
1

Intro x86 Part 2:
 More Examples and Analysis

Xeno Kovah – 2009/2010
xkovah at gmail

Approved for Public Release: 10-3348. Distribution Unlimited

All materials is licensed under a Creative
Commons “Share Alike” license.

•  http://creativecommons.org/licenses/by-sa/3.0/

2

3

Control Flow
•  Two forms of control flow

–  Conditional - go somewhere if a condition is met. Think “if”s,
switches, loops

–  Unconditional - go somewhere no matter what. Procedure
calls, goto, exceptions, interrupts.

•  We’ve already seen procedure calls manifest
themselves as push/call/ret, let’s see how goto
manifests itself in asm.

4

Example2.999repeating.c:
(I missed this when I reordered slides and then didn’t want to change

everything else again. Also, VS orders projects alphabetically, otherwise I
would have just called it GotoExample.c. Say ‘lah vee’ :P)

//Goto example
#include <stdio.h>
int main(){

 goto mylabel;
 printf("skipped\n");

mylabel:
 printf("goto ftw!\n");
 return 0xf00d;

}

00401010 push ebp
00401011 mov ebp,esp
00401013 jmp 00401023
00401015 push 405000h
0040101A call dword ptr ds:[00406230h]
00401020 add esp,4
mylabel:
00401023 push 40500Ch
00401028 call dword ptr ds:[00406230h]
0040102E add esp,4
00401031 mov eax,0F00Dh
00401036 pop ebp
00401037 ret

5

JMP - Jump

•  Change eip to the given address
•  Main forms of the address

–  Short relative (1 byte displacement from end of the
instruction)

•  “jmp 00401023” doesn’t have the number 00401023
anywhere in it, it’s really “jmp 0x0E bytes forward”

•  Some disassemblers will indicate this with a mnemonic
by writing it as “jmp short”

–  Near relative (4 byte displacement from current
eip)

–  Absolute (hardcoded address in instruction)
–  Absolute Indirect (address calculated with r/m32)

•  jmp -2 == infinite loop for short relative jmp :)

10

Book p. 129

6

Example3.c
(Remain calm)

int main(){
 int a=1, b=2;
 if(a == b){
 return 1;
 }
 if(a > b){
 return 2;
 }
 if(a < b){
 return 3;
 }
 return 0xdefea7;

}

main:
00401010 push ebp
00401011 mov ebp,esp
00401013 sub esp,8
00401016 mov dword ptr [ebp-4],1
0040101D mov dword ptr [ebp-8],2
00401024 mov eax,dword ptr [ebp-4]
00401027 cmp eax,dword ptr [ebp-8]
0040102A jne 00401033
0040102C mov eax,1
00401031 jmp 00401056
00401033 mov ecx,dword ptr [ebp-4]
00401036 cmp ecx,dword ptr [ebp-8]
00401039 jle 00401042
0040103B mov eax,2
00401040 jmp 00401056
00401042 mov edx,dword ptr [ebp-4]
00401045 cmp edx,dword ptr [ebp-8]
00401048 jge 00401051
0040104A mov eax,3
0040104F jmp 00401056
00401051 mov eax,0DEFEA7h
00401056 mov esp,ebp
00401058 pop ebp
00401059 ret

Jcc

7

Ghost of Xmas Future:
Tools you won’t get to use today

generate a Control Flow Graph (CFG)
which looks much nicer.

Not that that helps you. Just sayin’ :)

8

Jcc - Jump If Condition Is Met"

•  There are more than 4 pages of
conditional jump types! Luckily a bunch
of them are synonyms for each other.

•  JNE == JNZ (Jump if not equal, Jump if
not zero, both check if the Zero Flag
(ZF) == 0)

11

Book p. 137

9

Some Notable Jcc Instructions
•  JZ/JE: if ZF == 1
•  JNZ/JNE: if ZF == 0
•  JLE/JNG : if ZF == 1 or SF != OF
•  JGE/JNL : if SF == OF
•  JBE: if CF == 1 OR ZF == 1
•  JB: if CF == 1
•  Note: Don’t get hung up on memorizing which flags

are set for what. More often than not, you will be
running code in a debugger, not just reading it. In the
debugger you can just look at eflags and/or watch
whether it takes a jump.

10

Flag setting

•  Before you can do a conditional jump,
you need something to set the condition
flags for you.

•  Typically done with CMP, TEST, or
whatever instructions are already inline
and happen to have flag-setting side-
effects

11

CMP - Compare Two Operands"

•  “The comparison is performed by subtracting the
second operand from the first operand and then setting
the status flags in the same manner as the SUB
instruction.”

•  What’s the difference from just doing SUB?
Difference is that with SUB the result has to be stored
somewhere. With CMP the result is computed, the
flags are set, but the result is discarded. Thus this
only sets flags and doesn’t mess up any of your
registers.

•  Modifies CF, OF, SF, ZF, AF, and PF
•  (implies that SUB modifies all those too)

12

Book p. 138

12

TEST - Logical Compare"
•  “Computes the bit-wise logical

AND of first operand (source 1
operand) and the second operand
(source 2 operand) and sets the
SF, ZF, and PF status flags
according to the result.”

• Like CMP - sets flags, and throws
away the result

13

Book p. 232

13

Example4.c

#define MASK 0x100

int main(){

 int a=0x1301;
 if(a & MASK){
 return 1;
 }
 else{
 return 2;
 }

}

main:
00401010 push ebp
00401011 mov ebp,esp
00401013 push ecx
00401014 mov dword ptr [ebp-4],1301h
0040101B mov eax,dword ptr [ebp-4]
0040101E and eax,100h
00401023 je 0040102E
00401025 mov eax,1
0040102A jmp 00401033
0040102C jmp 00401033
0040102E mov eax,2
00401033 mov esp,ebp
00401035 pop ebp
00401036 ret

I actually
expected
a TEST,
because
the result

isn't
stored

jcc

Eventually found out
why there are 2 jmps!
(no optimization, so simple compiler rules)

14

Refresher - Boolean
(”bitwise”) logic

0 0 0
0 1 0
1 0 0
1 1 1

0 0 0
0 1 1
1 0 1
1 1 1

0 0 0
0 1 1
1 0 1
1 1 0

0 1

1 0

AND “&” OR “|” XOR “^”

NOT “~”
Operands Result

15

AND - Logical AND"
•  Destination operand can be r/m32 or register
•  Source operand can be r/m32 or register or

immediate (No source and destination as r/
m32s)

00110011b (al - 0x33)
AND 01010101b (bl - 0x55)
result 00010001b (al - 0x11)

and al, bl
00110011b (al - 0x33)

AND 01000010b (imm - 0x42)
result 00000010b (al - 0x02)

and al, 0x42

14

Book p. 231

16

OR - Logical Inclusive OR"
•  Destination operand can be r/m32 or register
•  Source operand can be r/m32 or register or

immediate (No source and destination as r/
m32s)

00110011b (al - 0x33)
OR 01010101b (bl - 0x55)
result 01110111b (al - 0x77)

or al, bl
00110011b (al - 0x33)

OR 01000010b (imm - 0x42)
result 01110011b (al - 0x73)

or al, 0x42

15

Book p. 231

17

XOR - Logical Exclusive OR"
•  Destination operand can be r/m32 or register
•  Source operand can be r/m32 or register or

immediate (No source and destination as r/
m32s)

00110011b (al - 0x33)
XOR 00110011b (al - 0x33)
result 00000000b (al - 0x00)

xor al, al
00110011b (al - 0x33)

OR 01000010b (imm - 0x42)
result 01110001b (al - 0x71)

xor al, 0x42

XOR is commonly used to zero a
register, by XORing it with itself,
because it’s faster than a MOV

16

Book p. 231

18

NOT - One's Complement
Negation"

•  Single source/destination operand can
be r/m32

NOT 00110011b (al - 0x33)
result 11001100b (al - 0xCC)

not al
al 0x10000000
bl 0x00001234
al+bl 0x10001234
[al+bl] 0 (assumed memory at 0x10001234)
NOT 00000000b
result 11111111b

not [al+bl]

17

Xeno trying to be clever
on a boring example, and
failing…

Book p. 231

19

Example5.c - simple for loop
main:
00401010 push ebp
00401011 mov ebp,esp
00401013 push ecx
00401014 mov dword ptr [ebp-4],0
0040101B jmp 00401026
0040101D mov eax,dword ptr [ebp-4]
00401020 add eax,1
00401023 mov dword ptr [ebp-4],eax
00401026 cmp dword ptr [ebp-4],0Ah
0040102A jge 00401040
0040102C mov ecx,dword ptr [ebp-4]
0040102F push ecx
00401030 push 405000h
00401035 call dword ptr ds:[00406230h]
0040103B add esp,8
0040103E jmp 0040101D
00401040 xor eax,eax
00401042 mov esp,ebp
00401044 pop ebp
00401045 ret

#include <stdio.h>

int main(){
 int i;
 for(i = 0; i < 10; i++){
 printf("i = %d\n“, i);
 }
}

Interesting note:
Defaults to returning 0

What does this add say
about the calling

convention of printf()?

20

Instructions we now know(17)
•  NOP
•  PUSH/POP
•  CALL/RET
•  MOV/LEA
•  ADD/SUB
•  JMP/Jcc
•  CMP/TEST
•  AND/OR/XOR/NOT

21

Example6.c
//Multiply and divide transformations
//New instructions:
//shl - Shift Left, shr - Shift Right

int main(){

 unsigned int a, b, c;
 a = 0x40;
 b = a * 8;
 c = b / 16;
 return c;

}

main:
 push ebp
 mov ebp,esp
 sub esp,0Ch
 mov dword ptr [ebp-4],40h
 mov eax,dword ptr [ebp-4]
 shl eax,3
 mov dword ptr [ebp-8],eax
 mov ecx,dword ptr [ebp-8]
 shr ecx,4
 mov dword ptr [ebp-0Ch],ecx
 mov eax,dword ptr [ebp-0Ch]
 mov esp,ebp
 pop ebp
 ret

22

SHL - Shift Logical Left"
•  Can be explicitly used with the C “<<” operator
•  First operand (source and destination) operand is an r/m32
•  Second operand is either cl (lowest byte of ecx), or a 1 byte

immediate. The 2nd operand is the number of places to shift.
•  It multiplies the register by 2 for each place the value is shifted.

More efficient than a multiply instruction.
•  Bits shifted off the left hand side are “shifted into” (set) the carry

flag (CF)
•  For purposes of determining if the CF is set at the end, think of it

as n independent 1 bit shifts.

00110011b (cl - 0x33)
result 11001100b (cl - 0xCC) CF = 0

shl cl, 2

18

00110011b (cl - 0x33)
result 10011000b (cl - 0x98) CF = 1

shl cl, 3

Book p. 224

23

SHR - Shift Logical Right"
•  Can be explicitly used with the C “>>” operator
•  First operand (source and destination) operand is an r/m32
•  Second operand is either cl (lowest byte of ecx), or a 1 byte

immediate. The 2nd operand is the number of places to shift.
•  It divides the register by 2 for each place the value is shifted.

More efficient than a multiply instruction.
•  Bits shifted off the right hand side are “shifted into” (set) the

carry flag (CF)
•  For purposes of determining if the CF is set at the end, think of it

as n independent 1 bit shifts.

19

00110011b (cl - 0x33)
result 00001100b (cl - 0x0C) CF = 1

shr cl, 2
00110011b (cl - 0x33)

result 00000110b (cl - 0x06) CF = 0

shr cl, 3

Book p. 225

24

Example7.c
//Multiply and divide operations
//when the operand is not a
//power of two
//New instructions: imul, div

int main(){

 unsigned int a = 1;
 a = a * 6;
 a = a / 3;
 return 0x2bad;

}

main:
 push ebp
 mov ebp,esp
 push ecx
 mov dword ptr [ebp-4],1
 mov eax,dword ptr [ebp-4]
 imul eax,eax,6
 mov dword ptr [ebp-4],eax
 mov eax,dword ptr [ebp-4]
 xor edx,edx
 mov ecx,3
 div eax,ecx
 mov dword ptr [ebp-4],eax
 mov eax,2BADh
 mov esp,ebp
 pop ebp
 ret

IMUL - Signed Multiply"
•  Wait…what? Weren’t the operands unsigned?

–  Visual Studio seems to have a predilection for imul over mul
(unsigned multiply). I haven’t been able to get it to generate the
latter for simple examples.

•  Three forms. One, two, or three operands
–  imul r/m32 edx:eax = eax * r/m32
–  imul reg, r/m32 reg = reg * r/m32
–  imul reg, r/m32, immediate reg = r/m32 * immediate

•  Three operands? Only one of it’s kind?(see link in notes)

20

edx eax r/m32(ecx)

0x0 0x44000000 0x4

imul ecx imul eax, ecx

eax r/m32(ecx)

0x20 0x4

eax r/m32(ecx)

0x80 0x4

eax r/m32(ecx)

0x20 0x4

imul eax, ecx, 0x6

eax r/m32(ecx)

0x18 0x4

edx eax r/m32(ecx)

0x1 0x10000000 0x4

Book p. 218

initial

operation

result

26

DIV - Unsigned Divide"
•  Two forms

–  Unsigned divide ax by r/m8, al = quotient, ah = remainder
–  Unsigned divide edx:eax by r/m32, eax = quotient, edx = remainder

•  If dividend is 32bits, edx will just be set to 0 before the
instruction (as occurred in the Example7.c code)

•  If the divisor is 0, a divide by zero exception is raised.

21

ax r/m8(cx)

0x8 0x3

ah al

0x2 0x2

div ax, cx

edx eax r/m32(ecx)

0x0 0x8 0x3

edx eax r/m32(ecx)

0x1 0x2 0x3

div eax, ecx

Book p. 221

initial

operation

result

27

Example8.c
//VisualStudio runtime check
//buffer initialization
//auto-generated code
//New instruction: rep stos

int main(){

 char buf[40];
 buf[39] = 42;
 return 0xb100d;

}

28

main:
00401010 push ebp
00401011 mov ebp,esp
00401013 sub esp,30h
00401016 push edi
00401017 lea edi,[ebp-30h]
0040101A mov ecx,0Ch
0040101F mov eax,0CCCCCCCCh
00401024 rep stos dword ptr es:[edi]
00401026 mov byte ptr [ebp-5],2Ah
0040102A mov eax,0B100Dh
0040102F push edx
00401030 mov ecx,ebp
00401032 push eax
00401033 lea edx,[(401048h)]
00401039 call _RTC_CheckStackVars (4010B0h)
0040103E pop eax
0040103F pop edx
00401040 pop edi
00401041 mov esp,ebp
00401043 pop ebp
00401044 ret

Example8.c

29

REP STOS - Repeat Store
String"

•  One of a family of “rep” operations, which repeat a single
instruction multiple times. (i.e. “stos” is also a standalone
instruction)
–  Rep isn’t technically it’s own instruction, it’s an instruction prefix

•  All rep operations use ecx register as a “counter” to determine
how many times to loop through the instruction. Each time it
executes, it decrements ecx. Once ecx == 0, it continues to the
next instruction.

•  Either moves one byte at a time or one dword at a time.
•  Either fill byte at [edi] with al or fill dword at [edi] with eax.
•  Moves the edi register forward one byte or one dword at a time, so

that the repeated store operation is storing into consecutive
locations.

•  So there are 3 pieces which must happen before the actual rep
stos occurs: set edi to the start destination, eax/al to the value to
store, and ecx to the number of times to store

22

Book p. 284

30

rep stos setup
004113AC lea edi,[ebp-0F0h]
Set edi - the destination

004113B2 mov ecx,3Ch
Set ecx - the count

004113B7 mov eax,0CCCCCCCCh
Set eax - the value

004113BC rep stos dword ptr es:[edi]
Start the repeated store

•  So what's this going to do? Store 0x3C copies
of the dword 0xCCCCCCCC starting at
ebp-0xF0

•  And that just happens to be 0xF0 bytes of
0xCC!

31

Q: Where does the rep stos
come from in this example?

A: Compiler-auto-generated code.
From the stack frames runtime

check option. This is enabled by
default in the debug build.

Disabling this option removes the
compiler-generated code.

32

More straightforward without
the runtime check

main:
00401010 push ebp
00401011 mov ebp,esp
00401013 sub esp,28h
00401016 mov byte ptr [ebp-1],2Ah
0040101A mov eax,0B100Dh
0040101F mov esp,ebp
00401021 pop ebp
00401022 ret

33

Example9.c
Journey to the center of memcpy()

//Journey to the center of memcpy
#include <stdio.h>

typedef struct mystruct{
 int var1;
 char var2[4];
} mystruct_t;

int main(){
 mystruct_t a, b;
 a.var1 = 0xFF;
 memcpy(&b, &a, sizeof(mystruct_t));
 return 0xAce0Ba5e;
}

main:
00401010 push ebp
00401011 mov ebp,esp
00401013 sub esp,10h
00401016 mov dword ptr [a],0FFh
0040101D push 8
0040101F lea eax,[a]
00401022 push eax
00401023 lea ecx,[b]
00401026 push ecx
00401027 call memcpy (401042h)
0040102C add esp,0Ch
0040102F mov eax,0ACE0BA5Eh
00401034 mov esp,ebp
00401036 pop ebp
00401037 ret

34

memcpy:
 push ebp
 mov ebp,esp
 push edi ;callee save
 push esi ;callee save
 mov esi,dword ptr [ebp+0Ch] ;2nd param - source ptr
 mov ecx,dword ptr [ebp+10h] ;3rd param - copy size
 mov edi,dword ptr [ebp+8] ;1st param - destination ptr
 mov eax,ecx ;copy length to eax
 mov edx,ecx ;another copy of length for later use
 add eax,esi ;eax now points to last byte of src copy
 cmp edi,esi ;edi (dst) – esi (src) and set flags
 jbe 1026ED30 ;jump if ZF = 1 or CF = 1
;It will execute different code if the dst == src or if the
destination is below (unsigned less than) the source (so jbe is
an unsigned edi <= esi check)

It begins…

35

1026ED30 cmp ecx,100h ;ecx - 0x100 and set flags
1026ED36 jb 1026ED57 ;jump if CF == 1
;Hmmm…since ecx is the length, it appears to do something
different based on whether the length is below 0x100 or not.
We could investigate the alternative path later if we wanted.

1026ED57 test edi,3 ;edi AND 0x3 and set flags
1026ED5D jne 1026ED74 ;jump if ZF == 0
;It is checking if either of the lower 2 bits of the destination
address are set. That is, if the address ends in 1, 2, or 3. If both
bits are 0, then the address can be said to be 4-byte-aligned.
so it’s going to do something different based on whether the
destination is 4-byte-aligned or not.

36

1026ED5F shr ecx,2 ;divide len by 4
1026ED62 and edx,3 ;edx still contains a copy of ecx
1026ED65 cmp ecx,8 ;ecx - 8 and set flags
1026ED68 jb 1026ED94 ;jump if CF == 1
;But we currently don’t get to the next instruction 1026ED6A,
instead we jump to 1026ED94… :(
1026ED6A rep movs dword ptr es:[edi],dword ptr [esi]
1026ED6C jmp dword ptr [edx*4+1026EE84h]

The rep movs is the target of this expedition.
Q: But how can we reach the rep mov?

A: Need to make it so that (length to copy) / 4 >= 8, so we
don't take the jump below

37

REP MOVS - Repeat Move
Data String to String"

•  One of a family of “rep” operations, which repeat a single
instruction multiple times. (i.e. “movs” is also a standalone
instruction)

•  All rep operations use ecx register as a “counter” to determine
how many times to loop through the instruction. Each time it
executes, it decrements ecx. Once ecx == 0, it continues to the
next instruction.

•  Either moves one byte at a time or one dword at a time.
•  Either move byte at [esi] to byte at [edi] or move dword at [esi] to

dword at [edi].
•  Moves the esi and edi registers forward one byte or one dword at a

time, so that the repeated store operation is storing into
consecutive locations.

•  So there are 3 pieces which must happen before the actual rep
movs occurs: set esi to the start source, set edi to the start
destination, and set ecx to the number of times to move

23

Book p. 274 & 278

38

1026EE94 mov eax,dword ptr [ebp+8]
1026EE97 pop esi
1026EE98 pop edi
1026EE99 leave
1026EE9A ret

LEAVE - High Level
Procedure Exit

• “Set ESP to EBP, then pop EBP”"
• That’s all :)"
• Then why haven’t we seen it elsewhere already?"
• Depends on compiler and options"

24

Book p. 309

39

Some high level pseudo-code
approximation

memcpy(void * dst, void * src, unsigned int len){
 if(dst <= src){

 //Path we didn’t take, @ 1026ED28
 }
 if(dst & 3 != 0){

 //Other path we didn’t take, @ 1026ED74
 }
 if((len / 4) >= 8){

 ecx = len / 4;
 rep movs dword dst, src;

 }
 else{

 //sequence of individual mov instructions
 //as appropriate for the size to be copied

 }
…
}

40

Instructions we now know(24)
•  NOP
•  PUSH/POP
•  CALL/RET
•  MOV/LEA
•  ADD/SUB
•  JMP/Jcc
•  CMP/TEST
•  AND/OR/XOR/NOT
•  SHR/SHL
•  IMUL/DIV
•  REP STOS, REP MOV
•  LEAVE

41

Homework

•  Write a program to find an instruction
we haven’t covered, and report the
instruction tomorrow.

•  Instructions to be covered later which
don’t count: SAL/SAR

•  Variations on jumps or the MUL/IDIV
variants of IMUL/DIV also don't count

•  Additional off-limits instructions:
anything floating point (since we're not
covering those in this class.)

