# Curated Resources on ETL, Machine Learning, and ML Pipelines ``` The morale of this repository is to cover resources for deploying Machine learning in production environments, a task that includes data sourcing, data ingestion, data transformation, pre-processing data for use in training, training a model, and hosting the model. ``` Three conceptual steps are how most data pipelines are designed and structured: * **Extract**: sensors wait for upstream data sources. * **Transform**: business logic is applied (e.g. filtering, grouping, and aggregation to translate raw data into analysis-ready datasets). * **Load**: processed data is transported to a final destination. ## Tools & Code Samples * [Data science resources](https://github.com/davidyakobovitch/data_science_resources). * [AWS Data pipeline samples](https://github.com/aws-samples/data-pipeline-samples/tree/master/samples). #### Airflow * [Incubator Airflow data pipelining](https://github.com/apache/incubator-airflow) * [Awesome Airflow Resources](https://github.com/jghoman/awesome-apache-airflow). * [Airflow in Kubernetes](https://github.com/rolanddb/airflow-on-kubernetes). * [Astronomer: Airflow as a Service](https://github.com/astronomer/astronomer). #### Lorte * [Lorte data pipelining](https://github.com/instacart/lore). ## MOOCs #### General Pipelines * [Coursera's Big Data Pipeline course](https://www.coursera.org/lecture/big-data-integration-processing/big-data-processing-pipelines-c4Wyd). #### Airflow * [Udemy's Airflow for Beginners](https://www.udemy.com/airflow-basic-for-beginners/). ## Tutorials & Articles #### 2019 * [How to Code Neat Machine Learning Pipelines](https://www.neuraxio.com/en/blog/neuraxle/2019/10/26/neat-machine-learning-pipelines.html). ## Enterprise Solutions * [Netflix data pipeline](https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905). * [Netlix data videos](https://www.youtube.com/channel/UC00QATOrSH4K2uOljTnnaKw). * [Yelp data pipeline](https://engineeringblog.yelp.com/2016/07/billions-of-messages-a-day-yelps-real-time-data-pipeline.html). * [Gusto data pipeline](https://engineering.gusto.com/building-a-data-informed-culture/). * [500px data pipeline](https://medium.com/@samson_hu/building-analytics-at-500px-92e9a7005c83.) * [Twitter data pipeline](https://blog.twitter.com/engineering/en_us/topics/insights/2018/ml-workflows.html). * [Coursera data pipeline](https://medium.com/@zhaojunzhang/building-data-infrastructure-in-coursera-15441ebe18c2). * [Cloudfare data pipeline](https://blog.cloudflare.com/how-cloudflare-analyzes-1m-dns-queries-per-second/). * [Pandora data pipeline](https://engineering.pandora.com/apache-airflow-at-pandora-1d7a844d68ee). * [Heroku data pipeline](https://medium.com/@damesavram/running-airflow-on-heroku-ed1d28f8013d). * [Zillow data pipeline](https://www.zillow.com/data-science/airflow-at-zillow/). * [Airbnb data pipeline](https://medium.com/airbnb-engineering/https-medium-com-jonathan-parks-scaling-erf-23fd17c91166). * [Walmart data pipeline](https://medium.com/walmartlabs/how-we-built-a-data-pipeline-with-lambda-architecture-using-spark-spark-streaming-9d3b4b4555d3). * [Robinwood data pipeline](https://robinhood.engineering/why-robinhood-uses-airflow-aed13a9a90c8). * [Lyft data pipeline](https://eng.lyft.com/running-apache-airflow-at-lyft-6e53bb8fccff). * [Slack data pipeline](https://speakerdeck.com/vananth22/operating-data-pipeline-with-airflow-at-slack). * [Remind data pipeline](https://medium.com/@RemindEng/beyond-a-redshift-centric-data-model-1e5c2b542442). * [Wish data pipeline](https://medium.com/wish-engineering/scaling-analytics-at-wish-619eacb97d16). * [Databrick data pipeline](https://databricks.com/blog/2017/03/31/delivering-personalized-shopping-experience-apache-spark-databricks.html). ## Talks * [Industrial Machine Learning Talk](https://www.youtube.com/watch?v=3JYDT8lap5U).