Using the transformation we derived gives us the solution [0, 1− b 3
1
0c] = [0, 1] to

the equation with coefficients [3, 1]:

3 · 0+ 1 · 1 = (3, 1)

The next application gives us the solution [1, 0− b 4
3
c1] = [1,−1] to [4, 3].

4 · 1+ 3 · (−1) = (4, 3)

[4, 3]→ [−1, 1− b 11
4
c(−1)] = [−1, 3] which gives us

11 · (−1) + 4 · 3 = (11, 4)

Finally, [−1, 3]→ [3,−1− b 15
11
c3] = [3,−4], the solution we sought

15 · 3+ 11 · (−4) = (15, 11)

Exercise 14.5

Find an integer solution to the equation 24x+ 52y = 2.

This gives us a single solution, but can we find all solutions? First, assume a and b
are co-prime. Then, given two solutions

ax1 + by1 = 1

ax2 + by2 = 1

DRAFT

218 CHAPTER 14. NUMBER THEORY

a simple subtraction gives us that

a(x1 − x2) + b(y1 − y2) = 0

a(x1 − x2) = b(y2 − y1)

Since a and b are co-prime, we have that

b | x1 − x2

Thus means x2 = x1 + kb for some k. Inserting this gives us

a(x1 − (x1 + kb)) = b(y2 − y1)

−akb = b(y2 − y1)

−ak = y2 − y1

y1 − ak = y2

Thus, any solution must be of the form

(x1 + kb, y1 − ka) for k ∈ Z

That these are indeed solutions to the original equation can be verified by substituting
x and y for these values. This result is called Bezout’s identity.

14.4 Modular Arithmetic

When first learning division, one is often introduced to the concept of remainders.
For example, when diving 7 by 3, you would get “2 with a remainder of 1”. In
general, when dividing a number a with a number n, you would get a quotient
q and a remainder r. These numbers would satisfy the identity a = nq + r, with
0 ≤ r < b.

Example 14.5 — Division with remainders
Consider division (with remainders) by 4 of the numbers 0, . . . , 6We have that

0

4
= 0, remainder 0

1

4
= 0, remainder 1

2

4
= 0, remainder 2

3

4
= 0, remainder 3

DRAFT

14.4. MODULAR ARITHMETIC 219

4

4
= 1, remainder 0

5

4
= 1, remainder 1

6

4
= 1, remainder 2

Note how the remainder always increase by 1 when the nominator increased. As
you might remember from Chapter 2 on C++ (or from your favorite programming
language), there is an operator which compute this remainder called the modulo
operator. Modular arithmetic is then the computation on numbers, where every
number is taken modulo some integer n. Under such a scheme, we have that e.g. 3
and 7 are basically the same if computing modulo 4, since 3mod 4 = 3 = 7mod 4.
This concept, where numbers with the same remainder are treated as if they are equal
is called congruence.

Definition 14.6 — Congruence
If a and b have the same remainder when divided by n, we say that a and b are
congruent modulo n, written

a ≡ b (mod n)

An equivalent and in certain applications more useful definition is that a ≡ b

(mod n) if and only if n | a− b.

Exercise 14.6

What does it mean for a number a to be congruent to 0modulo n?

When counting modulo something, the laws of addition and multiplication are
somewhat altered:

+ 0 1 2
0 0 1 2
1 1 2 3 ≡ 0
2 2 3 ≡ 0 4 ≡ 1

* 0 1 2
0 0 0 0
1 0 1 2
2 0 2 4 ≡ 1

DRAFT

220 CHAPTER 14. NUMBER THEORY

When we wish to perform arithmetic of this form, we use the integers modulo n
rather than the ordinary integers. These has a special set notation as well: Zn.

While addition and multiplication is quite natural (i.e. performing the operation as
usual and then taking the result modulo n), division is a more complicated story. For
real numbers, the inverse x−1 of a number x is defined as the number which satisfy
the equation xx−1 = 1. For example, the inverse of 4 is 0.25, since 4 · 0.25 = 1. The
division a

b
is then simply amultiplied with the inverse of b. The same definition is

applicable to modular arithmetic:

Definition 14.7 —Modular Inverse
The modular inverse of amodulo n is the integer a−1 such that aa−1 ≡ 1 (mod n),
if such an integer exists.

Considering our multiplication table of Z3, we see that 0 has no inverse and 1 is its
own inverse (just as with the real numbers). However, since 2 · 2 = 4 ≡ 1 (mod 3), 2
is actually its own inverse. If we instead consider multiplication in Z4, the situation is
quite different.

* 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Now, 2 does not even have an inverse! To determine when an inverse exists – and if
so, computing the inverse – we will make use of the extended Euclidean algorithm. If
aa−1 ≡ 1 (mod n), we have n | aa−1 − 1, meaning aa−1 − 1 = nx for some integer
x. Rearranging this equation gives us aa−1 − nx = 1. We know from Section 14.3
that this has a solution if and only if (a, n) = 1. In this case, we can use the extended
Euclidean algorithm to compute a−1. Note that be Bezout’s identity, a−1 is actually
unique modulo n.

Just like the reals, modular arithmetic has a cancellation law regarding

Theorem 14.2 Assume a⊥n. Then ab ≡ ac (mod n) implies b ≡ c (mod n).

Proof. Since a⊥n, there is a number a−1 such that aa−1 ≡ 1 (mod n).

ab ≡ ac (mod n)

with a−1 results in
aa−1b ≡ aa−1c (mod n)

DRAFT

14.5. CHINESE REMAINDER THEOREM 221

Simplifying aa−1 gives us
b ≡ c (mod n)

Another common modular operation is exponentiation, i.e. computing am (mod n).
While this can be computed easily in Θ(m), we can actually do better using a method
called exponentiation by squaring. It is essentially based on the recursion

am modn =

1modn if m = 0
a · (am−1 modn)modn if m odd
(a

m
2 modn)2 modn if m even

This procedure is clearly Θ(log
2
m), since applying the recursive formula for even

numbers halve the m to be computed, while applying it an odd number will first
make it even and then halve it in the next iteration. It is very important that a

m
2 modn

is computed only once, even though it is squared! Computing it twice causes the
complexity to degrade to Θ(m) again.

14.5 Chinese Remainder Theorem

The Chinese Remainder Theorem is probably the most useful theorem in algorith-
mic problem solving. It gives us a way of solving certain systems of linear equa-
tions.

Theorem 14.3 — Chinese Remainder Theorem
Given a system of equations

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

. . .

x ≡ am (mod mn)

where the numbers m1, . . . ,mn are pairwise relatively prime, there is a unique
integer x (mod

∏n
i=1mi) that satisfy such a system.

Proof. We will prove the theorem inductively. The theorem is clearly true for n = 1,

DRAFT

222 CHAPTER 14. NUMBER THEORY

with the unique solution x = a1. Now, consider the two equations

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

Let x = a1 ·m2 · (m−1
2 modm1)+a2 ·m1 · (m−1

1 modm2), wherem−1
1 modm2 is taken

to be a modular inverse of m1 modulo m2. These inverses exist, since m1⊥m2 by
assumption. We then have that x = a1 ·m2 ·(m−1

2 modm1)+a2 ·m1 ·(m−1
1 modm2) ≡

a1 ·m2 · (m−1
2 modm1) ≡ ai (mod m1).

Since a solution exist for every a1, a2, this solution must be unique by the pigeon-
hole principle – there are m1 ·m2 possible values for a1, a2, and m1 ·m2 possible
values for x. Thus, the theorem is also true for n = 2.

Assume the theorem is true for k− 1 equations. Then, we can replace the equations

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

with another equation
x ≡ x ∗ (mod m1m2)

where x∗ is the solution to the first two equations. We just proved those two
equations are equivalent with regards to x. This reduces the number of equations
to k − 1, which by assumption the theorem holds for. Thus, it also holds for k
equations.

Note that the theorem used an explicit construction of the solution, allowing us to
find what the unique solution to such a system is.

Radar
KTH Challenge 2014

We say that an integer z is within distance y of an integer xmodulo an integerm
if

z ≡ x+ t (mod m)

where |t| ≤ y.

Find the smallest non-negative integer z such that it is:

• within distance y1 of x1 modulom1

• within distance y2 of x2 modulom2

DRAFT

14.6. EULER’S TOTIENT FUNCTION 223

• within distance y3 of x3 modulom3

Input
The integers 0 ≤ m1,m2,m3 ≤ 106. The integers 0 ≤ x1, x2, x3 ≤ 106. The integers
0 ≤ y1, y2, y3 ≤ 300.
Output
The integer z.

The problem gives rise to three linear equations of the form

z ≡ xi + ti (mod mi)

where −yi ≤ ti ≤ yi. If we fix all the variables ti, the problem reduces to solving
the system of equations using CRT. We could then find all possible values of z,
and choose the minimum one. This requires applying the CRT construction about
2 · 6003 = 432 000 000 times. Since the modulo operation involved is quite expensive,
this approach would use too much time. Instead, let us exploit a useful greedy
principle in finding minimal solutions.

Assume that z is the minimal answer to an instance. There are only two situations
where z− 1 cannot be a solution as well:

• z = 0 – since zmust be non-negative, this is the smallest possible answer

• z ≡ xi − yi – then, decreasing zwould violate one of the constraints

In the first case, we only need to verify whether z = 0 is a solution to the three
inequalities. In the second case, we managed to change an inequality to a linear
equation. By testing which of the i this equation holds for, we only need to test
the values of ti for the two other equations. This reduce the number of times we
need to use the CRT to 6002 = 360 000 times, a modest amount well within the time
limit.

14.6 Euler’s totient function

Now that we have talked about modular arithmetic, we can give the numbers which
are not divisors to some integer n their well-deserved attention. This discussion will
start with the φ-function.

Definition 14.8 Two integers a and b are said to be relatively prime if their only (and
thus greatest) common divisor is 1. If a and b are relatively prime, we write that
a⊥b.

DRAFT

224 CHAPTER 14. NUMBER THEORY

Example 14.6 The numbers 74 and 22 are not relatively prime, since they are both
divisible by 2.

The numbers 72 and 65 are relatively prime. The prime factorization of 72 is
2 ·2 ·2 ·3 ·3, and the factorization of 65 is 5 ·13. Since these numbers have no prime
factors in common, they have no divisors other than 1 in common.

Given an integer n, we ask ourselves how many of the integers 1, 2, . . . , n which are
relatively prime to n.

Definition 14.9 — Euler’s totient function
Euler’s totient function φ(n) is defined as the number if integers k ∈ [1, n] such
that (k, n) = 1, i.e. those positive integers less than nwhich are co-prime to n.

Example 14.7 What is φ(12)? The numbers 2, 4, 6, 8, 10 all have the factor 2 in
common with 12 and the numbers 3, 6, 9 all have the factor 3 in common with 12.

This leaves us with the integers 1, 5, 7, 11which are relatively prime to 12. Thus,
φ(12) = 4.

For prime powers,φ(pk) is easy to compute. The only integers which are not relatively
prime to φ(pk) are the multiples of p, which there are pk

p
= pk−1 of, meaning

φ(pk) = pk − pk−1 = pk−1(p− 1)

It turns out φ(n) has a property which is highly useful in computing certain number
theoretical functions – it is multiplicative, meaning

φ(ab) = φ(a)φ(b) if a⊥b
For multiplicative functions, we can reduce the problem of computing arbitrary values
of the function to finding a formula only for prime powers. The reasoning behind the
multiplicativity of φ is quite simple. Let a ′ = a − φ(a), i.e. the number of integers
which do share a factor with a, and similarly b ′ = b− φ(b). Then, there will be ab ′

numbers between 1 and ab which share a factor with b. If x is one of the b ′ numbers
sharing a factor with b, then so are x, x + b, x + 2b, ..., x + (a − 1)b. Similarly, there
will be a ′b numbers between 1 and ab sharing a factor with a. However, there may
be some numbers sharing both a factor with a and b. Consider two such numbers
x+ ib = y+ ja, which gives ib− ja = y− x. By Bezout’s identity, this have a single
solution (i, j) modulo ab, meaning every number x+ ib equals exactly one number
y+ ja. Thus, there were a ′b ′ numbers sharing a factor with both a and b. This means
there are ab ′ + a ′b− a ′b ′ numbers sharing a factor with either a and b, so

φ(ab) = ab− ab ′ − a ′b+ a ′b ′ = (a− a ′)(b− b ′) = φ(a)φ(b)

DRAFT

14.6. EULER’S TOTIENT FUNCTION 225

and we are done.

Using the multiplicativity of φwe get the simple formula

φ(pe11 . . . p
ek
k) = φ(pe11) · · ·φ(pekk) = pe1−11 (p1 − 1) · · ·pek−1k (pk − 1)

Computingφ for a single value can thus be done as quickly as factoring the number. If
we wish to compute φ for an interval [1, n] we can use the Sieve of Eratosthenes.

This seemingly convoluted function might seem useless, but is of great importance
via the following theorem:

Theorem 14.4 — Euler’s theorem
If a and n are relatively prime and n ≥ 1,

aφ(n) ≡ 1 (mod n)

Proof. The proof of this theorem isn’t trivial, but it is number theoretically inter-
esting and helps to build some intuition for modular arithmetic. The idea behind
the proof will be to consider the product of the φ(n) positive integers less than n
which are relatively prime to n. We will call these x1, x2, . . . , xφ(n). Since these are
all distinct integers between 1 and n, they are incongruent modulo n. We call such
a set of φ(n) numbers, all incongruent modulo n a complete residue system (CRS)
modulo n.

Next, we will prove that ax1, ax2, . . . , axφ also form a CRS modulo n. We need to
show two properties for this:

1. All numbers are relatively prime to n

2. All numbers are incongruent modulo n

We will start with the first property. Since both a and xi are relatively prime to n,
neither number have a prime factor in common with n. This means axi have no
prime factor in common with n either, meaning the two numbers are relatively
prime. The second property requires us to make use of the cancellation property
of modular arithmetic (Theorem 14.2). If axi ≡ axj (mod n), the cancellation law
gives us xi ≡ xj (mod n). Since all xi are incongruent modulo n, we must have
i = j, meaning all the numbers axi are incongruent as well. Thus, these numbers
did indeed form a complete residue system modulo n.

If ax1, . . . , axφ(n) form a CRS, we know every axi must be congruent to some xj,
meaning

ax1 · · ·axφ(n) ≡ x1 · · · xφ(n) (mod n)

DRAFT

226 CHAPTER 14. NUMBER THEORY

Factoring the left hand size turns this into

aφ(n)x1 · · · xφ(n) ≡ x1 · · · xφ(n) (mod n)

Since all the xi are relatively prime to n, we can again use the cancellation law,
leaving

aφ(n) ≡ 1 (mod n)

completing our proof of Euler’s theorem.

For primes p we get a special case of Euler’s theorem when since φ(p) = p −
1.

Corollary 14.1 Fermat’s Theorem For a prime p and an integer a⊥p, we have

ap−1 ≡ 1 (mod p)

Competitive Tip

By Fermat’s Theorem, we also have ap−2 ≡ a−1 (mod p) when p is prime (and
a⊥p). This is often an easier way of computing modular inverses modulo primes
than using the extended Euclidean algorithm, in particular if you already coded
modular exponentiation.

Exponial
Nordic Collegiate Programming Contest 2016

Define the exponial of n as the function

exponial(n) = n(n−1)(n−2)
...2
1

Compute exponial(n) (mod m).

Input
The input contains the integers 1 ≤ n,m ≤ 109.
Output
Output a single integer, the value of exponial(n) (mod m).

Euler’s theorem suggests a recursive approach. Since ne (mod m) is periodic (in e),
with a period ofφ(m), maybe when computingn(n−1)... we could compute e = (n−1)...

modulo φ(m) and only then compute ne (mod m)? Alas, this is only useful when

DRAFT

14.7. CHAPTER NOTES 227

n⊥m, since this is a necessary precondition for Euler’s theorem. When working
modulo some integermwith a prime factorization of pe11 · · ·pekk , a helpful approach
is to instead work modulo its prime powers peii and then combine the results using
the Chinese remainder theorem. Since the prime powers of a prime factorization is
relatively prime, the remainder theorem applies.

Let us apply this principle to Euler’s theorem. When computing ne modpk we have
two cases. Either p | n, in which case ne ≡ 0 (mod pk) whenever e ≥ k. Otherwise,
p⊥n, and ne ≡ nemodφ(pk) (mod pk) by Euler’s theorem.

This suggests that if e ≥ max(e1, . . . , ek), we have that ne is indeed periodic. Further-
more, ei is bounded by log

2
n, since

peii ≤ n⇒
ei log

2
(pi) ≤ log

2
(N)⇒

ei ≤
log

2
(N)

log
2
(pi)

≤ log
2
(N)

As pi ≥ 2, we know that log
2
(pi) ≥ 1, which we used in the final inequality. Since

log
2
(109) ≈ 30 and 432

1

≥ 30, we can use the periodicity of ne whenever n ≥ 5.
nφ(m)+exponial(n−1)modφ(m) modm

For n = 4, the exponial equals only 262144, meaning we can compute it immedi-
ately.

One final insight remains. If we use the recursive formula, i.e. first computing
e = (n−1)(n−2)

... modφ(m) and then nφ(m)+emodφ(m) modm, we still have the problem
that n can be up to 109. We would need to perform a number of exponentiations that
is linear in n, which is slow for such large n. However, our modulo will actually very
quickly converge to 1. While the final result is taken modulo m, the first recursive
call is taken modulo φ(m). The recursive call performed at the next level will thus
be modulo φ(φ(m)), and so on. That this sequence decrease very quickly is based
on two facts. For even m, φ(m) = φ(2)φ(m

2
) = φ(m

2
) ≤ m

2
. For odd m, φ(m) is

even. Any oddm consists only of odd prime factors, but since φ(p) = p− 1 (i.e. an
even number for odd primes p) and φ is multiplicative, φ(m) must be even. Thus
φ(φ(m)) ≤ m

2
for m > 1 (1 is neither even nor contains an odd prime factor). This

means the modulo will become 1 in a logarithmic number of iterations, completing
our algorithm.

14.7 Chapter Notes

A highly theoretical introduction to classical number theory can be found in An
Introduction to the Theory of Numbers[10] While devoid of exercises and examples, it is

DRAFT

228 CHAPTER 14. NUMBER THEORY

very comprehensive.

A Computational Introduction to Number Theory and Algebra[20] instead takes a more
applied approach, and is freely available under a Creative Commons license at the
authors home page.4.

4http://www.shoup.net/ntb/

http://www.shoup.net/ntb/

DRAFT
Chapter 15

Competitive Programming Strategy

Competitive programming is what we call the mind sport of solving algorithmical
problems and coding their solutions, often under the pressure of time. Most program-
ming competitions are performed online, at your own computer through some kind
of online judge system. For students of either high school or university, there are two
main competitions. High school students compete in the International Olympiad in In-
formatics (IOI), and university students go for the International Collegiate Programming
Contest (ICPC).

Different competition styles have different difficulty, problem types and strategies. In
this chapter, we will discuss some basic strategy of programming competitions, and
give tips on how to improve your competitive skills.

15.1 IOI

The IOI is an international event where a large number of countries send teams of up
to 4 high school students to compete individually against each other during two days
of competition. Every participating country has its own national selection olympiad
first.

During a standard IOI contest, contestants are given 5 hours to solve 3 problems, each
worth at most 100 points. These problems are not given in any particular order, and
the scores of the other contestants are hidden until the end of the contest. Generally
none of the problems are “easy” in the sense that it is immediately obvious how to
solve the problem in the same way the first 1-2 problems of most other competitions
are. This poses a large problem, in particular for the amateur. Without any trivial
problems nor guidance from other contestants on what problems to focus on, how
does an IOI competitor prioritize? The problem is further exacerbated by problems
not having a simple binary scoring, with a submission being either accepted or

229

DRAFT

230 CHAPTER 15. COMPETITIVE PROGRAMMING STRATEGY

rejected. Instead, IOI problems contain many so-called subtasks. These subtasks give
partial credit for the problem, and contain additional restrictions and limits on either
input or output. Some problems do not even use discrete subtasks. In these tasks,
scoring is done on some scale which determines how “good” the output produced by
your program is.

15.1.1 Strategy

Very few contestants manage to solve every problem fully during an IOI contest.
There is a very high probability you are not one of them, which leaves you with two
options – you either skip a problem entirely, or you solve some of its subtasks. At
the start of the competition, you should read through every problem and all of the
subtasks. In the IOI you do not get extra points for submitting faster. Thus, it does
not matter if you read the problems at the beginning instead of rushing to solve the
first problem you read. Once you have read all the subtasks, you will often see the
solutions to some of the subtasks immediately. Take note of the subtasks which you
know how to solve!

Deciding on which order you should solve subtasks in is probably one of the most
difficult parts of the IOI for contestants at or below the silver medal level. In IOI 2016,
the difference between receiving a gold medal and a silver medal was a mere 3 points.
On one of the problems, with subtasks worth 11, 23, 30 and 36 points, the first silver
medalist solved the third subtask, worth 30 points (a submission that possibly was a
failed attempt at 100 points). Most competitors instead solved the first two subtasks,
together worth 34 points. If the contestant had solved the first two subtasks instead,
he would have gotten a gold medal.

The problem basically boils down to the question when should I solve subtasks instead of
focusing on a 100 point solution? There is no easy answer to this question, due to the
lack of information about the other contestants’ performances. First of all, you need
to get a good sense of how difficult a solution will be to implement correctly before
you attempt it. If you only have 30 minutes left of a competition, it might not be a
great idea to go for a 100 point solution on a very tricky problem. Instead, you might
want to focus on some of the easier subtasks you have left on this or other problems.
If you fail your 100 point solution which took over an hour to code, it is nice to know
you did not have some easy subtasks worth 30-60 points which could have given you
a medal.

Problems without discrete scoring (often called heuristic problems) are almost always
the hardest ones to get a full score on. These problems tend to be very fun, and some
contestants often spend way too much time on these problems. They are treacherous
in that it is often easy to increase your score by something. However, those 30 minutes
you spent to gain one additional point may have been better spent coding a 15 point

DRAFT

15.1. IOI 231

subtask on another problem. As a general rule, go for the heuristic problem last
during a competition. This does not mean to skip the problem unless you completely
solve the other two, just to focus on them until you decide that the heuristic problem
is worth more points if given the remaining time.

In IOI, you are allowed to submit solution attempts a large number of times, without
any penalty. Use this opportunity! When submitting a solution, you will generally be
told the results of your submission on each of the secret test cases. This provides you
with much details. For example, you can get a sense of how correct or wrong your
algorithm is. If you only fail 1-2 cases, you probably just have a minor bug, but your
algorithm in general is probably correct. You can also see if your algorithm is fast
enough, since you will be told the execution time of your program on the test cases.
Whenever you make a change to your code which you think affect correctness or
speed – submit it again! This gives you a sense of your progress, and also works as a
good regression test. If your change introduced more problems, you will know.

Whenever your solution should pass a subtask, submit it. These subtask results will
help you catch bugs earlier when you have less code to debug.

15.1.2 Getting Better

The IOI usually tend to have pretty hard problems. Some areas get rather little
attention. For example, there are basically no pure implementation tasks and very
little geometry.

First and foremost, make sure you are familiar with all the content in the IOI syllabus1.
This is an official document which details what areas are allowed in IOI tasks. This
book deals with most, if not all of the topics in the IOI syllabus.

In the Swedish IOI team, most of the top performers tend to also be good mathe-
matical problem solvers (also getting IMO medals). Combinatorial problems from
mathematical competitions tend to be somewhat similar to the algorithmic frame of
mind, and can be good practice for the difficult IOI problems.

When selecting problems to practice on, there are a large number of national olympiads
with great problems. The Croatian Open Competition in Informatics2 is a good source.
Their competitions are generally a bit easier than solving IOI with full marks, but
are good practice. Additionally, they have a final round (the Croatian Olympiad in
Informatics) which are of high quality and difficulty. COCI publishes solutions for all
of their contests. These solutions help a lot in training.

One step up in difficulty from COCI is the Polish Olympiad in Informatics3. This
1https://people.ksp.sk/~misof/ioi-syllabus/
2http://hsin.hr/coci/
3http://main.edu.pl/en/archive/oi

https://people.ksp.sk/~misof/ioi-syllabus/
http://hsin.hr/coci/
http://main.edu.pl/en/archive/oi

DRAFT

232 CHAPTER 15. COMPETITIVE PROGRAMMING STRATEGY

is one of the most difficult European national olympiad published in English, but
unfortunately they do not publish solutions in English for their competitions.

There are also many regional olympiads, such as the Baltic, Balkan, Central European,
Asia-Pacific Olympiads in Informatics. Their difficulty is often higher than that of
national olympiads, and of the same format as an IOI contest (3 problems, 5 hours).
These, and old IOI problems, are probably the best sources of practice.

15.2 ICPC

In ICPC, you compete in teams of three to solve about 10-12 problems during 5
hours. A twist in in the ICPC-style competitions is that the team shares a single
computer. This makes it a bit harder to prioritize tasks in ICPC competitions than in
IOI competitions. You will often have multiple problems ready to be coded, and wait
for the computer. In ICPC, you see the progress of every other team as well, which
gives you some suggestions on what to solve. As a beginner or medium-level team,
this means you will generally have a good idea on what to solve next, since many
better teams will have prioritized tasks correctly for you.

ICPC scoring is based on two factors. First, teams are ranked by the number of solved
problems. As a tie breaker, the penalty time of the teams are used. The penalty time of
a single problem is the number of minutes into the contest when your first successful
attempt was submitted, plus a 20 minute penalty for any rejected attempts. Your total
penalty time is the sum of penalties for every problem.

15.2.1 Strategy

In general, teams will be subject to the penalty tie-breaking. In the 2016 ICPC World
Finals, both the winners and the team in second place solved 11 problems. Their
penalty time differed by a mere 7 minutes! While such a small penalty difference in
the very top is rather unusual, it shows the importance of taking your penalty into
account.

Minimizing penalties generally comes down to a few basic strategic points:

• Solving the problems in the right order.

• Solving each problem quickly.

• Minimizing the number of rejected attempts.

In the very beginning of an ICPC contest, the first few problems will be solved quickly.
In 2016, the first accepted submissions to five of the problems came in after 11, 15, 18,

DRAFT

15.2. ICPC 233

32, 44 minutes. On the other hand, after 44 minutes no team had solved all of those
problems. Why does not every team solve the problems in the same order? Teams are
of different skill in different areas, make different judgment calls regarding difficulty
or (especially early in the contest) simply read the problem in a different order. The
better you get, the harder it is to distinguish between the “easy” problems of a contest
– they are all “trivial” and will take less than 10-15 minutes to solve and code.

Unless you are a very good team or have very significant variations in skill among
different areas (e.g., you are graph theory experts but do not know how to compute
the area of a triangle), you should probably follow the order the other teams choose
in solving the problems. In this case, you will generally always be a few problems
behind the top teams.

The better you get, the harder it is to exploit the scoreboard. You will more often be
tied in the top with teams who have solved the exact same problems. The problems
which teams above you have solved but you have not may only be solved by 1-2
teams, which is not a particularly significant indicator in terms of difficulty. Teams
who are very strong at math might prioritize a hard maths problem before an easier
(on average for most teams) dynamic programming problem. This can risk confusing
you into solving the wrong problems for the particular situation of your team.

The amount of cooperation during a contest is difficult to decide upon. The optimal
amount varies a lot between different teams. In general, the amount of cooperation
should increase within a single contest from the start to the end. In the beginning,
you should work in parallel as much as possible, to quickly read all the problems,
pick out the easy-medium problems and start solving them. Once you have competed
in a few contests, you will generally know the approximate difficulty of the simplest
tasks, so you can skim the problem set for problems of this difficulty. Sometimes, you
find an even easier problem in the beginning than the one the team decided to start
coding.

If you run out of problems to code, you waste computer time. Generally, this should
not happen. If it does, you need to become faster at solving problems.

Towards the end of the contest, it is a common mistake to parallelize on several of
the hard problems at the same time. This carries a risk of not solving any of the
problems in the end, due to none of the problems getting sufficient attention. Just as
with subtasks in IOI, this is the hardest part of prioritizing tasks. During the last hour
of an ICPC contest, the previously public scoreboard becomes frozen. You can still
see the number of attempts other teams make, but not whether they were successful.
Hence, you can not really know how many problems you have to solve to get the
position that you want. Learning your own limits and practicing a lot as a team –
especially on difficult contests – will help you get a feeling for how likely you are to
get in all of your problems if you parallelize.

Read all the problems! You do not want to be in a situation where you run out of time

DRAFT

234 CHAPTER 15. COMPETITIVE PROGRAMMING STRATEGY

during a competition, just to discover there was some easy problem you knew how
to solve but never read the statement of. ICPC contests are made more complex by
the fact that you are three different persons, with different skills and knowledge. Just
because you can not solve a problem does not mean your team mates will not find
the problem trivial, have seen something similar before or are just better at solving
this kind of problem.

The scoreboard also displays failed attempts. If you see a problem where many teams
require extra attempts, be more careful in your coding. Maybe you can perform
some extra tests before submitting, or make a final read-through of the problem and
solution to make sure you did not miss any details.

If you get Wrong Answer, you may want to spend a few minutes to code up your
own test case generators. Prefer generators which create cases where you already
know the answers. Learning e.g. Python for this helps, since it usually takes under a
minute to code a reasonable complex input generator.

If you get Time Limit Exceeded, or even suspect time might be an issue – code a test
case generator. Losing a minute on testing your program on the worst case, versus
a risk of losing 20 minutes to penalty is be a trade-off worth considering on some
problems.

You are allowed to ask questions to the judges about ambiguities in the problems.
Do this the moment you think something is ambiguous (judges generally take a few
valuable minutes in answering). Most of the time they give you a “No comment”
response, in which case the perceived ambiguity probably was not one.

If neither you nor your team mates can find a bug in a rejected solution, consider
coding it again from scratch. Often, this can be done rather quickly when you have
already coded a solution.

15.2.2 Getting Better

• Practice a lot with your team. Having a good team dynamic and learning what
problems the other team members excel at can be the difference that helps you
to solve an extra problem during a contest.

• Learn to debug on paper. Wasting computer time for debugging means not
writing code! Whenever you submit a problem, print the code. This can save
you a few minutes in getting your print-outs when judging is slow (in case your
submission will need debugging). If your attempt was rejected, you can study
your code on paper to find bugs. If you fail on the sample test cases and it takes
more than a few minutes to fix, add a few lines of debug output and print it as
well (or display it on half the computer screen).

DRAFT

15.2. ICPC 235

• Learn to write code on paper while waiting for the computer. In particular, tricky
subroutines and formulas are great to hammer out on paper before occupying
valuable computer time.

• Focus your practice on your weak areas. If you write buggy code, learn your
programming language better and code many complex solutions. If your team is
bad at geometry, practice geometry problems. If you get stressed during contests,
make sure you practice under time pressure. For example, Codeforceshas an http://

codeforces.com
http://
codeforces.comexcellent gym feature, where you can compete retroactively in a contest using

the same amount of time as in the original contest. The scoreboard will then
show the corresponding scoreboard from the original contest during any given
time.

http://codeforces.com
http://codeforces.com
http://codeforces.com
http://codeforces.com

DRAFT

236 CHAPTER 15. COMPETITIVE PROGRAMMING STRATEGY

DRAFT
Appendix A

Mathematics

This appendix reviews some basic mathematics. Without a good grasp on the foun-
dations of mathematics, algorithmic problem solving is basically impossible. When
we analyze the efficiency of algorithms, we use sums, recurrence relations and a bit
of algebra. One of the most common topics of algorithms is graph theory, an area
within discrete mathematics. Without some basic topics, such as set theory, some of
the proofs – and even problems – in this book will be hard to understand.

This mathematical preliminary touches lightly upon these topics and is meant to
complement a high school education in mathematics in preparation for the remaining
text. While you can probably get by with the mathematics from this chapter, we highly
recommend that you (at some point) delve deeper into discrete mathematics.

We do assume that you are familiar with basic proof techniques, such as proofs by
induction or contradiction, and mathematics that is part of a pre-calculus course
(trigonometry, polynomials, etc). Some more mathematically advanced parts of
this book will go beyond these assumptions, but this is only the case in very few
places.

A.1 Logic

In mathematics, we often deal with truths and falsehoods in the form of theorems,
proofs, counter-examples and so on. Logic is a very exact discipline, and a precise
language has been developed to help us deal with logical statements.

For example, consider the statements

1. an integer is either odd or even,

2. programming is more fun than mathematics,

237

DRAFT

238 APPENDIX A. MATHEMATICS

3. if there exists an odd number divisible by 6, every integer is even,

4. x is negative if and only if x3 is negative,

5. every apple is blue,

6. there exists an integer.

The first statement uses the conjunction or. It connects two statements, and requires
only one of them to be true in order for the whole statement to be true. Since any
integer is either odd or even, the statement is true.

The second statement is not really a logical statement. While we might have a personal
conviction regarding the entertainment value of such topics, it is hard to consider the
statements as having a truth value.

The third statement complicates matters by introducing an implication. It is a two-part
statement, which only makes a claim regarding the second part if the first part is true.
Since no odd number divisible by 6 exists, it makes no statement about the evenness
of every integer. Thus, this implication is true.

The fourth statement tells us that two statements are equivalent – one is true exactly
when the other is. This is also a true statement.

The fifth statement concerns every object if some kind. It is a false statement, a fact
that can be proved by exhibiting e.g., a green apple.

Finally, the last statement is true. It asks whether something exists, a statement we
can prove by presenting an integer such as 42.

To express such statements, a language has been developed where all these logical
operations such as existence, implication and so on have symbols assigned to them.
This enables us to remove the ambiguity inherent in the English language, which is
of utmost importance when dealing with the exactness required by logic.

The disjunction (a is true or b is true) is a common logical connective. It is given
the symbol ∨, so that the above statement is written as a ∨ b. The other common
connective, the conjunction (a is true and b is true) is assigned the symbol ∧. For
example, we write that a∧ b for the statement that both a and b are true.

An implication is a statement of the form “if a is true, then bmust also be true”. This
is a statement on its own, which is true whenever a is false (meaning it does not say
anything of b), or when a is true and b is true. We use the symbol→ for this, writing
the statement as a→ b. The fourth statement would hence be written as

(∃p : p is prime ∧ p is divisible by 6)→ ∀ prime p : p is even

The next statement introduced the equivalence, a statement of the form “a is true if,
and only if, b is true”. This is the same as a→ b (the only if part) and b→ a (the if

DRAFT

A.1. LOGIC 239

part). We use the symbol↔, which follows naturally for this reason. The statement
would then be written as

x < 0↔ x3 < 0

Logical also contains quantifiers. The fifth statement, that every apple is blue, actually
makes a large number of statements – one for each apple. This concept is captured
using the universal quantifier ∀, read as “for every”. For example, we could write
the statement as

∀ apple a : a is blue

In the final statement, another quantifier was used, which speaks of the existence of
something; the existential quantifier ∃, which we read as “there exists”. We would
write the second statement as

∃x : x is an integer

The negation operator ¬ inverts a statement. The statement “no penguin can fly”
would thus be written as

¬(∃ penguin p : p can fly)

or, equivalently
∀ penguin p : ¬p can fly

Exercise A.1

Write the following statements using the logical symbols, and determine whether
they are true or false:

1) If a and b are odd integers, a+ b is an even integer,

2) a and b are odd integers if and only if a+ b is an even integer,

3) Whenever it rains, the sun does not shine,

4) ab is 0 if and only if a or b is 0

Our treatment of logic ends here. Note that much is left unsaid – it is the most
rudimentary walk-through in this chapter. This section is mainly meant to give you
some familiarity with the basic symbols used in logic, since they will appear later. If
you wish to gain a better understanding of logic, you can follow the references in the
chapter notes.

DRAFT

240 APPENDIX A. MATHEMATICS

A.2 Sets and Sequences

A set is an unordered collection of distinct objects, such as numbers, letters, other sets,
and so on. The objects contained within a set are called its elements, or members. Sets
are written as a comma-separated list of its elements, enclosed by curly brackets:

A = {2, 3, 5, 7}

In this example, A contains four elements: the integers 2, 3, 5 and 7.

Because a set is unordered and only contains distinct objects, the set {1, 2, 2, 3} is the
exact same set as {3, 2, 1, 1} and {1, 2, 3}.

If x is an element in a set S, we write that x ∈ S. For example, we have that 2 ∈ A
(referring to our example A above). Conversely, we use the notation x 6∈ Swhen the
opposite holds. We have e.g., that 11 6∈ A.

Another way of describing the elements of a set uses the set builder notation, in which
a set is constructed by explaining what properties its elements should have. The
general syntax is

{element | properties that the element must have}

To construct the set of all even integers, we would use the syntax

{2i | i is an integer}

which is read as “the set containing all numbers of the form 2iwhere i is an integer.
To construct the set of all primes, we would write

{p | p is prime}

Certain sets are used often enough to be assigned their own symbols:

• Z – the set of integers {. . . ,−2,−1, 0, 1, 2, . . . },

• Z+ – the set of positive integers {1, 2, 3, . . . },

• N – the set of non-negative integers {0, 1, 2, . . . },

• Q – the set of all rational numbers {p
q
| p, q integers where q 6= 0},

• R – the set of all real numbers,

• [n] – the set of the first n positive integers {1, 2, . . . , n},

• ∅ – the empty set.

DRAFT

A.2. SETS AND SEQUENCES 241

Exercise A.2

1) Use the set builder notation to describe the set of all odd integers.

2) Use the set builder notation to describe the set of all negative integers.

3) Compute the elements of the set {k | k is prime and k2 ≤ 30}.

A setA is a subset of a set S if, for every x ∈ A, we also have x ∈ S (i.e., every member
of A is a member of S). We denote this with A ⊆ B. For example

{2, 3} ⊆ {2, 3, 5, 7}

and {
2

4
, 2,

−1

7

}
⊆ Q

For any set S, we have that ∅ ⊆ S and S ⊆ S. Whenever a set A is not a subset of
another set B, we write that A 6⊆ B. For example,

{2, π} 6⊆ Q

since π is not a rational number.

We say that sets A and B are equal whenever x ∈ A if and only if x ∈ B. This is
equivalent to A ⊆ B and B ⊆ A. Sometimes, we will use the latter condition when
proving set equality, i.e., first proving that every element ofAmust also be an element
of B and then the other way round.

Exercise A.3

1) List all subsets of the set {1, 2, 3}.

2) How many subsets does a set containing n elements have?

3) Determine which of the following sets are subsets of each other:

• ∅
• Z

• Z+

• {2k | k ∈ Z}

• {2, 16, 12}

Sets also have many useful operations defined on them. The intersection A ∩ B of
two sets A and B is the set containing all the elements which are members of both
sets, i.e.,

x ∈ A ∩ B⇔ x ∈ A∧ x ∈ B

DRAFT

242 APPENDIX A. MATHEMATICS

If the intersection of two sets is the empty set, we call the sets disjoint. A similar
concept is the union A ∪ B of A and B, defined as the set containing those elements
which are members of either set.

Example A.1 Let

X = {1, 2, 3, 4}, Y = {4, 5, 6, 7}, Z = {1, 2, 6, 7}

Then,
X ∩ Y = {4}

X ∩ Y ∩ Z = ∅
X ∪ Y = {1, 2, 3, 4, 5, 6, 7}

X ∪ Z = {1, 2, 3, 4, 6, 7}

Exercise A.4

Compute the intersection and union of:

1) A = {1, 4, 2}, B = {4, 5, 6}

2) A = {a, b, c}, B = {d, e, f}

3) A = {apple, orange}, B = {pear, orange}

A sequence is an ordered collection of values (predominantly numbers) such a 1, 2, 1, 3, 1, 4,
Sequences will mostly be a list of sub-scripted variables, such as a1, a2, . . . , an. A
shorthand for this is (ai)

n
i=1, denoting the sequence of variables ai where i ranges

from 1 to n. An infinite sequence is given∞ as its upper bound: (ai)∞i=1

A.3 Sums and Products

The most common mathematical expressions we deal with are sums of sequences of
numbers, such as 1+ 2+ · · ·+ n. Such sums often have a variable number of terms
and complex summands, such as 1 · 3 · 5 + 3 · 5 · 7 + · · · + (2n + 1)(2n + 3)(2n + 5).
In these cases, sums given in the form of a few leading and trailing terms, with the
remaining part hidden by . . . is too imprecise. Instead, we use a special syntax for
writing sums in a formal way – the sum operator:

k∑
i=j

ai

DRAFT

A.3. SUMS AND PRODUCTS 243

The symbol denotes the sum of the j− k+ 1 terms aj + aj+1 + aj+2 + · · ·+ ak, which
we read as “the sum of ai from j to k”.

For example, we can express the sum 2+ 4+ 6+ · · ·+ 12 of the 6 first even numbers
as

6∑
i=1

2i

Exercise A.5

Compute the sum
4∑

i=−2

2 · i− 1

Many useful sums have closed forms – expressions in which we do not need sums of
a variable number of terms.

Exercise A.6

Prove the following identities:

n∑
i=1

c = cn

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1

2
)(n+ 1)

3

n∑
i=0

2i = 2n+1 − 1

The sum of the inverses of the first n natural numbers happen to have a very neat
approximation, which we will occasionally make use of later on:

n∑
i=1

1

n
≈ lnn

This is a reasonable approximation, since
∫l
1
1
x
dx = ln(l)

DRAFT

244 APPENDIX A. MATHEMATICS

There is an analogous notation for products, using the product operator
∏

:

k∏
i=j

ai

denotes the product of the j − k + 1 terms aj · aj+1 · aj+2 · · · · · ak, which we read as
“the product of ai from j to k”.

In this way, the product 1 · 3 · 5 · · · · · (2n− 1) of the first n odd integers can be written
as

n∏
i=1

2i− 1

Exercise A.7

Prove that

(n+ 2)

n∏
i=1

i+
n

n+ 1

n+2∏
i=1

i =

n+2∏
i=1

i

A.4 Graphs

Graphs are one of the most common objects of study in algorithmic problem solving.
They are an abstract way of representing various types of relations, such as roads
between cities, friendships, computer networks and so on. Formally, we say that
a graph consists of two things – a set V of vertices, and a set E of edges. An edge
consists of a pair of vertices {u, v}, which are called the endpoints of the edge. We say
that the two endpoints of the edge are connected by the edge.

A graph lends itself naturally to a graphical representation. For example, the graph
given by V = {1, 2, 3, 4, 5} and E = {{1, 2}, {3, 1}, {4, 2}, {4, 1}} can be drawn as in Fig-
ure A.1.

1

2 3

4 5

Figure A.1: The graph given by V = {1, 2, 3, 4, 5} and E = {{1, 2}, {3, 1}, {4, 2}, {4, 1}}.

DRAFT

A.4. GRAPHS 245

Graphs bring a large vocabulary with them. While you might find it hard to remember
all of them now, you will become intimately familiar with them when studying graph
theoretical algorithms later on.

A path is a sequence of distinct vertices p0, p1, ..., pl−1, pl such that {pi, pi+1} ∈ E
(i = 0, 1, ..., l − 1). This means any two vertices on a path must be connected by an
edge. We say that this path has length l, since it consists of l edges. In Figure A.1, the
sequence 3, 1, 4, 2 is a path of length 3.

If we relax the constraint that a path must contain only distinct vertices, we instead
get a walk. A walk which only contain distinct edges is called a trail. The graph in
Figure A.1 contains the walk 1, 3, 1, 2 (which is not a trail, since the edge {1, 3} is used
twice). 3, 1, 4, 2, 1 on the other hand is a trail.

If a path additionally satisfy that {p0, pl} ∈ E, we may append this edge to make the
path cyclical. This is called a cycle . Similarly, a walk with starts and ends at the same
vertex is called a closed walk. If a trail starts and ends at the same vertex, we call it a
closed trail.

A graph where any pair of vertices have a path between then is called a connected
graph. The (maximal) subsets of a graph which are connected form the connected
components of the graph. In Figure A.1, the graph consists of two components,
{1, 2, 3, 4} and {5}.

A tree is a special kind of graph – a connected graph which does not contain any
cycle. The graph in Figure A.1 is not a tree, since it contains the cycle 1, 2, 4, 1. The
graph in Figure A.2 on the other hand, contains no cycle.

1

2 3

4

Figure A.2: The tree given by V = {1, 2, 3, 4} and E = {{1, 2}, {3, 1}, {4, 1}}.

Exercise A.8

Prove that a tree of n vertices have exactly n− 1 edges.

So far, we have only considered the undirected graphs, in which an edge simply

DRAFT

246 APPENDIX A. MATHEMATICS

connects two vertices. Often, we want to use graphs to model asymmetric relations,
in which an edge should be given a direction – it should go from a vertex to another
vertex. This is called a directed graph. In this case, we will write edges as ordered
pairs of vertices (u, v), where the edge goes from u to v. When representing directed
graphs graphically, edges will be arrows, with the arrowhead pointing from u to v
(Figure A.3).

1

2

3 4

Figure A.3: The graph given by V = {1, 2, 3, 4} and E = {(1, 2), (3, 1), (4, 2), (4, 1)}.

Terms such as cycles, paths, trails and walks translate to directed graphs in a natural
way, except we must follow edges in their direction. Thus, a path is a sequence of
edges (p0, p1), (p1, p2), ..., (pl−1, pl). In the graph in Figure A.3, you may notice that
there is no directed cycle. We call such a graph a directed acyclic graph (DAG). This
type of graph will be a recurring topic, so it is a term important to be well acquainted
with.

Another augmentation of a graph is the weighted graph. In a weighted graph, each
edge e ∈ E is assigned a weight w(e). This will often represent a length or a cost of
the edge. For example, when using a graph to model a network of roads, we may
associate each road {u, v} between two locations u and vwith the length of the road
w({u, v}).

So far, we have only allowed E to be a set. Additionally, an edge has always connected
to different vertices (in contrast to a self-loop, an edge from a vertex to itself). Such
a graph is sometimes called a simple graph. Generally, our examples of graphs will
be simple graphs (even though most of our algorithms can handle duplicate edges
and self-loops). A graph where Emay be a multiset, or contain self-loops is called a
multigraph.

A.5 Chapter Notes

If you need a refresher on some more basic mathematics, such as single-variable
calculus, Calculus [22] by Michael Spivak is a solid textbook. It is not the easiest book,

DRAFT

A.5. CHAPTER NOTES 247

but one the best undergraduate text on single-variable calculus if you take the time to
work it through.

Logic in computer science [11] is an introduction to formal logic, with many interesting
computational applications. The first chapter on propositional logic is sufficient for
most algorithmic problem solving, but the remaining chapters shows many non-
obvious applications that makes logic relevant to computer science.

For a gentle introduction to discrete mathematics, Discrete and Combinatorial Math-
ematics: An Applied Introduction [9] by Ralph Grimaldi is a nice book with a lot of
breadth.

One of the best works on discrete mathematics ever produced for the aspiring algo-
rithmic problem solver is Concrete Mathematics [7], co-authored by famous computer
scientist Donald Knuth. It is rather heavy-weight, and probably serves better as
a more in-depth study of the foundations of discrete mathematics rather than an
introductory text.

Graph Theory [6] by Reinhard Diestel is widely acknowledged as the go-to book on
more advanced graph theory concepts. The author is freely available for viewing at
the book’s home page1.

1http://diestel-graph-theory.com/

http://diestel-graph-theory.com/

DRAFT

248 APPENDIX A. MATHEMATICS

DRAFT
Bibliography

[1] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[2] David Beazley and Brian K. Jones. Python Cookbook. O’Reilly, 2013.

[3] Joshua Bloch. Effective Java. Pearson Education, 2008.

[4] Xuan Cai. Canonical coin systems for change-making problems. In 2009 Ninth
International Conference on Hybrid Intelligent Systems, volume 1, pages 499–504,
Aug 2009.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, 3rd edition, 2009.

[6] Reinhard Diestel. Graph Theory. Springer, 2016.

[7] Oren Patashnik Donald E. Knuth and Ronald Graham. Concrete Mathematics: A
Foundation for Computer Science. Addison-Wesley, 1994.

[8] Philippe Flajolet and Robert Sedgewick. An Introduction to the Analysis of Algo-
rithms. Addison-Wesley, 2013.

[9] Ralph P. Grimaldi. Discrete and Combinatorial Mathematics: An Applied Introduction.
Pearson Education, 2003.

[10] G.H Hardy and E.M Wright. An Introduction to the Theory of Numbers. Oxford
University Press, 2008.

[11] Michael Huth. Logic in Computer Science. Cambridge University Press, 2004.

[12] George S. Lueker. Two NP-complete Problems in Nonnegative Integer Programming.
Princeton University. Department of Electrical Engineering, 1975.

[13] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Pearson
Education, 2009.

[14] Steve McConnell. Code Complete: A Practical Handbook of Software Construction.
Microsoft Press, 2004.

249

DRAFT

250 BIBLIOGRAPHY

[15] Scott Meyers. Effective STL. O’Reilly, 2001.

[16] Scott Meyers. Effective C++. O’Reilly, 2005.

[17] Scott Meyers. Effective Modern C++. O’Reilly, 2014.

[18] Christos Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[19] Charles Petzold. CODE. Microsoft Press, 2000.

[20] Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, 2008.

[21] Brett Slatkin. Effective Python. Addison-Wesley, 2015.

[22] Michael Spivak. Calculus. Springer, 1994.

[23] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 2013.

[24] Jeffrey Ullman and John Hopcroft. Introduction to Automata Theory, Languages,
and Computation. Pearson Education, 2014.

DRAFT
Index

addition principle, 177
algorithm, 5
and, 238

BFS, 139
bijection, 181
binary search, 118
binomial coefficient, 187
bipartite matching, 157
breadth-first search, 139

closed trail, 245
closed walk, 245
combinatorics, 177
comment, 16
compiler, 14
component, 245
composite number, 209
computational problem, 3
conjunction, 238
connected, 244, 245
connected component, 245
correctness, 7
cycle, 245
cycle decomposition, 182

DAG, 246
data structure, 127
Dijkstra’s Algorithm, 145
directed acyclic graph, 246
directed graph, 246
disjoint sets, 242
disjunction, 238
divide and conquer, 109
divisibility, 205

divisor, 205
Dyck path, 190

edge, 244
element, 240
endpoint, 244
equivalence, 238
existential quantifier, 239

factorial, 180
flow network, 151

generate and test, 68
graph, 244

identity permutation, 181
implication, 238
input description, 3
insertion sort, 57
instance, 4
intersection

of sets, 241

judgment, 11

Kattis, 10
KMP, 167
Knuth-Morris-Pratt, 167

length
of path, 245

logic, 237

main function, 16
maximum matching, 157
member, 240

251

DRAFT

252 INDEX

memory complexity, 63
modular inverse, 220
multiplication principle, 177

negation, 239
NP-complete, 62

online judge, 10
optimization problem, 67
or, 238
oracle, 63
order

of a permutation, 183
output description, 3

path, 245
permutation, 180, 181

cycles, 182
identity, 181
inverse of, 182
multiplication, 182
order, 183

prime number, 209
problem, 3
product operator, 244
programming language, 8
pseudo code, 9

quantifier, 239
query complexity, 63
quotient, 218

Rabin-Karp, 170
remainder, 218

sequence, 242
set, 240
Sieve of Eratosthenes, 208
simple graph, 246
subset, 241
sum operator, 242

time complexity, 57
trail, 245
travelling salesman problem, 67

tree, 245

undirected graph, 245
union, 242
universal quantifier, 239

vertex, 244

walk, 245
weighted graph, 246

	Preface
	Reading this Book
	I Preliminaries
	Algorithms and Problems
	Computational Problems
	Algorithms
	Correctness

	Programming Languages
	Pseudo Code
	The Kattis Online Judge
	Chapter Notes

	Programming in C++
	Development Environments
	Hello World!
	Variables and Types
	Input and Output
	Operators
	If Statements
	For Loops
	While Loops
	Functions
	Structures
	Arrays
	The Preprocessor
	Template
	Additional Exercises
	Chapter Notes

	Implementation Problems
	Additional Exercises
	Chapter Notes

	Time Complexity
	The Complexity of Insertion Sort
	Asymptotic Notation
	NP-complete problems
	Other Types of Complexities
	Exercises
	Chapter Notes

	II Basics
	Brute Force
	Optimization Problems
	Generate and Test
	Backtracking
	Fixing Parameters
	Meet in the Middle
	Chapter Notes

	Greedy Algorithms
	Optimal Substructure
	Locally Optimal Choices
	Scheduling
	Chapter Notes

	Dynamic Programming
	Best Path in a DAG
	Dynamic Programming
	Bottom-Up Computation
	Order of Computation and Memory Usage

	Multidimensional DP
	Subset DP
	Digit DP
	Standard Problems
	Knapsack
	Longest Common Subsequence
	Set Cover

	Chapter Notes

	Divide and Conquer
	Inductive Constructions
	Merge Sort
	Binary Search
	Optimization Problems
	Searching in a Sorted Array
	Generalized Binary Search

	Karatsuba's algorithm
	Chapter Notes

	Data Structures
	Disjoint Sets
	Range Queries
	Prefix Precomputation
	Sparse Tables
	Segment Trees

	Chapter Notes

	Graph Algorithms
	Breadth-First Search
	Depth-First Search
	Weighted Shortest Path
	Dijkstra's Algorithm
	Bellman-Ford
	Floyd-Warshall

	Minimum Spanning Tree
	Chapter Notes

	Maximum Flows
	Flow Networks
	Edmonds-Karp
	Augmenting Paths
	Finding Augmenting Paths

	Applications of Flows
	Chapter Notes

	Strings
	Tries
	String Matching
	Hashing
	The Parameters of Polynomial Hashes
	2D Polynomial Hashing

	Chapter Notes

	Combinatorics
	The Addition and Multiplication Principles
	Permutations
	Permutations as Bijections

	Ordered Subsets
	Binomial Coefficients
	Dyck Paths
	Catalan Numbers

	The Principle of Inclusion and Exclusion
	Invariants
	Monovariants
	Chapter Notes

	Number Theory
	Divisibility
	Prime Numbers
	The Euclidean Algorithm
	Modular Arithmetic
	Chinese Remainder Theorem
	Euler's totient function
	Chapter Notes

	Competitive Programming Strategy
	IOI
	Strategy
	Getting Better

	ICPC
	Strategy
	Getting Better

	Mathematics
	Logic
	Sets and Sequences
	Sums and Products
	Graphs
	Chapter Notes

	Bibliography
	Index

