# Resources for Machine Learning * [Tensorflow](https://github.com/bt3gl/Resources-Machine_Learning/tree/master/TensorFlow). * [Caffe](https://github.com/bt3gl/Resources-Machine_Learning/tree/master/Caffe). * [Talks](https://github.com/bt3gl/Resources-Machine_Learning/tree/master/Talks). * [Notebooks](https://github.com/bt3gl/Resources-Machine_Learning/tree/master/Notebooks). * [Docker images](https://github.com/bt3gl/Resources-Machine_Learning/tree/master/Docker_Images). * [Numpy](https://github.com/bt3gl/Resources-Machine_Learning/tree/master/Numpy). ---- ## Learning ### Courses * [Stanford's Machine Learning Course](http://cs229.stanford.edu/) ## Deep Learning * [A Chart of Neural Networks](http://www.asimovinstitute.org/neural-network-zoo/). * [UCL Course on RL](http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html) * [Stanford's Convolutional Neural Networks for Visual Recognition](http://cs231n.stanford.edu/) * [The 9 CNN Papers You Need To Know About](https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html). * [NVIDIA Deep Learning Course](https://www.youtube.com/playlist?list=PL5B692fm6--tI-ijknnVZWbXU2H4JpSYe) * [DeepBench](https://github.com/baidu-research/DeepBench). ---- ## License This work is licensed under a [Creative Commons Attribution-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-sa/4.0/). When making a reference to my work, please use my [website](http://bt3gl.github.io/index.html).