mirror of
https://github.com/autistic-symposium/shell-whiz-toolkit.git
synced 2025-05-12 19:52:14 -04:00
Add a couple of cool things
This commit is contained in:
parent
ba37a20b2c
commit
98bd1fe12f
16 changed files with 439 additions and 0 deletions
BIN
.DS_Store
vendored
Normal file
BIN
.DS_Store
vendored
Normal file
Binary file not shown.
|
@ -6,6 +6,7 @@
|
|||
* ELK shell scripts.
|
||||
* data science quick scripts.
|
||||
* Suricata shell scripts and config files.
|
||||
* Chef useful commands.
|
||||
|
||||
😈 OBVIOUSLY I DON'T INCLUDE SENSITIVE PARTS 😈
|
||||
|
||||
|
|
1
Suricata
Submodule
1
Suricata
Submodule
|
@ -0,0 +1 @@
|
|||
Subproject commit 5ea9eee01bc9f55d93ca3cdcd9e02490a49616c8
|
47
chef/CHEF_COMMANDS.md
Normal file
47
chef/CHEF_COMMANDS.md
Normal file
|
@ -0,0 +1,47 @@
|
|||
## Chef Commands
|
||||
|
||||
Roles contain recipes:
|
||||
|
||||
```
|
||||
$ knife role list
|
||||
```
|
||||
|
||||
All the recipes that are in that role
|
||||
|
||||
```
|
||||
$ knife role show <role_name>
|
||||
```
|
||||
|
||||
To see the nodes:
|
||||
|
||||
```
|
||||
$ knife node list
|
||||
$ knife node show <node_name>
|
||||
```
|
||||
|
||||
To register a brand new machine with chef
|
||||
|
||||
```
|
||||
$ knife bootstrap
|
||||
```
|
||||
This will SSH into the machine, download chef package, install chef to `/opt`, and get it running and registered with the chef server, see `~/.chef/knife.rb`,
|
||||
|
||||
|
||||
Before adding/pushing a change in chef
|
||||
|
||||
```
|
||||
$ knife spork role from file roles/key.json
|
||||
$ knife spork omni logstash --remote
|
||||
```
|
||||
|
||||
when logstash version:
|
||||
|
||||
```
|
||||
$ knife spork bump logstash
|
||||
```
|
||||
|
||||
then
|
||||
|
||||
```
|
||||
$ knife spork omni logstash --remote
|
||||
```
|
45
data_science/export_results.py
Executable file
45
data_science/export_results.py
Executable file
|
@ -0,0 +1,45 @@
|
|||
#!/usr/bin/env python
|
||||
# Need to have argparse installed:
|
||||
# $ pip install argparse
|
||||
|
||||
import sys
|
||||
import os.path
|
||||
import argparse
|
||||
from pandas import DataFrame
|
||||
|
||||
|
||||
def read_data(data):
|
||||
lines = data.readlines()
|
||||
|
||||
feature, precision, recall, f1 = [], [], [], []
|
||||
for line in lines:
|
||||
line_clean = line.strip().split(",")
|
||||
feature.append(line_clean[0])
|
||||
precision.append(line_clean[1])
|
||||
recall.append(line_clean[4])
|
||||
f1.append(line_clean[6])
|
||||
return feature, precision, recall, f1
|
||||
|
||||
|
||||
def save_to_spreadsheet(resultfile, data):
|
||||
try:
|
||||
df = DataFrame({'Feature': data[0], 'Precision': data[1], 'Recall': data[2], 'f1-score': data[3]})
|
||||
df.to_csv(resultfile, index=False)
|
||||
print("Spreadsheet saved at {0}".format(resultfile))
|
||||
except:
|
||||
print("Error: {0}".format(sys.exc_info()[0]))
|
||||
|
||||
|
||||
def menu():
|
||||
parser = argparse.ArgumentParser(description='Copy data results into a spreadsheet.')
|
||||
parser.add_argument('-s', dest='input', type=argparse.FileType('r'), required=True, help="File with the results.")
|
||||
parser.add_argument('-d', dest='output', required=True, help="The name of the file to save the spreadsheet.")
|
||||
args = parser.parse_args()
|
||||
args.input, args.output
|
||||
return args.input, args.output
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
datafile, resultfile = menu()
|
||||
data = read_data(datafile)
|
||||
save_to_spreadsheet(resultfile, data)
|
225
data_science/runEval.py
Normal file
225
data_science/runEval.py
Normal file
|
@ -0,0 +1,225 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
"""
|
||||
Run svm_light, parse its stdout, calculate
|
||||
ML scores, HDFS copy data to local.
|
||||
"""
|
||||
|
||||
import sys
|
||||
import os
|
||||
import getpass
|
||||
import subprocess
|
||||
import shutil
|
||||
import math
|
||||
|
||||
|
||||
def delete_dir(dir_path):
|
||||
'''
|
||||
Remove a directory.
|
||||
|
||||
Args:
|
||||
dir_path: full path to the directory.
|
||||
'''
|
||||
if os.path.isdir(dir_path):
|
||||
shutil.rmtree(dir_path)
|
||||
|
||||
|
||||
def usage():
|
||||
'''
|
||||
Handle the CLI arguments.
|
||||
'''
|
||||
args = sys.argv
|
||||
if len(args) != 3:
|
||||
print("Usage: ./runEval <method> <version>")
|
||||
sys.exit(2)
|
||||
return args[1], args[2]
|
||||
|
||||
|
||||
def create_dir(dir_path):
|
||||
'''
|
||||
Create a a directory.
|
||||
|
||||
Args:
|
||||
dir_path: full path to the directory.
|
||||
'''
|
||||
if not os.path.exists(dir_path):
|
||||
os.makedirs(dir_path)
|
||||
|
||||
|
||||
def run_svm_classify(test_data, svml_model, svml_eval):
|
||||
'''
|
||||
Spawn a subprocess to run svm_classify binary.
|
||||
|
||||
From svm_classify.c, svm_light usage requires the following
|
||||
arguments: example_file model_file output_file.
|
||||
|
||||
Args:
|
||||
test_data: path_to_feature/test.dat
|
||||
svml_model: something like ~/data/models/svmlight/method/version/model
|
||||
svml_eval: something like ~/data/models/svmlight/method/version/eval
|
||||
|
||||
Returns:
|
||||
Strings with stdout and stderr so that it can be parsed later.
|
||||
'''
|
||||
p = subprocess.Popen(['./models/svm_classify', \
|
||||
'{0}'.format(test_data), \
|
||||
'{0}'.format(svml_model),\
|
||||
'{0}'.format(svml_eval)],\
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.PIPE)
|
||||
out, err = p.communicate()
|
||||
return out, err
|
||||
|
||||
|
||||
def paste_data(test_data, svml_eval, final_eval, svml_alpha, final_alphas, out):
|
||||
'''
|
||||
Copy all eval and alpha data from results to local files.
|
||||
|
||||
Args:
|
||||
src and dst paths.
|
||||
'''
|
||||
# Copy all eval data.
|
||||
with open(test_data, 'r') as ft:
|
||||
test_data = ft.readlines()
|
||||
|
||||
with open(svml_eval, 'r') as fe:
|
||||
eval_data = fe.readlines()
|
||||
|
||||
with open(final_eval, 'a') as f:
|
||||
for line in test_data:
|
||||
f.write('{0}\n'.format(line))
|
||||
for line in eval_data:
|
||||
f.write('{0}\n'.format(line))
|
||||
|
||||
# Copy all alpha data.
|
||||
with open(svml_alpha, 'r') as fa:
|
||||
alpha_data = fa.readlines()
|
||||
|
||||
with open(final_alphas, 'a') as f:
|
||||
for line in alpha_data:
|
||||
f.write('{0} {1}\n'.format(line, out))
|
||||
|
||||
|
||||
def parse_svmlight_output(out):
|
||||
'''
|
||||
Parse the svm_light stdout string for an example
|
||||
|
||||
Returns:
|
||||
c: counts
|
||||
p: precision
|
||||
r: recall
|
||||
'''
|
||||
c = out.split('OK. (')[1].split(' support')[0]
|
||||
pr = out.split('Precision/recall on test set: ')[1].split(' support')[0].strip()
|
||||
p, r = pr.split('/')
|
||||
p = float(p.strip('%').strip()) / 100
|
||||
r = float(r.strip('%').strip()) / 100
|
||||
|
||||
return c, p, r
|
||||
|
||||
|
||||
def hdfs_copy_data(home_dir, method, version):
|
||||
'''
|
||||
Run CLI HDFS commands to clean up and save data.
|
||||
'''
|
||||
os.system('hdfs dfs -rm /data/shared/structdata/modelOutput/{0}/{1}/scores'.format(method, version))
|
||||
os.system('hdfs dfs -rm /data/shared/structdata/modelOutput/{0}/{1}/alphas'.format(method, version))
|
||||
|
||||
os.system('hdfs dfs -mkdir /data/shared/structdata/modelOutput/{0}/{1}'.format(method, version))
|
||||
|
||||
os.system('hdfs dfs -copyFromLocal {0}/data/eval/{1}/{2}/alphas \
|
||||
/data/shared/structdata/modelOutput/{3}/{4}/alphas'.format(home_dir, version, method, method, version))
|
||||
|
||||
os.system('hdfs dfs -copyFromLocal {0}/data/eval/{1}/{2}/eval \
|
||||
/data/shared/structdata/modelOutput/{3}/{4}/scores'.format(home_dir, version, method, method, version))
|
||||
|
||||
def calculate_scores(list_of_scores):
|
||||
'''
|
||||
Calculate the mean of a given list of scores,
|
||||
taking care of any nan or 0 division.
|
||||
'''
|
||||
c, score = 0, 0
|
||||
for i in list_of_scores:
|
||||
if not math.isnan(i):
|
||||
c += 1
|
||||
score += i
|
||||
if c > 0:
|
||||
return score / c
|
||||
else:
|
||||
return 0
|
||||
|
||||
|
||||
def calculate_f1(precision, recall):
|
||||
'''
|
||||
Calculates the f1-score as the harmonic
|
||||
mean of precision and recall.
|
||||
'''
|
||||
if precision + recall < 1:
|
||||
return 0
|
||||
else:
|
||||
return 2 / (1/precision + 1/recall)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Grab the CLI arguments.
|
||||
METHOD, VERSION = usage()
|
||||
|
||||
# Setup output dirs.
|
||||
home_dir = os.path.join('/home', getpass.getuser())
|
||||
final_dir = os.path.join(home_dir, 'data/eval', VERSION, METHOD)
|
||||
final_alphas = os.path.join(final_dir, 'alphas')
|
||||
final_eval = os.path.join(final_dir, 'eval')
|
||||
|
||||
delete_dir(final_alphas)
|
||||
delete_dir(final_eval)
|
||||
create_dir(final_dir)
|
||||
|
||||
# Loop over the attributes and features.
|
||||
training_data_dir = os.path.join(home_dir, 'data/training_data/', VERSION, METHOD)
|
||||
|
||||
for attribute in os.listdir(training_data_dir):
|
||||
|
||||
attribute_path = os.path.join(training_data_dir, attribute)
|
||||
counts = 0
|
||||
precision, recall = [], []
|
||||
|
||||
for feature in os.listdir(attribute_path):
|
||||
|
||||
# Create all the paths in use.
|
||||
out = os.path.join(VERSION, METHOD, attribute, feature)
|
||||
svmlight = os.path.join(home_dir,'data/models/svmlight', out)
|
||||
svml_model = os.path.join(svmlight, 'model')
|
||||
svml_eval = os.path.join(svmlight, 'eval')
|
||||
svml_alpha = os.path.join(svmlight, 'alphas')
|
||||
test_data = os.path.join(attribute_path, feature, 'test.dat')
|
||||
|
||||
# Run svm_classify.
|
||||
out, err = run_svm_classify(test_data, svml_model, svml_eval)
|
||||
|
||||
# Save current results.
|
||||
paste_data(test_data, svml_eval, final_eval, svml_alpha, final_alphas, out)
|
||||
|
||||
# Parse output from svm_classify to print to stdout.
|
||||
if err:
|
||||
print('Error: {0}'.format(err))
|
||||
|
||||
# Get Train counts, Test counts, Accuracy, Precision, Recall.
|
||||
c, p ,r = parse_svmlight_output(out)
|
||||
|
||||
counts += int(c)
|
||||
precision.append(p)
|
||||
recall.append(r)
|
||||
|
||||
attribute_precision = calculate_scores(precision)
|
||||
attribute_recall = calculate_scores(recall)
|
||||
attribute_f1 = calculate_f1(attribute_precision, attribute_recall)
|
||||
|
||||
print("{: <20} Counts: {: <20} Precision: {: <20} Recall: {: <20} F1-score: {: <20}".format(attribute.title(), \
|
||||
counts, round(attribute_precision, 4), round(attribute_recall, 4), round(attribute_f1, 4)))
|
||||
|
||||
|
||||
# Copying results from remote hdfs.
|
||||
print("\nCopying results to hdfs")
|
||||
hdfs_copy_data(home_dir, METHOD, VERSION)
|
||||
print("\nDone!".format())
|
5
elk/NICE.md
Normal file
5
elk/NICE.md
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Nice ELK hacks
|
||||
|
||||
```
|
||||
curl -s logs.HOST.com:9200/logstash-2017.09.08/_search\?q=ty_params.ProcessName:osqueryd\&size=10000\&sort=@timestamp:desc | jq -r '.hits.hits[]._source.ty_params.Username' | sort | uniq -c | sort -nr
|
||||
```
|
47
elk/grabbing_elk_data.py
Normal file
47
elk/grabbing_elk_data.py
Normal file
|
@ -0,0 +1,47 @@
|
|||
import elasticsearch
|
||||
import whois
|
||||
import json
|
||||
|
||||
from elasticsearch import Elasticsearch
|
||||
|
||||
es = Elasticsearch([{ 'host': "HOST NAME"}])
|
||||
|
||||
query = {
|
||||
'size': 100,
|
||||
'query': {
|
||||
'filtered': {
|
||||
'query': {
|
||||
'query_string': {
|
||||
'query': 'type:named_query_log',
|
||||
'analyze_wildcard': True
|
||||
}
|
||||
},
|
||||
'filter': {
|
||||
'bool': {
|
||||
'must_not': {
|
||||
'query_string': {
|
||||
'query': '*HOST.com OR *otherhost.com',
|
||||
'analyze_wildcard': True
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}}}
|
||||
|
||||
# Make the search
|
||||
res = es.search(index="LOG-NAME", body=query)
|
||||
|
||||
results = []
|
||||
counter = 0
|
||||
# Print out our results
|
||||
for hit in res['hits']['hits']:
|
||||
if "dns_dest" in hit['_source'].keys():
|
||||
try:
|
||||
results.append(json.dumps(whois.whois(hit['_source']['dns_dest'])))
|
||||
except Exception as e:
|
||||
pass
|
||||
counter += 1
|
||||
print "Scanning {0}/{1} domains, {2} succeeded..".format(counter, len(res['hits']['hits']), len(results))
|
||||
|
||||
with open('processed_domains.txt', 'w') as outfile:
|
||||
json.dump(results, outfile)
|
49
elk/set_log.py
Normal file
49
elk/set_log.py
Normal file
|
@ -0,0 +1,49 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import os
|
||||
import subprocess
|
||||
import json
|
||||
import socket
|
||||
import logging
|
||||
|
||||
LOG_PATH = "/var/log/logname.log"
|
||||
FORWARD_PATH = "/etc/logstash-forwarder.conf"
|
||||
LOG_LEVEL = logging.DEBUG
|
||||
|
||||
|
||||
# Set up logpath
|
||||
if not os.path.isfile(LOG_PATH):
|
||||
|
||||
logging.info("No {0} file. Calling: sudo touch {1}".format(LOG_PATH, LOG_PATH))
|
||||
subprocess.call("sudo touch {0}".format(LOG_PATH), shell=True)
|
||||
|
||||
logging.info("Setting perms. Calling: sudo chmod 666 {0}".format(LOG_PATH))
|
||||
subprocess.call("sudo chmod 666 {0}".format(LOG_PATH), shell=True)
|
||||
|
||||
# Set up forwarding
|
||||
if os.path.isfile(FORWARD_PATH):
|
||||
|
||||
logging.info("Forwarding {0} to logstash...".format(FORWARD_PATH))
|
||||
try:
|
||||
with open(FORWARD_PATH, "r+") as f:
|
||||
data = json.load(jsonFile)
|
||||
|
||||
try:
|
||||
if LOG_PATH not in data['files'][0]['paths']:
|
||||
data['files'][0]['paths'].append(LOG_PATH)
|
||||
jsonFile = open("/etc/logstash-forwarder.conf", "w+")
|
||||
jsonFile.write(json.dumps(data))
|
||||
|
||||
except KeyError:
|
||||
logging.error("Could not set logstash: {0} is not well formated.".format(FORWARD_PATH))
|
||||
|
||||
except IOError:
|
||||
logging.error("Could not open {0}".format(FORWARD_PATH))
|
||||
|
||||
else:
|
||||
hostname = socket.gethostname()
|
||||
|
||||
#Search for logstash-forwarder locations per each host
|
||||
if "prodvpn" in hostname:
|
||||
logging.warning("Forwarder should be in {0}. Please set up a forwarder and try again.".format(FORWARD_PATH))
|
||||
|
BIN
shell_scripts/.DS_Store
vendored
Normal file
BIN
shell_scripts/.DS_Store
vendored
Normal file
Binary file not shown.
15
shell_scripts/BASH_USEFUL.md
Normal file
15
shell_scripts/BASH_USEFUL.md
Normal file
|
@ -0,0 +1,15 @@
|
|||
* Downloading all pdfs of url
|
||||
|
||||
$ wget --recursive --level=2 --no-directories --no-host-directories --accept pdf
|
||||
|
||||
|
||||
* Extended attributes of files
|
||||
$ xattr -l $file
|
||||
|
||||
|
||||
* Check signatures of Apps
|
||||
$ codesign -dvvv $file.app
|
||||
|
||||
|
||||
* Show all the configs
|
||||
$ system_profiler -detaillevel full
|
3
shell_scripts/useful/rsync.sh
Executable file
3
shell_scripts/useful/rsync.sh
Executable file
|
@ -0,0 +1,3 @@
|
|||
#!/bin/bash
|
||||
VM=vm_dev
|
||||
rsync -avz -e ssh <local dir> ${VM}:<remote dir> --exclude-from ~/.rsync-excludes
|
1
shell_scripts/useful/sshfs.sh
Executable file
1
shell_scripts/useful/sshfs.sh
Executable file
|
@ -0,0 +1 @@
|
|||
/usr/local/bin/sshfs vm_dev:<remove dir> <mount local dir>
|
Loading…
Add table
Add a link
Reference in a new issue