mirror of
https://github.com/autistic-symposium/tensorflow-for-deep-learning-py.git
synced 2025-05-12 03:34:59 -04:00
🏝 Clean up list of resources
This commit is contained in:
parent
b43eaf587c
commit
f9d6afbf84
1 changed files with 10 additions and 8 deletions
18
README.md
18
README.md
|
@ -14,25 +14,27 @@ Three conceptual steps are how most data pipelines are designed and structured:
|
||||||
* **Load**: processed data is transported to a final destination.
|
* **Load**: processed data is transported to a final destination.
|
||||||
|
|
||||||
|
|
||||||
---
|
## Tutorials
|
||||||
|
|
||||||
## Learning References
|
|
||||||
|
|
||||||
### Courses and Lists
|
|
||||||
|
|
||||||
* [Data science resources](https://github.com/davidyakobovitch/data_science_resources).
|
* [Data science resources](https://github.com/davidyakobovitch/data_science_resources).
|
||||||
* [Lorte data pipelining](https://github.com/instacart/lore).
|
* [Lorte data pipelining](https://github.com/instacart/lore).
|
||||||
* [Incubator Airflow data pipelining](https://github.com/apache/incubator-airflow)
|
* [Incubator Airflow data pipelining](https://github.com/apache/incubator-airflow)
|
||||||
* [Udemy's Airflow for Beginners](https://www.udemy.com/airflow-basic-for-beginners/).
|
|
||||||
* [Awesome Airflow Resources](https://github.com/jghoman/awesome-apache-airflow).
|
* [Awesome Airflow Resources](https://github.com/jghoman/awesome-apache-airflow).
|
||||||
* [Airflow in Kubernetes](https://github.com/rolanddb/airflow-on-kubernetes).
|
* [Airflow in Kubernetes](https://github.com/rolanddb/airflow-on-kubernetes).
|
||||||
* [Astronomer: Airflow as a Service](https://github.com/astronomer/astronomer).
|
* [Astronomer: Airflow as a Service](https://github.com/astronomer/astronomer).
|
||||||
* [Data pipeline samples](https://github.com/aws-samples/data-pipeline-samples/tree/master/samples).
|
* [Data pipeline samples](https://github.com/aws-samples/data-pipeline-samples/tree/master/samples).
|
||||||
* [Awesome Scalability: a lot of articles and resources on the subject](https://github.com/binhnguyennus/awesome-scalability).
|
* [Awesome Scalability](https://github.com/binhnguyennus/awesome-scalability).
|
||||||
|
|
||||||
|
## MOOCs
|
||||||
|
|
||||||
* [Coursera's Big Data Pipeline course](https://www.coursera.org/lecture/big-data-integration-processing/big-data-processing-pipelines-c4Wyd).
|
* [Coursera's Big Data Pipeline course](https://www.coursera.org/lecture/big-data-integration-processing/big-data-processing-pipelines-c4Wyd).
|
||||||
|
* [Udemy's Airflow for Beginners](https://www.udemy.com/airflow-basic-for-beginners/).
|
||||||
|
|
||||||
|
## Talks
|
||||||
|
|
||||||
* [Industrial Machine Learning Talk](https://www.youtube.com/watch?v=3JYDT8lap5U).
|
* [Industrial Machine Learning Talk](https://www.youtube.com/watch?v=3JYDT8lap5U).
|
||||||
|
|
||||||
#### Enterprise Solutions
|
## Enterprise Solutions
|
||||||
|
|
||||||
* [Netflix data pipeline](https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905).
|
* [Netflix data pipeline](https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905).
|
||||||
* [Netlix data videos](https://www.youtube.com/channel/UC00QATOrSH4K2uOljTnnaKw).
|
* [Netlix data videos](https://www.youtube.com/channel/UC00QATOrSH4K2uOljTnnaKw).
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue