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Abstract

Building Machines that Imagine and Reason:
Principles and Applications of Deep Generative Models

Deep generative models provide a solution to the problem of unsupervised learning, in which a machine
learning system is required to discover the structure hidden within unlabelled data streams. Because they are
generative, such models can form a rich imagery the world in which they are used: an imagination that can
harnessed to explore variations in data, to reason about the structure and behaviour of the world, and
ultimately, for decision-making. This tutorial looks at how we can build machine learning systems with a
capacity for imagination using deep generative models, the types of probabilistic reasoning that they make
possible, and the ways in which they can be used for decision making and acting.

Deep generative models have widespread applications including those in density estimation, image denoising
and in-painting, data compression, scene understanding, representation learning, 3D scene construction, semi-
supervised classification, and hierarchical control, amongst many others. After exploring these applications,
we'll sketch a landscape of generative models, drawing-out three groups of models: fully-observed models,
transformation models, and latent variable models. Different models require different principles for inference
and we'll explore the different options available. Different combinations of model and inference give rise to
different algorithms, including auto-regressive distribution estimators, variational auto-encoders, and
generative adversarial networks. Although we will emphasise deep generative models, and the latent-variable
class in particular, the intention of the tutorial is to explore the general principles, tools and tricks that can be
used throughout machine learning. These reusable topics include Bayesian deep learning, variational
approximations, memoryless and amortised inference, and stochastic gradient estimation. We'll end by
highlighting the topics that were not discussed, and imagine the future of generative models.
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Motivations for machine learning

Statistical and New era of scientific
mathematical discovery
foundations
@ — % /
g
Disrupt and create Quest to
new markets solve intelligence

What components form the ideal machine learning system?
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Why Generative Models

Move beyond associating

Inputs to outputs Understand and imagine
how the world evolves

Recognise objects in the world

and their factors of variation Detect surprising

events in the world

Establish concepts as
useful for reasoning and
decision making

Imagine and
generate rich plans
for the future

Part of a suite of complementary learning systems
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f () Functions are deep networks
0 Fully-connected, convolutional, recurrent

Some Themes
Design of probabilistic models
Bayesian Deep Learning
Memoryless and Amortised Inference
Stochastic Optimisation
Reasoning and Control

In some way, will involve the
problem of density estimation.

Densty furncton
0 0.%0 015
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Generative Models

Birds eye view of the
current state of the art.

A Model for
Every Occasion

L f(x)

Explore three classes of generative

models, their inductive biases, and §
a implications for learning and i

algorithm design.

Inference and
Learning

Principles and approximations

in different types of models.
 Bayesian two-sample tests

that can be used to drive learning §

« Marginal likelihood estimation

Tools for
Algorithm Building

Constructing scalable

algorithms
« Stochastic approximation
« Amortised inference
« Stochastic optimisation

The Case of l"
Variational Auto-
encoders

Explore different types of VAEs
« Discrete and continuous

latent variables.
* « Static, sequential, volumetric.

R  Differentiable and non-
differentiable fns.

¥ PartV

z z~q(zly)

v

Decoder Encoder
p(ylz) q(zly)

Summary
Mention of things not
discussed and wrap-up
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Semi-supervised Classifi

Generative Classifi
Model |<@—p ?Ssl‘x)e"
p(x) L
S
Data x -

CatGAN

k-means

data + class assignment decision boundaries generated examples
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_ Communication and Compression

Original Image
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0.2 bits/pixel 0.8 bits/pixel
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Truth from Emulator

Preductlon
Action-dependent simulator







Visual Concept Learning
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Score/Lives
Left

Oxygen/Swimmers
Movin
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Macro-actions and Planning

ommitment-pls
re-planning points

action-plan

value function




Successful Applications of Generative Models

Compression and Environment
Communication _Simulation

[T —

3D Scene

Generation One-shot

Generalisation

Macro-actions
and Planning

Generative
Models

Semi-supervised
Classification

Density-based
Exploration

Visual Concept |

Learning &

w Fill

Missing Data
Imputation

Representation

. Scene
Learning

Understanding
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Progress in Generative Models

Neg log-likelihood
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Progress in Generative Models

S

d S Sl . < Pt

5 r , 1 - o2 - ~ S
.

Visual Quality of Independent Samples

 Con Came
Adversarial Network RNN
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Machine Learning Framework

3. Algorithms

1. Models 2. Learning
Principles
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Types of Generative Models

Fully-observed
} models
'f Q [ f(x) Model observed data directly

without introducing any new
Q unobserved local variables.

Transformation
models

Model data as a transformation §
(2) of an unobserved noise source §
using a parameterised function.

Latent variable models

f(z) Introduce an unobserved
random variable for every observed
data point to explain hidden causes.

Models
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Smorgasbord of Learning Principles

| ‘q
Learning
Principles

For a given model, there are

many competing inference methods.
+ Exact methods (conjugacy, enumeration)
+ Numerical integration (Quadrature)
+ Generalised method of moments
+ Maximum likelihood (ML)
+ Maximum a posteriori (MAP)
+ Laplace approximation
+ Integrated nested Laplace approximations (INLA)
+ Expectation Maximisation (EM)
+ Monte Carlo methods (MCMC, SMC, ABC)
+ Noise contrastive estimation (NCE)
+ Cavity Methods (EP)

+ Variational methods
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Combining Models and Inference

A given model and learning principle can be implemented in many ways.

c.‘ S"l (': s: " "
npes feanwe maps  Fratswe maps featme magn feature maps oarput

e = =il e O I B = Convolutional neural network
\ - . . oL
[ — + penalised maximum likelihood
5 - 4 -

« Optimisation methods (SGD, Adagrad)
o S / o Regularisation (L1, L2, batchnorm, dropout)

feature extraction classification

Restricted Boltzmann Machine
+ maximum likelihood

Latent variable model
+ variational inference

VEM algorithm

Expectation propagation
Approximate message passing
Variational auto-encoders

Contrastive Divergence
Persistent Contrastive Divergence
Parallel Tempering

Natural gradients

f(z)

®
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A Model for
Every Occasion

, ] [/
¢ Explore three classes of generative |
§ models, their inductive biases, and §

2

~".

implications for learning and
algorithm design.
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Types of Generative Models

Fully-observed
a 2 models

Transformation
) models
X

Latent variable
models

f(z)

O
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Design Dimensions

< Data: binary, real-valued, nominal,
strings, images.

+ Dependency: independent, sequential,
temporal, spatial.

+ Representation: continuous or discrete

% Dimension: parametric or non-parametric

+ Computational complexity
+ Modelling capacity

+ Bias, uncertainty, calibration
+ Interpretability




Fully-observed Models

Model Parameters are
global variables.

Fully-observed models ‘
Model observed data directly |

’ - ’
o Ao s o o — g

Stochastic activations

{ A 1 }

a Q without lT’llTOdUClng any new & unobs.erved

! unobserved local variables.  § random variables are
o local variables.

L1 Cat(x1|7r)

xro ~ Cat(xa|m(x1))

Markov Models

x; ~ Cat(x;|m(x<pn))

All conditional probabilities
p(x) = [ [ p(a:l f(x<i;0)) b

described by deep networks.
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Fully-observed Models

Properties

+ Can directly encode how observed points are related.
+ Any data type can be used
+ For directed graphical models:

+ Parameter learning simple: Log-likelihood is directly computable, no
approximation needed.

+ Easy to scale-up to large models, many optimisation tools available.
- Order sensitive.
- For undirected models,
- Parameter learning difficult: Need to compute normalising constants.

- Generation can be slow: iterate through elements sequentially, or using a
Markov chain.

White Whale Hartebeest

. K S ﬁ = /:.v;.\.‘;‘ =
= u‘q ;'-2. '.“ :
Pixel CNN [ - e };ﬁ Al
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Model-space Visualisation

Fully-observed models
Directed

NADE, EoNADE
Fully-visible sigmoid
belief networks

Pixel CNN/RNN
RNN Language mod.
Context tree switching

Normal Means
Continuous
Markov Models
N-AR(p)
RNADE

Discrete Continuous

Boltzmann Machines

Discrete Markov Gaussian MRFs
Random Fields Log-linear models
Ising, Hopfield

and Potts Models

Undirected
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Transformation Models

Change of variables for invertible functions

1
det 6‘_f

Transformation models §
0z |

Transform an unobserved
J@) noise source using a
parameterised function.

s
5 .2 o 1) Il = Ne— s
AU N e A e e NERE———— e - b
"§ "~ Z ( y ) _ Stride 2
QL) § Project and reshape CONV 1 \
CONV 2 64
b — .

§ 2 X = f(Z, 9) CONV 4 g
O 0

The transformation function is parameterised by a linear or
deep network (fully-connected, convolutional or recurrent).
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Transformation Models

Properties

+ Easy sampling
+ Easy to compute expectations without knowing final distribution.
+ Can exploit with large-scale classifiers and convolutional networks.
- Difficult to satisfy constraints: Difficult to maintain invertibility, and
challenging optimisation.
- Lack of noise model (likelihood):
- Difhicult to extend to generic data types
- Difhicult to account for noise in observed data.

- Hard to compute marginalised likelihood for model scoring,
comparison and selection.

Bedrooms

Convolutional generative
adversarial network
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Model-space Visualisation

Transformation models

: 0
N Stochastic One-liners and [
g Differential Equations inverse sampling &
9 Hamiltonian and Distrib. warping [
g Langevin SDE Normalising flows &
9 Diffusion Models GAN generator nets [
g Non- and volume Non- and volume &
W preserving flows preserving transforms [
' 0
Diffusions ' ' Functions
Continuous tiMe . _ _ _ _ . _ . _ o 0 oo e e e e e e e Discrete time
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Latent Variable Models

Latent variable models |

f(z) Introduce an unobserved _
local random variables that |
represents hidden causes.  §

—
N P)
=
=
=
=
L)
)
=
S
O
)
S
=
S
~
Sy
o8]
Q
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Latent Variable Models

Properties

+ Easy sampling.
+ Easy way to include hierarchy and depth.
+ Easy to encode structure believed to generate the data

+ Avoids order dependency assumptions: marginalisation of latent
variables induces dependencies.

+ Latents provide compression and representation the data.

+ Scoring, model comparison and selection possible using the
marginalised likelihood.

- Inversion process to determine latents corresponding to a input is
difhicult in general

- Diflicult to compute marginalised likelihood requiring
approximations.

- Not easy to specity rich approximations for latent posterior
distribution.

Convolutional
DRAW
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Model-space Visualisation

Latent variable models

Cascaded Indian Sigmoid Belief Net
Buffet process Deep auto-regressive
Hierarchical Dirichlet networks (DARN)

process

Non-parametric ,
Deep Gaussian

processes
Recurrent Gaussian
Process

GP State space model

Indian buffet process
Dirichlet process
mixture Discrete

Deep

Nonlinear factor
analysis

Nonlinear Gaussian
Continuous belief network

Deep Latent Gaussian
(VAE, DRAW)

Hidden Markov Model
Discrete LVM

Sparse LVMs
Direct/

Linear
Parametric

PCA, factor analysis
Independent
components analysis

Gaussian process LVM

Gaussian LDS
Latent Gauss Field
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Part 111

Inference and
Learning

§  Principles and approximations ¢
¢ that can be used to drive learning §
in difterent types of models.

¢ + Model evidence 5
¥ « Two-sample testing




Inferential Problems

Common inference problems are:

p(x) = [ plx.2)dz
Sl @) = [ fp(ax)ds

plxi1) = [ ploxralx)p(x)dx,
B = log p(x|Hy) — log p(x|Ha)
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Bayesian Model Evidence

Model evidence (or marginal likelihood, partition function):
Integrating out any global and local variables enables
model scoring, comparison, selection, moment estimation,
normalisation, posterior computation and prediction.

We take steps to improve the model evidence
for given data samples.

Learning principle: Model Evidence

/ p(x, 2)dz

Basic idea: Transtorm
the integral into an
expectation over a simple,

Integeral is intractable in general ..
5 5 known distribution.

and requires approximation.
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Importance Sampling

p(x) = [ plxlz)p(z)dz
p(x)

Importance Weight 169

Notation

Always think of g(z|x)
but often will write g(z)
for simplicity.

Conditions

* g(z|x)>0, when f{z)p(z) # 0.
 Easy to sample from ¢(z).

1 S S
p(x) = 5 2 wp(xlz")
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Importance Sampling to Variational Inference

n(z
log p(x) > / q(z)log (p(X\Z)(—ZD dz
o8 [ playg(e)de > [ pe)logg(a)ds q

~ [ am10gp(xiz) - [ a(a)tog 12

Variational lower bound
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Interpreting the bound:

« Approximate posterior distribution q(z|x): Best match to true posterior
p(z|x), one of the unknown inferential quantities of interest to us.

« Reconstruction cost: The expected log-likelihood measures how well
samples from g(z|x) are able to explain the data x.

 Penalty: Ensures that the explanation of the data g(z|x) doesn’t deviate
too far from your beliefs p(z). A mechanism for realising Ockham’s razor.
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Other Families of Variational Bounds

Variational Free Enerqy

Other generalised families exist. Optimal solution is the same for all objectives.
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Bayesian Two-sample Testing

For some models, we only have access to an Basic idea:
unnormalised probability or partial knowledge of Transform density
the distribution. ratio estimation into

- class probability
W, ,

We compare the
estimated distribution to the
true distribution using samples.

Learning principle: Two-sample tests

) _ o s
o®) 1 p(x) = p(x) .

Interest is not in estimating the marginal probabilities, only in how they are related.
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Bayesian Two-sample Testing

{x1,...,xn}={X1,.. ., X, X1, ..., X7 }
Assign labels {y1,...,yn}t ={+1,...,+1,-1,...,
p(3) = plxly = +1)  p(X) = plxly

p(xly) = p(y[x)p(x)

Conditional

0.8

061

Bayes’ Subst.

04

0.2

|
1
=1
Ny
s
tlx
— 3
5
=
Al
Ny
[N
|| %
ZI
8

Class probability m = :

Computing a density ratio is equivalent to class probability estimation.
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Testing to Adversarial Learning

ply=+15x) = Do(x)  ply = —1[x) = 1 — Dy(x)
log p(y|x) = log Dp(x) +-log(1 — Dg(x))

RN BRI F(x, 0) = E,(yo0s)[log Do (x°°)] + Ep(poeny[log(1 — Dp(x7™))]

Generative Adversarial Networks

ot Dr ] ot D |

: .F(X, (9, ¢) = Ep(xobs

Alternating optimisation

min max F(x,6, )

Instances of testing and inference:
« Two-sample density ratio estimation
« Importance estimation
« Noise-contrastive estimation
» Adversarial learning
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TPart 1V

Tools for
Algorithm Building

Tools for constructing
scalable algorithms

o Amortised inference
« Stochastic optimisation




Variational EM

F(x,q) = Ey)[logp(x|z)] — KL|q(z)|/p(z)]

Alternating optimisation for the variational
parameters and then model parameters (VEM).

Repeat:

E-step @ X \/¢./"(X, q) Var. params

M-step @ x VoF (X, q) Model params

log p (X) j j T

KL[g||p*]

E—

14

Initialisation Convergence
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Stochastic Approximation

F(x,q) = Eq(z)[log p(x|z)| — K L|q(z)||p(z)]

Optimise using a a stochastic gradient based on a mini-batch of data.
Many names: online EM, stochastic approximation EM, stochastic variational inference.

Repeat:

N is a mini-batch: sampled
| » pute g ) (Inference) with replacement from the full

On X VB, (2)[log po(xn|zn)] — Ve K L{q(2,)[|p(2)]

log p(x)ﬁ

, . 1
s (2) [ Vo log pg (x| 2] Gl .

F(x, q)T'—

1 ]

h

Initialisation Convergence
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Memoryless Inference

E-step does not reuse any previous computation.

Repeat: Memoryless: Any inference
computations are discarded
E-step (compute g) (Inference) after the M-step update

Fori=1,..N
Prn X VplEg, (2) log po(xn|2n)] — VoK L{g(z)|lp(2)]

M-step (Parameter Learning)

1 ﬂ
0 o N Z L0 (2) [ Vo log po (X |2n)]

n
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Amortised Inference

Repeat:
E-step (compute q) | |
10'::,_.“. B Instead of solving for every
."ﬁ | observation, amortise using a model.

M-step

1
0 N ;E%(z) Vo log po(xn|2)]

Z~q(zl x)

« Inference network: g is an encoder, an inverse model,
recognition model. Network

« Parameters of g are now a set of global parameters used q(z Ix)
for inference of all data points - test and train.

e Amortise (spread) the cost of inference over all data.

» Joint optimisation of variational and model parameters. I

Inference networks provide an efficient mechanism for
posterior inference with memory
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Amortised Variational Inference

Z z~q(z ! x)
. Model Net %
Stochastic encoder-decoder system to p(x I2) e(;’V;;l)’
q

implement variational inference.

- Model (Decoder): likelihood p(x|z). ¢
- Inference (Encoder): variational distribution g(z|x) x~p(x|z) -

- Transtorms an auto-encoder into a generative model

Specific combination of variational inference in latent

variable models using inference networks

But don’t forget what your model is, and what inference you use.
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Minimum Description Length

Stochastic encoder Data code-length Hypothesis code

Stochastic encoder-decoder systems implement amortised variational inference.

Z 2~q(zlx)
Regularity in our data that can be explained with | * - |
latent variables, implies that the data is compressible. ﬁ
Minimum Description Length (MDL):
. - Decoder Encoder
Inference is a problem of Compression. p(x 17) a2 Ix)
we must find the ideal shortest message of our
data x: marginal likelihood. *

Must introduce an approximation to the ideal message. . _ ., i
Data x

Encoder: variational distribution g(z|x),
Decoder: likelihood p(x|z).
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Amortised Message Passing

Factorised assumption

§  Memoryless inferen

ce: solve and update cavity distributions iteratively.

; = argmin D7 [f'q\ ||¢'q "] ;

Amortised inference: Use a model (trees, deep nets, basis functions).

Expectation Propagation
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Amortised Predictive Distributions

Posterior predictive distributions in Bayesian neural networks

p(y*lz*, X, Y) = / p(y" ™, W)p(W[X,Y)dW < 7

ction: compute by Monte Carlo

ryless predi

Memo

W{S} ~ p(W‘X, Y)
S
=1

>k >k 1
q(y \x)zg

Amortised predictions:
distillation using a deep network.

p(y*|a:*,X, Y) — f(ZE*,(Q)

Bayesian Dark Knowledge

OEE
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Stochastic Optimisation

Common gradzent problem

— P — . « Don’t know this
expectation in general.

 Gradient is of the
parameters of the

distribution w.r.t. which
the expectation is taken.

Two general approaches: Typical problem areas:

» Deterministic methods: use additional -Generative models and inference
bounds to simplify computation - local -Reinforcement learning and control
variational methods. -Operations research and inventory

» Stochastic methods: Compute the control
expectation by Monte Carlo and exploit -Monte Carlo simulation
properties of the distributions. -Finance and asset pricing

1. Pathwise estimator: Differentiate the function f(z)
2. Score-function estimator: Differentiate the density g(z|x)
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Stochastic Gradient Estimators

Pathwise Estimator Score-function estimator
When easy to use transformation is When function f non-differentiable and
available and differentiable function f. q(z) is easy to sample from.
=E,[Ve/folgle, ¢)) = Ey(2)[fo(2) Vg 1og g4(2))]

z ~ qy(2)
z = g(e,9) €~ p(e)

Other names: Other names:
Stochastic backpropagation Likelihood ratio method
Perturbation analysis REINFORCE and policy gradients
Reparameterisation trick Automated inference
Affine-independent inference Black-box inference

Doubly stochastic estimators
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PartV

The Case of

Variational Auto-
encoders

¥ Explore different types of VAEs  §

¢ + Discrete and continuous latents §
« Static, sequential, volumetric. !

| « Differentiable and non-

# differentiable fns.




Variational Auto-encoders in General

Variational Auto-encoder (VAE)
Amortised variational inference for latent variable models

F(q) = Eq,(»)llog pe(x|z)] — K L{gy(z|x)|p(2)]

Z z~q(z!x)
Design choices ’ ! '
e Prior on the latent variable ¢
- Continuous, Discrete, Gaussian,
Bernoulli, Mixture
e Likelihood function Model Rr—.
- iid (static), sequential, temporal, spatial p(xIz) a(z Ix)
» Approximating posterior
- distribution, sequential, spatial ‘
For scalability and ease of implementation —

» Stochastic gradient descent (and variants), X pxlz)

« stochastic gradient estimation
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Implementing a Variational Algorithm

Backward pass

Vo

.. : : : Forward pass
Variational inference turns integration

into optimisation: Automated Tools: Z Hlg(z)]

Prior

« Differentiation: Theano, Torch7,
TensorFlow, Stan.

« Message passing: infer NET

log p(z) Inference \V/ 0
q(z Ix) * Inference
q(z Ix)
Model
p(x1z) i Model *
p(xIz)
!
« Stochastic gradient descent and
other preconditioned optimisation.
P P log p(xlz)
e Same code can run on both GPUs or
on distributed clusters.
‘ Probabi.listic model.s are modular, Ideally want probabilistic programming
can easily be combined. using variational inference.
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http://infer.net

Latent Gaussian VAE

= ¢ Hlg(z)]
",

O

>

=

=

z a(z 1)

)
O

S

3 Model

—

- S
;4 Data x

Q.

Q

U
-

log p(xlz)
F(%,q) = Eqz[log p(x|z)] — K Llg(z)||p(z)] All functions are deep networks.
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Latent Gaussian VAE

Oxygen/Swimmers Moving Left

3 dimensional latent variable of MNIST

dsentangls ololo|o|o|o|s]0|¢] ¢
the input data oo 0 0|06
oo 0000|065

o000 0 0[00]5

RLa:er::;dorEmbedding o o o o 0 o 0 O 0 5

- d38%2 ©|O|0|00|0|0|0|0|5
itcthood bound ©|0|0|010[0/0]0/6|5
gives a visualisation % Glle O 0 O O O 0 6 5
of importance. OO0 O 0 0 0 0 6 5
CliSlis][s][s]{s][s]s]IS]IS

Factor 1
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VAE Representations

.‘:ﬁL'l'—’llI e

Representations are useful for strategies such as episodic control.
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Latent Gaussian VAE

Require flexible approximations for the types of posteriors we are likely to see.
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Latent Binary VAE

p(zi|z<i) = Bern(zi|f(z<i))

Y
2 Z Hlg(z)]
@)
2
V)
vd
>
7 q(z Ix)
75
D)
—
o0
<P
n Model
<
Q.
d
D
- log p(xlz)
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Latent Binary VAE

Samples from binarised Atari frames
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Semi-supervised VAE

| Class Prior ‘ | Prior ‘
log p(y) log p(z) - - Bmﬂmmﬂ 0;

Inference Inference
q(z Ix) q(y Ix, z)

Model . HEOBOHNEBED
p(xlz,y)
- 1112131415161718191(

Visual Analogies

Data x

log p(xlz, y)

% Classification Error
g (100 labels) -

SS-VAE VAT Net S S_"‘j;E SS-GAN
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Sequential Latent Gaussian VAE

Prior

< Hlg(z)]

log p(z)

% eren p(x|fy (2))
q(z Ix
<
a4
&)
Model
log p(xIz)
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Sequential Latent Gaussian VAE

Prior

- ®

Prior Prior

O~

<
as
a Model
p(x1z)
e LSTM or GRU networks for state modules
e Spatial attention in both the recognition and
generation phase using spatial transformers.
log p(xlz)

e Can remove inference model RNN and share
the generate model state.

e Can include additional canvas
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Sequential Latent Gaussian VAE
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Sequential Latent Gaussian VAE
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Structured Sequential VAEs
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Structured Sequential VAEs

Good reconstruction,
correct count
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Volumetric VAEs

Prior Prior Prior
Model
p(x1z)
Model can be non-
differentiable, like a
graphics engine.
log p(xlz)

q(z,| x) q(z,| x) q(z,| x) .
! | ’ | ! « Extend to use volumetric
* convolutions and canvas.

-3
& b

Volumetric DRAW

e 3D read/write attention using 3D
spatial transtormers.

« Volume can represent colour
channels, volumes, time.

e Can use non-differentiable model
such as a renderer.

M

Machines that Imagine and Reason



Volumetric VAEs
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Macro-action Learning
| Prior |
log p(zlx) | Ilql('all !j“ZI)! |

| Action Prior | T

§ log p(a, ,Iz) | q(z Ix) |
b~ :

7 Environment

or Model <

log p(Rla, x)
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Macro-action Learning

ommitment-plar
re-planning points

action-plan

value function







Demonstrated Applications of Generative Models

Compression and
Communication

Environment
Simulation

r__'—

3D Scene

Generation One-shot

Generalisation

Macro-actions
and Planning

Generative
Models

Semi-supervised
Classification

Density-based
Exploration

Visual Concept |

Learning &

w Fill

Missing Data
Imputation

Representation

. Scene
Learning

Understanding
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Summary

Neg Log-likelihood
(nats)

88.3 86.3 85

83.5 80.5

Bernoullis  Analysis  Sleep RBM -CVAE  DRAW RNN

Q W 12 1
() : (=)

Fully-observed Transformation Latent variable
models models models
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Learning principle: Model Evidence

/ p(x,z)dz
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Summary

Amortised Inference ~ Stochastic optimisation

-7/

z2~q(z!x)

Pathwise Estimator Score-function estimator
When easy to use transformation is When function f non-differentiable and
Network : : ) : :
a(z Ix) available and differentiable function f. q(z) is easy to sample from.
Families of VAEs
Prior Prior Prior el ks, A,

Modd } }

1. -
& as

G+
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The Future of Generative Models

Data-efficient
In the aid of supervised and learning systems

reward-based systems Make more efficient

Calibration, confidence intervals,
robustness and interpretability.

use of scarce data

Semi-parametric

Combining parametric and non-
parametric models for scalable,

Complementary systems accurate, adaptive models

and integrated agents

Richer scene understanding Scientific discovery
Self-directed and curious agents Exploratory analysis.
Conceptual reasoning Synthesis and simulation: cosmic
Integrated planning and phenomena, climate systems.

control systems
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