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a b s t r a c t

In the last few years there has been a sharp increase in the use of Mac OS X systems in
professional settings. This has led to increased activity in the development of malware and
attack toolkits focused specifically on OS X systems, and unfortunately, these increasingly
powerful offensive capabilities have not (yet) resulted in better defensive research. Only a
few public defensive research efforts currently exist and these only cover a portion of the
attack surface that malicious OS X software has access to, particularly regarding kernel-
level malware.
In this paper, we present new rootkit detection techniques that attempt to close the gap
between offense and defense, with a specific focus on kernel-mode components. The new
detection techniques in this paper were motivated by analyzing currently available
detection strategies for Windows and Linux, and noting associated deficiencies in detec-
tion schemes for Mac OS X. For each missing capability, OS X was studied to see if a similar
operating system facility existed and if it could be abused by malware. For those fitting
these criteria, new detection techniques were created, and these are discussed in detail in
the paper.
For each new rootkit detection technique we propose, a Volatility plugin was developed.
Volatility is currently by far the most popular memory forensics framework in incident
response and malware analysis, and by incorporating our work into Volatility, it can
become immediately useful to the community. The paper concludes with an evaluation of
the plugins, to illustrate their usefulness.
© 2015 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access

article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Historically focused more on Windows and Linux sys-
tems, attackers and malware authors have begun turning a
critical eye on Mac OS X, due to its increasing use in busi-
ness, government, non-profit aid groups, and political or-
ganizations. While rootkits targeting Windows and Linux
have been studied for over a decade, serious interest in OS
X has existed for only a few years. As usual, attackers had
the initial advantage, as therewas little motivation to spend

time researching rootkit detection for an operating system
that was almost never targeted. This situation has now
drastically changed as sophisticated, nation-state backed
malware samples have been found that focus extensively
on OS X systems and users (Myers, 2013; Katsuki, 2012;
Kaspersky, 2014).

These developments have led to increased attention in
OS X kernel rootkit detection, with the majority of the
public research occurring in late 2013 and throughout 2014.
In order to detect existing malware, these research efforts
focused almost exclusively on kernel components targeted
by previously detected malware samples. This narrow
range of detection capabilities leaves ample room for other
types of attacks that can fully subvert system security.
Previous efforts also ignored several detection capabilities
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that already exist for Windows and Linux and omitted
analysis of many OS X-specific subsystems that we propose
are ripe for abuse by malicious code.

In this paper, we discuss several important rootkit
detection capabilities for Mac OS X that are absent from
current-generation tools. We also discuss the resulting
ways in which malware can use these unmonitored
operating system facilities to steal data, monitor user
activity, and subvert live analysis of the system. These
detection gaps were identified by comparing the current
anti-kernel rootkit capabilities of Windows and Linux to
those of OS X. Since all operating systems provide
similar services, we surmised that facilities targeted on
Windows and Linux would also exist on OS X. While
studying these capabilities, we also discovered OS X-only
features that could potentially be abused by malware
and that are not covered by current detection
techniques.

In order to detect rootkits that may abuse the identified
features, we developed Volatility plugins that implement
inspection of the relevant subsystems. These new Volatility
plugins are presented along with a discussion of their
implementation, including associated kernel data struc-
tures. The paper concludes with an evaluation of the
developed plugins and a discussion of a how similar
research effort would likely be beneficial for improving
rootkit detection for Windows and Linux systems.

Related work

While memory forensics for OS X systems has received
less attention in the research community than for Linux
and Windows, there has still been a substantial amount of
work. The first major OS X research effort was presented by
Matthieu Suiche at Black Hat DC in 2010 (Suiche, 2010).
That effort covered the necessary background and data
structures for extracting the list of system call table han-
dlers, processes, mounted file systems, and kernel exten-
sions. No source code or tools from this presentation were
ever released.

In 2011, the Volafox (Volafox, 2015) project was
released. Volafox originated from a fork of Volatility
(Volatility, 2015), which at the time only supported
Windows and Linux. The Volafox fork involved signifi-
cant changes to Volatility's internal architecture, making
plugins developed for each incompatible with the other.
As of this writing, Volafox has support for listing pro-
cesses along with their file handles, memory mappings,
and network connections. It can also recover the list of
loaded kernel modules, TrustedBSD policy handlers, and
mounted file systems. Due to the design limitations of
Volafox, plugins are brittle across kernel versions and
adding new plugins requires substantially more work
than with the current version of Volatility. The main
Volafox developer, Kyeong-Sik Lee, has also published a
paper and released a tool that can find Apple KeyChain
encryption keys in memory and subsequently open
encrypted keychains offline (Lee and Koo, 2012;
chainbreaker, 2015).

In 2012, Andrew F. Hay published his master's thesis,
which examines the file handling implementation in OS X

(Hay, 2011). This leads to recovery of a process's open file
handles, understanding mount points, and the first steps in
recovering files from the operating system's file system
cache. The thesis included Volafox plugins that imple-
mented the described research.

Also in 2012, Volatility implemented full OS X support in
the official software release. Although no formal paper was
written describing the research, two presentations discuss
the initial effort (Case, 2012, 2014). As this paper is written,
the latest release of Volatility, version 2.4, has over fifty
plugins targeting OS X. Over half of these were added be-
tween Volatility 2.3 and 2.4.

In 2013 and 2014, Cem Gurkok submitted several plu-
gins to Volatility during each year's Volatility plugin
contest (Gurkok, 2015). These plugins largely focused on
detection of OS X kernel rootkits, including DTrace hooks,
inline code hooks, and malicious TrustedBSD policy han-
dlers. Many of these plugins have since been integrated
into the stable Volatility release. Additional capabilities for
Mac OS X analysis continue to be added to Volatility; for
example, in 2014, Case and Richard designed Volatility
plugins to address Mac OS X's compressed RAM facilities,
providing automatic decompression of compressed areas
of the physical memory address space (Richard and Case,
2014).

In 2014, the Rekall Memory Forensics framework
(Aallievi, 2012) was released. This framework is also a fork
of Volatility, and like Volafox, its plugins are incompatible
with Volatility. While this framework does have OS X
support, it forked an older version of Volatility and, as such,
has less than twenty OS X plugins at the time of writing. In
particular, it is missing nearly all of the rootkit detection
plugins that Volatility developers added in the 2.4 release.
As this paper is written, there have been no new OS X
rootkit detection plugins added to Rekall that were not
derived from Volatility.

Because Volatility is both popular within the incident
response and malware analysis communities and currently
has the most robust OS X support, particularly for malware
detection and analysis, we choose it as our development
platform. All plugins described in the paper will be
contributed to the Volatility project upon publication of
this paper.

New detection capabilities

In this section we present our newly developed OS X
rootkit detection capabilities. Each section begins with the
motivation behind the detection mechanism, including
where possible, real-world rootkits that have targeted this
or similar functionality on Mac OS X or other operating
systems. We note that several subsystems discussed have
not yet been targeted by knownMac OS Xmalware, but due
to the abuse of the equivalent features on Windows and
Linux, we investigated them to put the defensive commu-
nity ahead of malware authors. We then discuss the
implementation of the associated kernel subsystem on OS
X and how the corresponding Volatility plugin(s) is able to
detect malicious use or tampering with the subsystem in
question.
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Power event notifications

Motivation
Windows provides kernel modules the ability to be

notified when shutdown-related events, such as system
reboot, shutdown, crash (e.g., blue screen of death), sleep,
and hibernation, are about to occur. These notifications
are implemented through a callback mechanism, which
executes each registered function before allowing the
hardware event to proceed. The operating system pro-
vides this eventing system so that legitimate kernel
components can clean up before the system ceases to
operate. Common legitimate uses include freeing re-
sources, flushing disk and network buffers, terminating
network connections, and resetting hardware devices to a
known state.

On Windows, malware has abused these features for a
number of purposes. For instance, Rustock.C registers a
crash notification in order to wipe itself from memory
before allowing the crash dump to be written (Ligh et al.,
2014). Sinowal (Aallievi, 2012) uses these notifications to
ensure that its MBR-based persistence mechanism was not
removed from disk. TDL3 (Matrosov and Rodionov, 2010)
uses shutdown notifications to restore its AutoRun registry
keys if anti-virus tools remove them during an attempt to
clean the system.

Implementation of event notifications in OS X
The IOKit subsystem provides a generic API to interact

with hardware devices and IOServices on the system.
Part of this API includes the ability to receive notifica-
tions for power-related events. These include sleeping
and waking of the system, plus several more, and are
defined in the header file ./iokit/IOKit/IOMessage.h in the
Mac OS X kernel source code. The intent to receive no-
tifications is referred to as an “interest” and kernel ex-
tensions can call the registerInterest function, or one of its
higher-level wrappers, to register their notification
function.

Internally, interests are registered in the IOService I/O
Registry plane. The I/O Registry contains several planes,
each of which is stored as a tree of IORegistryEntry struc-
tures. Each node of the tree stores information on a
particular component (service, driver, hardware device,
etc.). The IOKit planes can be viewed on a live system
through the ioreg command.

When an interest is registered, it is then added as a
property to the IORegistryEntry that created it. The prop-
erties are stored in the entry's fPropertyTable member as a
hash table backed by an array of dictEntry structures. For
interests, the key for each entry is the name of the property
(“IOGeneralInterest”, “IOAppPowerStateInterest”, and so
on) and the value is a pointer to an IOCommand structure.
Each IOCommand structure stores a list of registered call-
backs for the particular interest in the registry entry. This
list's elements are of type IOServiceInterestNotifier and this
structure's handler member is a function pointer to the
registered notification routine. When a power event is
triggered, all of these functions will be called before the
event happens.

Volatility Plugin: mac_interest_handlers
To enumerate all registered power-related event noti-

fication handlers, the mac_interest_handlers plugin was
created. This plugin first finds the root of the IOKit tree,
which is stored in the gRegistryRoot global variable as an
IORegistryEntry structure. The tree is then recursively
walked using the fRegistryTable member. This member
stores a hash table whose IOServiceChildLinks member can
be used to recursively enumerate all child nodes in the
IOService plane.

For each node in the tree (IORegistryEntry), its properties
are enumerated and checked for power-related interests. If
any are present, each property's value is treated as an
IOCommand class. The list of handlers tracked by this class
are then enumerated and checked to see if they are mali-
cious or not.

For the purposes of our plugins, a handler is deemed
malicious if its address is not located within the code sec-
tion of the running kernel or within the address space of a
loaded module in the active modules list. This approach is
taken by existing Volatility plugins, and we simply re-used
the existing API for this verification. We note if malicious
modification ismade to the code of the running kernel, then
the existingmac_apihooks pluginwill detect this tampering.

Kernel timers in Mac OS X

Motivation
Timers allow kernel components to set timers and

register functions to be executed when the timers expire.
These facilities are present in all major operating systems
and support correct operation of kernel components such
as deadlock watchdogs, network congestion monitoring,
queue clearing, and handling of file system buffering.
Timers have also been used by many different malware
families to periodically flush buffers of logged keystrokes to
disk, contact command and control servers, and check that
persistence mechanisms have not been removed. While a
timer itself is not necessarily malicious, its presence can
point an analyst to a previously unknown kernel driver or
code region, and the timer function can then be analyzed to
determine its purpose.

OS X implementation of kernel timers
OS X kernel extensions can register timers that specify a

period of time to elapse along with a function to be called
when the timer expires. These timers are stored in the
rtclock_timer member of each processor's CPU-specific
variables. This member is of type rtclock_timer and stores
a queue of timers assigned to the CPU. Each element of this
queue is stored as a call_entry structure, which tracks when
the timer is to elapse, the function to be called, and the
address of two optional parameters to the function. These
parameters can be set when the timer is created.

Volatility plugin: mac_timers
The mac_timers plugin was created to enumerate the

registered kernel timers within a memory sample. This
plugin first determines the number of active processors by
using the real_cpus kernel variable, and then enumerates
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data associated with each active processor by using the
cpu_data_ptr array. This array holds one cpu_data structure
per processor.

For each processor, its rtclock_timer member is exam-
ined and its queue of timers enumerated. For each timer,
the time to elapse, address of each parameter, and address
of the handler function is printed along with an indication
of whether the handler is deemed to be suspicious. This
will effectively detect any malicious kernel components
that have registered timers.

Driver communication in Mac OS X: devfs

Motivation
When a driver needs to implement communication

with its userland components, it must set up handlers for
the range of operations that processes can perform. These
include opening a reference to the driver, read and write
operations, memory mapping, close operations, and more.
Individual drivers register a set of function pointers that the
kernel calls when a userland componentmakes a request of
the driver.

These handler tables have been of interest to malware
researchers for two main reasons. The first is that malware
will often overwrite the function pointers of targeted
drivers in order to insert and hide data. For example, by
hooking the read operation of a driver, malware can filter all
data returned to userland. This can include information
such as file contents, directory listings, or network packet
bytes. By hooking the write function of a file system driver,
rootkits can protect their own files from modification or
deletion by preventing a security tool's write operations
from impacting the contents of a device. Rootkits, such as
TDL3, implement this write-filtering technique and
numerous rootkits have implemented read filtering.

The second reason the handler tables are of interest is
that malicious drivers will set up their own handlers for
userland components of a malware kit to communicate
with. These drivers often provide functionality such as
process, file, and network connection hiding, privilege
escalation, and hiding of logged in users. By enumerating
such handlers, malware researchers can very quickly
determine a significant portion of the malware's
capabilities.

OS X implementation of devfs
OS X provides two methods for drivers to communicate

with their userland components. The first, described in this
section, is through devfs. The second, described in Section
3.4, is via IOKit.

devfs is defined by POSIX, and as such, exists on both
Linux and OS X. It supports the creation and handling of
userland accessible files under the /dev directory. Every
character and block device on the system, such as a
keyboard, mouse, hard drive, sound card, etc. will have a
node (file) under devfs that userland tools can access via
standard filesystem functions, such as open, read,write, and
mmap, to interact with the device.

Kernel extensions that wish to create a character device
call the cdevsw_add function with a pre-populated cdevsw
structure. This structure has a function pointer for every

operation that can be requested of the device. To create a
block device, the bdevsw_add function is called with a pre-
populated bdevsw structure. Similar to cdevsw, this struc-
ture has function pointers for block device operations, such
as open, close, and ioctl.

Volatility plugin: mac_devfs
The mac_devfs plugin was created to enumerate all

character and block devices and validate their handler ta-
bles. To find all of the devices, Volatility's existing capability
to examine file system information in a memory dump is
used, allowing our plugin to programmatically enumerate
files in the /dev branch of the file system. The type of each
file in this directory and its sub-directories is checked using
the v_type member of each file's vnode structure. A char-
acter device has type “VCHR”while block devices have type
“VBLK”.

The v_data member of vnode holds a pointer to file type
specific structures. For character and block devices, it holds
a pointer to the device's devnode structure. This structure
holds metadata about the file, such as its MAC times and
owner information, as well as its major and minor number.
To retrieve a device's set of userland handling operations,
its major number must be indexed into the global cdevsw
array. This array holds elements of type cdevsw, which in
turns holds all of the operation pointers. Our plugin vali-
dates these pointers and reports suspicious (potentially
hijacked) operations.

Driver communication in Mac OS X: IOKit

Motivation
As discussed in the previous section, OS X provides two

methods for drivers to allow userland components to send
requests. This section describes the IOKit method, the
motivation for which is the same as the previous.

OS X IOKit implementation
IOKit (IOKit, 2015) allows userland clients to dynami-

cally find devices of interest based on their properties, in
contrast to devfs, which relies on clients having knowledge
of existing device names (e.g., /dev/sda or /dev/mem). Once a
device is found, it can be opened with the IOServiceOpen
function. This returns a handle similar to the POSIX open
function. This handle can then be passed to the IOCon-
nectMethod family of functions in order to send and receive
data.

The implementation for this method of communication
is a mix of Cþþ member functions and developer-defined
external functions. The Cþþ member functions are setup
and teardown functions that each device must implement.
The developer-defined functionality is implemented in the
getTargetAndMethodForIndex function of the class. This
function receives an integral index that defines the func-
tionality to be performed. The driver and its userland
components must use a predetermined protocol in order to
map indexes to functionality.

Volatility plugin: mac_kernel_classes
After a deep investigation of IOKit internals on Mac

OS X, we developed a new Volatility plugin,
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mac_kernel_classes, which detects tampering with IOKit.
In particular, the plugin finds all loaded IOKit Cþþ clas-
ses and then verifies their virtual tables (vtables). To
start, the plugin locates the sAllClassesDict global vari-
able. This variable points to a hash table that tracks all
Cþþ classes loaded by kernel components and kernel
extensions.

The keys of the hash table are the names of the loaded
classes and their associated values are pointers to the
MetaClass member of each class. MetaClass holds a pointer
to the virtual table used by every instance of the class type,
which is stored as a NULL-terminated array of function
pointers.

Our plugin enumerates every loaded class, walks each
vtable, and reports whether each handling function is
within a known kernel component. This effectively verifies
all virtual functions within every loaded class. Whilewe are
not aware of any malicious hijacking of vtable operations in
IOKit on OS X, we are aware of benevolent uses of virtual
table overwriting (e.g., in (Brocker and Checkoway, 2014),
to prevent tampering with webcam LED indicators).
Furthermore, exploits against every major platform have
targeted Cþþ vtable entries in one form or another, as they
allow for trivial code execution during the exploitation
phase. It is therefore prudent to pay attention to potential
virtual table exploitation in the Mac OS X kernel.

The user-defined functions related to getTargetAndMe-
thodForIndex are also of potential forensic interest, but due
to the flexible nature in which the client and driver
communicate, wewere unable to develop a genericmethod
to determine if functions have been hooked or not and a
solution to this problem remains an open question.

File system hooking in Mac OS X

Motivation
Much like devfs devices, file system implementations on

Linux and OS X utilize sets of function pointers that
correspond to specific file operations. These isolate core
kernel functionality from the specific implementation of
particular filesystems, and include support for reading from
and writing to a file, getting the list of files in a directory,
and queryingmetadata associatedwith a file. Also like devfs
devices, hooking of these pointers can lead to filtering of
results that are obtained by code that interacts with the file
system.

Particularly on Linux, file system hooking has been
abused by rootkits since the early 2000s. A commonly seen
technique on this platform is hooking of the read directory
function of the procfs (/proc) file system. Under Linux,
processes are enumerated by reading each per-process
directory stored under /proc. By filtering directories
returned by this operation, a kernel mode rootkit can
effectively hide processes from tools such as ps and top.
Similarly, hooking of the read function of /proc/net/tcp can
be used to hide network connections from netstat and lsof.

Mac OS X VFS implementation
OS X implements nearly the same virtual file system

(VFS) API as Linux. For VFS, arrays of function pointers
specific to particular filesystems handle I/O operations,

isolating the kernel from the specifics of a particular fil-
esystem. Generic system calls such as read operations ul-
timately call a filesystem-specific read operation via the
function pointer array associated with a mounted fil-
esystem. The array of pointers is a popular attack target,
since it allows filesystem operations to be easily subverted.
Since OS X provides the same functionality in the same
form, it is also vulnerable to the same attacks as other
systems that implement a VFS, notably Linux.

During our research we located two places where VFS
hooks could be placed by malicious kernel extensions in
order to filter content. The first was in the configuration
table for a particular file system. This structure, of type
vfstable, stores function pointers for getting and setting file
system attributes, syncing the file system cache to disk, and
mapping VFS internal identifiers to actual files in the file
system. These pointers are stored in the vfc_vfsopsmember,
which is of type vfsops.

The second filtering method found was hooking of the
vnode operations structure of each file system. The set of
operations are stored as a vnodeopv_entry_desc structure,
whose opve_impl member stores a pointer to the handler
routine and whose vnodeop_desc member stores informa-
tion such as the routine's name (e.g. “vnop_open”,
“vnop_read”, “vnop_write”). This structure represents
every operation that code running in the kernel or userland
can request from the file system.

Hooking of the functions described in the two previous
methods can facilitate file and directory hiding, false
reporting of file system metadata and content, prevention
of file modification, andmuchmore, all of interest to rootkit
developers.

Volatility plugin: mac_check_fop
The mac_check_fop plugin was developed to detect

these types of rootkits. Its implementation was inspired by
the linux_check_fop plugin. mac_check_fop currently per-
forms two sets of checks. The first check walks all vfstable
structures, accessible via an array in the global vfstbllist
kernel variable, and determines whether each operation's
function pointer is suspicious.

The second check enumerates each vnode operations
structure by locating the vfs_opv_descs global variable. This
stores a vnodeopv_desc structure for each loaded file sys-
tem. The opv_desc_ops member of vnodeopv_desc is of type
vnodeopv_entry_desc, whose members were explained
previously. Once the entry descriptor is obtained, its
handler structure is then checked for any malicious entries.

File system events

Motivation
File system event monitoring allows code both in the

kernel and in userland to monitor for file events, such as
creation, deletion, modification, renaming, and others. This
functionality can be used by rootkits for a wide variety of
purposes including monitoring its own files for modifica-
tion or removal by security tools, monitoring files it wants
to steal data from, and monitoring for installation of secu-
rity and forensics tools. Since this monitoring must be
implemented within the kernel, even if a userland process
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requests the monitor, kernel data structures will perform
the tracking of event handlers. This has the interesting
advantage of allowing kernel memory analysis to pinpoint
suspicious processes on a system.

File system monitoring in OS X
As demonstrated in FSLogger (fslogger, 2015), OS X

provides robust capabilities for userland tools to monitor
file activity by interacting with the /dev/fsevents character
device. In particular, userland tools can monitor for file
creation, deletion, content and attribute modification,
renaming, and more. Each registered event “watcher”,
namely a process that has registered for events, is stored
within the watcher_table global array. The array is capped
at a maximum of eight watchers. Each watcher is repre-
sented by an fs_event_watcher structure, which tracks the
process name (proc_name) and PID (pid) that registered the
watcher along with the specific events it is interested in.
The list of events is stored in the event_list member as a
byte mask.

Volatility plugin: mac_vfsevents
The mac_vfsevents plugin was developed in order to

enumerate watchers. The plugin first finds the global table
of watchers and then enumerates it. For each watcher
found, the process information is printed alongwith the list
of watched events.

Since userland components interact with file system
events by opening and then reading from /dev/fsevents,
there is no function pointer that can be used to determine
where in the process’ memory the events are handled.
Instead, existing Volatility plugins, such as mac_procdump
and mac_librarydump, must be used to extract the execut-
able of interest to disk in order to support further reverse
engineering.

Eventing in Mac OS X

Motivation
While researching the other components discussed in

this paper, the authors also investigated internals of the
kqueue interface provided by OS X (Lemon, 2015), derived
from the facility of the same name in FreeBSD (dating to
FreeBSD 4.1). This interface provides userland components
the ability to monitor file events, file descriptor events,
process events, including creation, and signals sent to a
process. With sufficient privileges these can be abused for a
large range of possibilities including preventing processes
from loading, detecting when files and network connec-
tions are being tampered with, and reacting after a process
of interest has terminated. As with file system events, by
analyzing the kqueue facility in kernel memory, a forensics
tool can detect suspicious processes that should be marked
for further investigation.

OS X KQueue implementation
Userland tools can use kqueue and its companion kevent

call to monitor a wide range of activity on the system. Ex-
amples of supported file-descriptor based events include
when a socket is being read from, when a new connection
is being established, and when a file is being deleted,

written to, or renamed. Processes can be monitored for
termination, forking, and calling execve by supplying the
PID of the process to monitor.

Each registered kevent handler is represented by a knote
structure, which is linked to its related process in several
ways. File related knote structures are stored within the
p_fdmember of the process' proc structure. This member is
of type filedesc and its fd_knlist holds a list of knotes while
its fd_knhash member stores a hash table of members.
knotes for tracking process events are stored as a list in the
p_klist member of struct proc. knotes for sockets are stored
within the send or receive queue member of the socket or
within the socket's so_klist member. For completeness, all
three lists must be enumerated to gather all of a socket's
knotes.

The knote structure itself holds several pieces of infor-
mation including linkage with the other knotes, a pointer to
its filtering operation structure, and information about the
event being monitored. The monitoring information is
stored in the kn_kevent member, which is of type
kevent64_s. Decoding the event requires analysis of its ident
and filter members. The filter member specifies the type of
monitor (e.g., EVFILT_READ for monitoring file descriptor
reads or EVFILT_PROC for monitoring process events). The
ident member's value depends on the type of event being
filtered. For process events it will be the PID to monitor and
for file or socket events it will be the file descriptor of the
opened file or active network connection to monitor.

Volatility plugin: mac_kevents
The mac_kevents plugin recovers all registered file,

socket, and process knotes across all active processes. This
is accomplished in several steps. To start, each process
descriptor is enumerated using existing Volatility APIs. For
each process found, its p_klistmember is walked to recover
registered process filters. After this, the file descriptor fil-
ters are walked by following the p_fdmember, as described
previously. To recover the socket filters, each file descriptor
in the process’ file descriptor table is checked and for files
of type DTYPE_SOCKET, the socket structure is located and
the general, send queue, and receive queue filters
enumerated for analysis.

As the knotes are discovered, their event structures are
decoded and output in an investigator-friendly manner. To
decode events, the ident and filter members are parsed as
described previously, along with the fflags member, as
necessary. For file-related filters (EVFILT_VNODE), fflags
specifies the event to monitor (delete, write, rename, etc.),
and for process filters fflags specifies the process events to
monitor (fork, exit, exec, etc.).

Evaluation

Overview

The plugins developed during this research were tested
on OS X versions 10.6 (Snow Leopard) through 10.9 (Mav-
ericks). Volatility did not have official support for 10.10
(Yosemite) at the time of writing so we could not perform
conclusive testing. From our reading of the Yosemite kernel
source code it appears as if all the facilities targeted during
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this research work in essentially the same way and the
plugins will be updated as needed as the official Volatility
release catches up.

Testing was performed on publicly available OS X
memory samples (AMF, 2015; PAMS, 2015) as well as
samples generated during the research. Memory images on
native hardware were generated with Mac Memory Reader
and virtual machine guests’ memory was captured using
snapshot support in VMware Fusion. Since the time we
conducted this research, Mac Memory Reader is no longer
available for download, so an alternative must be used to
acquire memory on native hardware.

Expected data to compare with plugin output was
generated through study of the kernel source code. Cross-
references to the functions that fill the analyzed data
structures were used to determine what types of data was
being populated and the exact values. These were then
compared to the information recovered by the plugins.
For several of the plugins, closed-source Apple kernel
extensions interacted with the subsystems. A subset of
these were verified through binary analysis of the
extensions.

Plugin output and usability

In this section we demonstrate several of the discussed
plugins and show how they can be useful to a forensic or
malware analyst during an investigation.

mac_devfs against crisis
Crisis (Katsuki, 2012) is arguably the most infamous and

powerful malware to ever be discovered to impact OS X
systems. Its primary purpose is espionage and it contains
both userland and kernel components that can record
audio and activate web cameras, take pictures, steal login
credentials, perform keystroke logging, and more.

In order for the userland components to be able to
request functionality from the kernel components, Crisis
creates a character device named /dev/pfCPU (Vilaca, 2012;

Nayyar, 2014). The userland component can then use ioctl
requests to send commands and receive replies.

When executed against infected memory samples, our
mac_devfs plugin locates this character device as well as
information about the handlers for all its operations. The
plugin also identifies the kernel component that imple-
ments the handler, and if possible, the name of the symbol
within the executable. Fig. 1 illustrates the output of the
plugin against, filtered to concentrate only on the Crisis
device.

As Fig. 1 illustrates, Crisis implements d_ioctl, d_open,
and d_close functions for the /dev/pfCPU device. Other
handler functions simply point to the generic handler for
unsupported operations. When Crisis’ userland compo-
nents perform an ioctl operation on the /dev/pfCPU de-
vice, the function associated with the d_ioctl function
pointer will be executed within the kernel. Since our
plugin provides the function pointer address
(0xffffff 7f808049c6 in this case), the analyst can then
immediately perform binary analysis on the function in
order to determine its purpose. Since the name of the
module is listed, it can also be extracted in its entirety
through the existing mac_moddump plugin. This allows
for additional, deeper analysis using static analysis tools
like IDA Pro.

We note that Crisis does attempt to hide its kernel
module, but Volatility's existing module discovery algo-
rithm is not fooled by the attempt, and as such the mod-
ule's name is reported. If a handler pointed to an area that
Volatility could not map back to the kernel itself or a kernel
extension, the module would be listed as UNKNOWN. This
is a common Volatility convention to point out suspicious
regions within memory.

mac_vfsevents against FSLogger
FSLogger, described previously, is an open source tool for

filtering and displaying all file system events on the system.
While its primary purpose is not malicious, its behavior is
representative of malware thatmonitors system events and

Fig. 1. mac_devfs plugin output against a 10.7.3 memory image of machine infected with Crisis.
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so it makes a good test case for our mac_vfsevents plugin.
Fig. 2 illustrates the output of mac_vfsevents with the
FSLogger tool active.

As can be seen, there are four processes listed along
with the events they are monitoring. The coreservicesd,
fseventsd, and mds processes are all legitimate OS X com-
ponents that always register vfseventsmonitors. This makes
sense as the core services daemon provides a wide array of
functionality, including file system monitoring, fseventd
runs the file events subsystem in userland, and mds is a
component of Spotlight, which indexes all files upon
modification, among other indexing operations.

The fourth entry, fslogger, is our version of FSLogger set
to monitor all possible events. This output line would
immediately indicate to an analyst that there is an process
on the system monitoring all events and that further
investigation of the process’ purpose and capabilities is
needed.

mac_check_fop against a clean sample
Fig. 3 shows select output from the mac_check_fop

plugin against a clean 10.7.3 64 bit sample. The output
shows a number of operations (lookup, create, open, close,
rename, readdir,mkdir, etc.) for the HFS þ file system. Every

Fig. 2. mac_vfsevents plugin output with FSLogger executing for a 10.9.5 memory image.

Fig. 3. mac_check_fop plugin output against a clean 10.7.3 memory image.
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HFS þ file that is opened from a process or the kernel and
then interacted with will have the requested operations
routed through these pointers. As with mac_devfs, the
handlers are checked to be certain they are within a valid
memory range. Since these pointers are not hooked, they
are printed along with the component that implements
them, the kernel, as well as the exact symbol (function
name) inside the kernel executable.

Conclusions and future work

This paper has demonstrated that current rootkit
detection techniques for OS X systems, particularly for
rootkits that target kernel data, are inadequate. We dis-
cussed several Mac OS X subsystems that could be abused
by rootkits and for which the abuse would not be detected
by currently available tools and techniques. These included
portions of the IOKit Framework, VFS event monitors,
kqueuemonitors, timers, and more. In order to advance the
state of the art in OS X rootkit detection, these gaps in
available malware detection were filled through a detailed
study of the relevant kernel subsystems, along with
development of Volatility plugins that can automate the
processing.

For each plugin we developed, we extracted actionable
data that the investigator could then focus on to better
understand the associated malicious behavior. This
included the exact address where malicious code was
stored, and, where possible, the name of the kernel
component and symbol implementing the malicious
functionality. We also discussed how our plugins
compliment existing Volatility features, such as auto-
mated extraction of process executables and kernel ex-
tensions, in order to better frame the output of our
plugins in a more detailed reverse engineering or anti-
virus scanning effort. All of the plugins described in this
paper will be freely available after the publication of the
paper.

In our view, the work presented in this paper has
considerably improved the state of the art for Mac OS X
rootkit detection. We are confident that a similar com-
parison of Windows and Linux detection capabilities will
reveal gaps in current generation rootkit detection
schemes for each operating system. Results from such a
comparison would then require similar research to
address the gaps. As an example, we note that while Linux
also has devfs and ioctl facilities, currently no tools are able
to list the operation handlers of enumerated devfs nodes.
As with Crisis and /dev/pfCPU, malware on both Linux and
Windows systems use ioctl facilities for communication
with userland components. Furthermore, both Windows
(MDMS, 2015) and Linux (inotify, 2015) provide file system
monitoring from userland, but no existing forensic tool is
able to locate and list registered handlers. Finally, sub-
systems on Linux, such as dbus (dbus, 2015), allow regis-
tering interest in hardware events, such as USB insertion.
Similar subsystems have been abused by malware on
Windows, including by Stuxnet (Ligh, 2011), to infect USB
devices on insertion.
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