
1 

Intro x86 Part 4: 
 Inline Assembly, 

Read The Fun Manual, 
Choose Your Own Adventure 

Xeno Kovah – 2009/2010 
xkovah at gmail 

Approved for Public Release: 10-3348. Distribution Unlimited 



All materials is licensed under a Creative 
Commons “Share Alike” license. 

•  http://creativecommons.org/licenses/by-sa/3.0/ 

2 



3 

Inline assembly 
•  Inline assembly is a way to include assembly directly in a C/C++ 

file. However, the syntax will differ between compilers and 
assemblers. 

•  There are times when you actually have to code asm in order to 
do something from a C/C++ file. 
–  Very common in OS or driver design, because there are many 

aspects of hardware which can only be accessed with special 
instructions 

–  In crypto you might want access to the “rol/ror - rotate left/right” 
instructions which don’t have corresponding C syntax like shifts do 

•  Or maybe you just want full control over the code being 
generated for optimization purposes 
–  Keep in mind the compiler may still optimize your inline asm 

•  Also it’s a great way to simply experiment with instructions 
–  Though getting the syntax right for the desired instructions is 

sometimes annoying 



4 

VisualStudio inline assembly 

•  VisualStudio syntax - intel-syntax 
•  __asm{ instructions separated by \n}; 

–  That’s two underscores at the beginning 
–  Don’t even need a semicolon after it, but I put 

them there since it makes the auto-indent work 
correctly  

__asm{  mov eax, [esp+0x4] 
   cmp eax, 0xdeadbeef 
   je myLabel 
   xor eax, eax 

myLabel:  mov bl, al 
}; 



5 

VisualStudio inline assembly 2 
•  Syntax using C variables is the same, just put the variable in 

place of a register name for instance. (The assembler will 
substitute the correct address for the variable.) 

•  http://msdn.microsoft.com/en-us/library/4ks26t93(VS.80).aspx 
 
int myVar; 
//value into C variable from register 
__asm {mov myVar, eax}; 
//value into register from C variable  
__asm {mov eax, myVar}; 
 



6 

GCC inline assembly 

•  GCC syntax - AT&T syntax 
•  asm(“instructions separated by \n”); 

–  DO need a semicolon after close parentheses 
 
asm("movl 0x4(%esp), %eax\n" 
        "cmp $0xdeadbeef,%eax\n" 
        "je myLabel\n" 
        "xor %eax, %eax\n" 
        "myLabel: movw %bx, %ax"   
); 

http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html 
 Book starting on p. 365 



7 

GCC inline assembly 2 

•  Syntax using C variables (aka “extended 
asm”): 

asm ( assembler template            !
: output operands                  /* optional */!
: input operands                   /* optional */!
: list of clobbered registers      /* optional */!
); 
 
int myVar; 
//value into C variable from register 
asm ("movl %%eax, %0" : "=r" (myVar) ); 
//value into register from C variable 
asm ("movl %0, %%eax" : : "r" (myVar) ); 
 
 



8 

_emit and .byte 
•  Once you learn about opcodes later on, you can even 

specify exactly the instructions you want to use by 
using the “_emit” or “.byte” keywords, to place 
specific bytes into the code.  

•  Those bytes can then be interpreted as instructions 
or data 

•  This is sometimes useful if you can’t figure out the 
inline asm syntax for the instruction you want to use, 
but you know its opcodes (either from seeing them 
elsewhere, or by reading the manual) 

•  Examples: 
–  __asm{_emit 0x55}  is __asm{push ebp} 
–  __asm{_emit 0x89};__asm{_emit 0xE5}  is __asm{mov ebp, 

esp} 
–  asm(“.byte 0x55”); is asm(“push %ebp”); 
–  asm(".byte 0x89 ; .byte 0xE5"); is asm(“mov %esp, %ebp”); 



9 

Guess what? 
I have repeatedly mislead you! 
•  Simplification is misleading 
•  Time to learn the fascinating truth…  
•  Time to RTFM! 



10 

Read The Fun Manuals 
•  http://www.intel.com/products/processor/manuals/ 
•  Vol.1 is a summary of life, the universe, and 

everything about x86 
•  Vol. 2a & 2b explains all the instructions 
•  Vol. 3a & 3b are all the gory details for all the extra 

stuff they’ve added in over the years (MultiMedia 
eXtentions - MMX, Virtual Machine eXtentions - VMX, 
virtual memory, 16/64 bit modes, system 
management mode, etc) 

•  Already downloaded to the Manuals folder 
•  We’ll only be looking at Vol. 2a & 2b in this class 



11 

Interpreting the Instruction 
Reference Pages 

•  The correct way to interpret these 
pages is given in the Intel Manual 2a, 
section 3.1 

•  I will give yet another simplification 
•  Moral of the story is that you have to 

RTFM to RTFM ;) 



12 

AND - Logical AND"
•  Destination operand can be r/m32 or register 
•  Source operand can be r/m32 or register or 

immediate (No source and destination as r/
m32s) 

00110011b (al - 0x33) 
AND 01010101b (bl - 0x55) 
result 00010001b (al - 0x11) 

and al, bl 
00110011b (al - 0x33) 

AND 01000010b (imm - 0x42) 
result 00000010b (al - 0x02) 

and al, 0x42 

Here’s what I said: 



13 

Here’s 
what 
the 

manual 
says: 



14 

AND truncated 

Ignore this line. Register names 
beginning with R refer to 64bit 

registers, and are not relevant for this 
class 



15 

Opcode Column 

•  Opcode Column 
•  Represents the literal byte value(s) which 

correspond to the given instruction 
•  In this case, if you were to see a 0x24 

followed by a byte or 0x25 followed by 4 
bytes, you would know they were specific 
forms of the AND instruction. 
–  Subject to correct interpretation under x86’s multi-

byte opcodes as discussed later. 
See Intel Vol. 2a section 3.1.1.1 



16 

•  If it was 0x25, how would you know whether it 
should be followed by 2 bytes (imm16) or 4 
bytes (imm32)? Because the same single 
opcode byte is used for both, the length of the 
operand depends on if the processor is in 
32bit or 16bit mode. Because we’re only 
considering 32bit mode in this class, the 4 
bytes (“id” aka “imm32” aka “dword”) 
following 0x25 will always be considered the 
operand to the instruction. 

Opcode Column 



17 

•  How to see the opcodes in VisualStudio: 
•  Seeing the exact opcode will  
help confirm the exact version of an 
Instruction 
 
 
(I couldn’t find a decent 
way to do it in gdb besides  
using “x/<num>xb <addr>”) 

Opcode Column 



18 

Instruction Column 

•  Instruction Column 
•  The human-readable mnemonic which is used to 

represent the instruction. 
•  This will frequently contain special encodings such as 

the “r/m32 format” which I’ve previously discussed 

See Intel Vol. 2a section 3.1.1.2 

Opcode Column 



19 

64bit Column 

•  64bit Column 
•  Whether or not the opcode is valid in 64 bit code. 
•  Can be ignored for our purposes. 

See Intel Vol. 2a section 3.1.1.3 

Opcode Column 



20 

Compatibility/Legacy Mode Column 

•  Compatibility/Legacy Mode Column 
•  Whether or not the opcode is valid in 32/16 bit code. 

–  For 64 bit instructions, the N.E. Indicates an Intel 64 
instruction mnemonics/syntax that is not encodable” 

•  Can be ignored for our purposes. 

See Intel Vol. 2a section 3.1.1.4 

Opcode Column 



21 

Description Column 

•  Description Column 
•  Simple description of the action performed by the 

instruction 
•  Typically this just conveys the flavor of the instruction, 

but the majority of the details are in the main 
description text 

See Intel Vol. 2a section 3.1.1.5 

Opcode Column 



22 

Further AND variations 
•  Looking at some other forms, we now see those “r/

m32” things I told you about 
•  We know that for instance it can start with an 0x80, 

and end with a byte, but what’s that /4? 
•  Unfortunately the explanation goes into too much 

detail for this class. Generally the only people who 
need to know it are people who want to write 
disassemblers. But I still put it in the Intermediate x86 
class :) 

•  All you really need to know is that any time you see a 
r/m8 or r/m32, it can be either a register or memory 
value. 



23 

AND Details 

•  Description 
–  “Performs a bitwise AND operation on the destination (first) and 

source (second) operands and stores the result in the destination 
operand location. The source operand can be an immediate, a 
register, or a memory location; the destination operand can be a 
register or a memory location. (However, two memory operands 
cannot be used in one instruction.) Each bit of the result is set to 
1 if both corresponding bits of the first and second operands are 
1; otherwise, it is set to 0. "

    This instruction can be used with a LOCK prefix to allow the it to 
be executed atomically.”"

•  Flags effected"
–  “The OF and CF flags are cleared; the SF, ZF, and PF 

flags are set according to the result. The state of the 
AF flag is undefined.” "



24 

JCC is another good  
one to revisit 



25 

Jcc Revisited 

•  If you look closely, you will see that there 
are multiple mnemonics for the same 
opcodes 

•  0x77 = JA - Jump Above 
•  0x77 = JNBE - Jump Not Below or Equal 
•  0x74 = JE / JZ - Jump Equal / Zero 
•  Which mnemonic is displayed is 

disassembler-dependent 



26 

How about looking at the 
manual when a new 

instruction is encountered? 
//Example6.c 
int main(){ 

 unsigned int a, b, c; 
 a = 0x40; 
 b = a * 8; 
 c = b / 16; 
 return c; 

} 

//Example6-mod.c 
int main(){ 

 int a, b, c; 
 a = 0x40; 
 b = a * 8; 
 c = b / 16; 
 return c; 

} 



27 

08048344 <main>: //Example6 
 8048344:       lea    0x4(%esp),%ecx 
 8048348:       and    $0xfffffff0,%esp 
 804834b:       pushl  -0x4(%ecx) 
 804834e:       push   %ebp 
 804834f:       mov    %esp,%ebp 
 8048351:       push   %ecx 
 8048352:       sub    $0x10,%esp 
 8048355:       movl   $0x40,-0x8(%ebp) 
 804835c:       mov    -0x8(%ebp),%eax 
 804835f:       shl    $0x3,%eax 
 8048362:       mov    %eax,-0xc(%ebp) 
 8048365:       mov    -0xc(%ebp),%eax 
 8048368:       shr    $0x4,%eax 
  
 
 
 
804836b:       mov    %eax,-0x10(%ebp) 
 804836e:       mov    -0x10(%ebp),%eax 
 8048371:       add    $0x10,%esp 
 8048374:       pop    %ecx 
 8048375:       pop    %ebp 
 8048376:       lea    -0x4(%ecx),%esp 
 8048379:       ret  

08048344 <main>: //Example6-mod 
 8048344:       lea    0x4(%esp),%ecx 
 8048348:       and    $0xfffffff0,%esp 
 804834b:       pushl  -0x4(%ecx) 
 804834e:       push   %ebp 
 804834f:       mov    %esp,%ebp 
 8048351:       push   %ecx 
 8048352:       sub    $0x10,%esp 
 8048355:       movl   $0x40,-0x8(%ebp) 
 804835c:       mov    -0x8(%ebp),%eax 
 804835f:       shl    $0x3,%eax 
 8048362:       mov    %eax,-0xc(%ebp) 
 8048365:       mov    -0xc(%ebp),%edx 
 8048368:       mov    %edx,%eax 
 804836a:       sar    $0x1f,%eax 
 804836d:       shr    $0x1c,%eax 
 8048370:       add    %edx,%eax 
 8048372:       sar    $0x4,%eax 
 8048375:       mov    %eax,-0x10(%ebp) 
 8048378:       mov    -0x10(%ebp),%eax 
 804837b:       add    $0x10,%esp 
 804837e:       pop    %ecx 
 804837f:       pop    %ebp 
 8048380:       lea    -0x4(%ecx),%esp 
 8048383:       ret     

changed 

Compiled and disassembled on Linux 
Why? Cause VS added an extra, distracting, instruction 



28 

SAR manual 



29 

SAR - Shift Arithmetic Right"
•  Can be explicitly used with the C “>>” operator, if the operands are 

signed 
•  First operand (source and destination) operand is an r/m32 
•  Second operand is either cl (lowest byte of ecx), or a 1 byte immediate. 

The 2nd operand is the number of places to shift. 
•  It divides the register by 2 for each place the value is shifted. More 

efficient than a multiply instruction. 
•  Each bit shifted off the right side is place in CF. 

10110011b (ecx - 0xB3) 
result 00101100b (ecx - 0x2C) 

shr ecx, 2 
10110011b (ecx - 0xB3) 

result 11101100b (ecx - 0xEC) 

sar ecx, 2 

00110011b (ecx - 0x33) 
result 00001100b (ecx - 0x0C) 

sar ecx, 2 
00110011b (ecx - 0x33) 

result 00001100b (ecx - 0x0C) 

shr ecx, 2 

== 

!= 

Book p. 225 



30 

Discussion 
; semi-colons are comments!
mov    -0xc(%ebp),%edx !; edx == “b”!
mov    %edx,%eax! !; eax == edx!
sar    $0x1f,%eax! !; If the most significant bit of %eax was 1!

! ! ! !; when this happened, %eax == 0xFFFFFFFF,!
! ! ! !; else %eax == 0!

shr    $0x1c,%eax! !; if %eax was 0, it’s still 0, else if %eax!
! ! ! !; was 0xFFFFFFFF the least significant four!
! ! ! !; bits of %eax are set (i.e. 0xF)!

add    %edx,%eax! !; Add 0xF or 0 to the value to be shifted!
sar    $0x4,%eax! !; Now perform the expected shift 
 
•  But why add something to the least signficant bits when it’s just going to get 

shifted away?  
•  It turns out the 0xF (four ones) is only because it’s a 4 bit shift. And everything 

which gets shifted off the right side gets shifted into the Carry Flag (CF). Thus 
it’s guaranteeing that when the sequence of operations is done, that CF == 1 if 
and only if the original number was signed (MSB == 1)7. 

•  If we change the C code to b / 32, and hence a 5 bit shift, the shr $0x1c,%eax 
turns into shr $0x1b,%eax, and the sar $0x4,%eax turns to sar $0x5,%eax!

•  If you analyze Example6-mod.c with VisualStudio, it does the same thing, but it 
uses different instructions to do it.!



31 

Discussion: variable-length 
opcodes 

•  Any given sequence of bytes can be interpreted in 
different ways, depending on where the CPU starts 
executing it from 

•  This has many subtle implications, but it seems to get 
abused the most in the security domain  

•  Examples: inability to validate intended instructions, 
return-oriented-programming, code obfuscation and 
polymorphic/self-modifying code 

•  In comparison, RISC architectures typically have 
fixed instruction sizes, which must be on aligned 
boundaries, and thus makes disassembly much 
simpler 



32 

Variable-length opcode 
decoding example 

(gdb) x/5i $eip 
0x8048385 <main+17>:    movl   $0x8048460,(%esp) 
0x804838c <main+24>:    call   0x80482d4 <puts@plt> 
0x8048391 <main+29>:    mov    $0x1234,%eax 
0x8048396 <main+34>:    add    $0x4,%esp 
0x8048399 <main+37>:    pop    %ecx 
(gdb) x/5i $eip+1         
0x8048386 <main+18>:    add    $0x24,%al 
0x8048388 <main+20>:    pusha   
0x8048389 <main+21>:    test   %al,(%eax,%ecx,1) 
0x804838c <main+24>:    call   0x80482d4 <puts@plt> 
0x8048391 <main+29>:    mov    $0x1234,%eax 
(gdb) x/5i $eip+2 
0x8048387 <main+19>:    and    $0x60,%al 
0x8048389 <main+21>:    test   %al,(%eax,%ecx,1) 
0x804838c <main+24>:    call   0x80482d4 <puts@plt> 
0x8048391 <main+29>:    mov    $0x1234,%eax 
0x8048396 <main+34>:    add    $0x4,%esp 

(gdb) x/5i $eip+6 
0x804838b <main+23>:    or     %ch,%al 
0x804838d <main+25>:    inc    %ebx 
0x804838e <main+26>:    (bad)   
0x804838f <main+27>:    (bad)   
0x8048390 <main+28>:    (bad)  

(gdb) x/xb 0x804838e 
0x804838e <main+26>:    0xff 
(no instruction starts with 0xFF) 



33 

Questions about anything in 
the class? Stuff you’d like me 

to go over again? 



34 

Choose your own adventure 

•  Effects of compiler optimization/security/
debugging options? Goto p35 

•  Dissect the binary bomb? Goto p39 
•  Messing with a disassembler? Goto p41 
•  Mystery box! Goto p52 
•  Why twos compliment? Goto p 



35 

Effects of Compiler Options 

main: 
00401010  push        ebp   
00401011  mov         ebp,esp  
00401013  sub         esp,28h  
00401016  mov         byte ptr [ebp-1],2Ah  
0040101A  mov         eax,0B100Dh  
0040101F  mov         esp,ebp  
00401021  pop         ebp   
00401022  ret  

//Example8.c 
int main(){ 

 char buf[40]; 
 buf[39] = 42; 
 return 0xb100d; 

} 

Our standard build 



36 

Effects of Compiler Options 2 
/O1 (minimum size) or 
/O2 (maximum speed) 

main: 
0040100F  mov         eax,0B100Dh  
00401014  ret  

/Zi -> /ZI (Program database for edit & continue) 

main: 
00411250  push        ebp   
00411251  mov         ebp,esp  
00411253  sub         esp,68h  
00411256  push        ebx   
00411257  push        esi   
00411258  push        edi   
00411259  mov         byte ptr [ebp-1],2Ah  
0041125D  mov         eax,0B100Dh  
00411262  pop         edi   
00411263  pop         esi   
00411264  pop         ebx   
00411265  mov         esp,ebp  
00411267  pop         ebp   
00411268  ret  

main: 
00401010 push    ebp 
00401011 mov     ebp,esp 
00401013 sub     esp,28h 
00401016 mov     byte ptr [ebp-1],2Ah 
0040101a mov     eax,0B100Dh 
0040101f mov     esp,ebp 
00401021 pop     ebp 
00401022 ret 
 
 

Debug information format 
Disabled (viewed from WinDbg) or 
/Z7 (C7 Compatible) 
(no change) 



37 

Effects of Compiler Options 3 

main: 
00401010  push        ebp   
00401011  mov         ebp,esp  
00401013  sub         esp,2Ch  
00401016  mov         eax,dword ptr [___security_cookie (405000h)]  
0040101B  xor         eax,ebp  
0040101D  mov         dword ptr [ebp-4],eax  
00401020  mov         byte ptr [ebp-5],2Ah  
00401024  mov         eax,0B100Dh  
00401029  mov         ecx,dword ptr [ebp-4]  
0040102C  xor         ecx,ebp  
0040102E  call        __security_check_cookie (401040h)  
00401033  mov         esp,ebp  
00401035  pop         ebp   
00401036  ret  

/GS - Buffer Security Check (default enabled nowadays) 
 aka “stack cookies” (MS term) 
 aka “stack canaries” (original research term)  



38 

Effects of source options 

main: 
00401010  sub         esp,28h  
00401013  mov         byte ptr [esp+27h],2Ah  
00401018  mov         eax,0B100Dh  
0040101D  add         esp,28h  
00401020  ret  

int main(){ 
 volatile char buf[40]; 
 buf[39] = 42; 
 return 0xb100d; 

} 

/O1 optimization when the volatile keyword is present 

This is a trick I picked up from a 2009 Defcon presentation 
http://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-
sean_taylor-binary_obfuscation.pdf 
He also talked a little bit about control flow flattening which is 
covered in an academic paper in the “Messing with the 
disassembler” adventure. Goto page 41. 

Book p. 369 



39 

Bomb lab 

•  From CMU architecture class - 
http://csapp.cs.cmu.edu/public/labs.html 

•  Goal is to reverse engineer multiple phases to 
determine the program’s desired input 

•  Create a text file with answers, one per line, 
named “answers” 

•  gdb -x myCmds bomb 
•  run with “r < answers” 
•  Should add/remove breakpoints on the 

different phases as you go along 



GDB/Bomb Lab Cheat Sheet 

•  Christian Arllen found this, and it has 
many more example of gdb syntax, as 
well as some help for if you get stuck on 
the lab 

•  http://condor.depaul.edu/~jriely/
csc373fall2010/extras/mygdbnotes.txt 

•  (get it on google cache while you can, 
because it's gone now) 40 



41 

Messing with a disassembler 
•  Obfuscation of Executable Code to Improve 

Resistance to Static Disassembly - Linn & Debray 
–  http://www.cs.arizona.edu/solar/papers/CCS2003.pdf 
–  Linear sweep vs. recursive traversal disassembly 
–  Also discusses and measures the “self-repairing” nature of 

x86 disassembly which we saw earlier 
•  Confusing linear sweep (objdump) by inserting junk 

bytes after unconditional jumps. 
–  Could be literally unconditional “jmp” 
–  Could be a jcc, which must always be true, like “xor eax, 

eax” and then “jz <addr>” 
–  Have to do this multiple times because of the self-repairing 

disassembly 



42 

Messing with disassembler 2 
•  Confusing recursive traversal 

–  3.4.1: Branch functions. All jmps turned into a call 
to a specific function. 

–  3.4.2: Call conversion. Branch functions + the junk 
byte technique which messed with linear sweep. 

–  3.4.3: Opaque predicates. Create ostensibly 
conditional jumps which will in fact always follow 
only one path. The disassembler doesn’t have the 
smarts to determine this. 

–  3.4.5: Jump table spoofing. Exploits the fact that 
the disassembler may try to estimate the size of 
the jump table based on a constraint. The trick is 
to add a jump table which will never be reached. 



43 

Branch Functions Visualized 



44 

Jump table visualized 



45 

Addressing Linn & Debray 
obfuscations 

•  Static Disassembly of Obfuscated Binaries - 
Kruegel et al. 

–  http://www.cs.ucsb.edu/~chris/research/doc/usenix04_disasm.pdf  
–  Attempt to improve on the state of the art in 

disassembling, to deal with the Linn & Debray 
obfuscations 

–  I don’t know if there are any disassemblers which 
try to use these improved disassembly methods 
(objdump and IDA definitely don’t). Confirmed 
with Kruegel that he’s not aware of anywhere that 
uses the improvements either. 



Digression –  
Why Two’s Compliment? 

•  Alternative methods of representing negative 
numbers (signed magnitude, or just ones 
compliment), as well as their problems 
presented on page 166-167 of the book. 
–  Note to self: show on board quick 

•  The benefit of two’s compliment is due to 
having only one representation of zero, and 
being able to reuse the same hardware for 
addition/subtraction 

•  Dave Keppler suggested expanding on this 46 



Why Two’s Compliment? 2 

47 

    5d 
+  6d 

11d 

1 

Carry 

    1b 
+  1b 

10b 

1 

Table taken from 
http://thalia.spec.gmu.edu/~pparis/classes/notes_101/node110.html 



Why Two’s Compliment? 3 

48 

XOR 

AND 

A half adder circuit suffices for one bit addition 

Picture taken from 
http://thalia.spec.gmu.edu/~pparis/classes/notes_101/node110.html 



Why Two’s Compliment? 4 

49 Picture taken from 
http://thalia.spec.gmu.edu/~pparis/classes/notes_101/node111.html 

Full Adder 

You can’t just chain the one bit half adders together to get multi-
bit adders. To see why, see the truth table at the link. 



Why Two’s Compliment? 5 

50 

2 bit adder 

Pictures taken from 
http://thalia.spec.gmu.edu/~pparis/classes/notes_101/node112.html 
http://thalia.spec.gmu.edu/~pparis/classes/notes_101/node113.html 

4 bit adder  
(continue to make n bit adder) 

Note: we start with a half adder because a full 
adder would need a carry input at the start. 
However, if we wanted to use this for subtraction 
we could use a full adder to start. More on this on 
next slide. 



Why Two’s Compliment? 6 
•  So you have these physical adder circuits in the 

Arithmetic Logic Unit (ALU), and you can feed both 
add and subtract to the same circuit. But for this to 
work, you need to start with a full adder, and then run 
one the one subtract operand bits through not gates, 
and then set carry to one on the first full adder. 

•  Keppler’s example of x-y == x+(-y) 
–  Cause it was right there in my email and I’m lazy ;) 

51 

  00001010   00001010 (10d) ==  00001010 (10d)"
+ 00000101  -00000101 (5d)     +11111011 (-5d)  
----------  ---------          ---------  
  00001111   00000101         1 00000101"



52 

What’s in the mystery box!? 

? 



53 

Wrap up - instructions   
•  Learned around 26 instructions and variations 
•  About half are just math or logic operations 
•  NOP 
•  PUSH/POP 
•  CALL/RET 
•  MOV/LEA 
•  ADD/SUB 
•  JMP/Jcc 
•  CMP/TEST 
•  AND/OR/XOR/NOT 
•  SHR/SHL/SAR/SAL 
•  IMUL/DIV 
•  REP STOS, REP MOV 
•  LEAVE 



54 

Wrap up 

•  Learned about the basic hardware registers 
and how they’re used 

•  Learned about how the stack is used 
•  Saw how C code translates to assembly 
•  Learned basic usage of compilers, 

disassemblers, and debuggers so that 
assembly can easily be explored 

•  Learned about Intel vs AT&T asm syntax 
•  Learned how to RTFM 



55 

The shape of things to come 

•  How does a system map a limited amount of 
physical memory to a seemingly unlimited 
amount of virtual memory? 

•  How does debugging actually work? How can 
malware detect your debugger and alter its 
behavior? 

•  How is “user space” actually separated from 
“kernel space”? I’ve heard there’s “rings”, 
but where are these fabled rings actually at? 

•   What if I want to talk to hardware beyond the 
CPU? 



56 


