
Intro x86 Part 3:
 Linux Tools & Analysis

Xeno Kovah – 2009/2010
xkovah at gmail

Approved for Public Release: 10-3348. Distribution Unlimited

All materials is licensed under a Creative
Commons “Share Alike” license.

•  http://creativecommons.org/licenses/by-sa/3.0/

2

Intel vs. AT&T Syntax
•  Intel: Destination <- Source(s)

–  Windows. Think algebra or C: y = 2x + 1;
–  mov ebp, esp
–  add esp, 0x14 ; (esp = esp + 0x14)

•  AT&T: Source(s) -> Destination
–  *nix/GNU. Think elementary school: 1 + 2 = 3
–  mov %esp, %ebp
–  add $0x14,%esp
–  So registers get a % prefix and immediates get a $

•  My classes will use Intel syntax except in this section
•  But it’s important to know both, so you can read documents in

either format.

3

Intel vs AT&T Syntax 2
•  In my opinion the hardest-to-read difference is for r/m32 values
•  For intel it’s expressed as

[base + index*scale + disp]!
•  For AT&T it’s expressed as !

disp(base, index, scale)!
•  Examples:

–  call DWORD PTR [ebx+esi*4-0xe8]
–  call *-0xe8(%ebx,%esi,4)

–  mov eax, DWORD PTR [ebp+0x8]
–  mov 0x8(%ebp), %eax

–  lea eax, [ebx-0xe8]
–  lea -0xe8(%ebx), %eax

4

Intel vs AT&T Syntax 3

•  For instructions which can operate on
different sizes, the mnemonic will have an
indicator of the size.
–  movb - operates on bytes
–  mov/movw - operates on word (2 bytes)
–  movl - operates on “long” (dword) (4 bytes)

•  Intel does indicate size with things like “mov
dword ptr [eax], but it’s just not in the actual
mnemonic of the instruction

5

gcc - GNU project C and C++
compiler

•  Available for many *nix systems (Linux/BSD/OSX/Solaris)
•  Supports many other architectures besides x86
•  Some C/C++ options, some architecture-specific options

–  Main option we care about is building debug symbols. Use
“-ggdb” command line argument.

•  Basically all of the VisualStudio options in the project properties
page are just fancy wrappers around giving their compiler
command line arguments. The equivalent on *nix is for to
developers create “makefile”s which are a configuration or
configurations which describes which options will be used for
compilation, how files will be linked together, etc. We won’t get
that complicated in this class, so we can just specify command
line arguments manually.

6
Book p. 53

gcc basic usage

•  gcc -o <output filename> <input file name>
– gcc -o hello hello.c
–  If -o and output filename are unspecified,

default output filename is “a.out” (for
legacy reasons)

•  So we will be using:
– gcc -ggdb -o <filename> <filename>.c
– gcc -ggdb -o Example1 Example1.c

7

objdump - display information
from object files

•  Where ”object file” can be an intermediate file
created during compilation but before linking, or a
fully linked executable
–  For our purposes means any ELF file - the executable format

standard for Linux
•  The main thing we care about is -d to disassemble a

file.
•  Can override the output syntax with “-M intel”

–  Good for getting an alternative perspective on what an
instruction is doing, while learning AT&T syntax

8
Book p. 63

objdump -d hello
hello: file format elf32-i386

Disassembly of section .init:

08048274 <_init>:
 8048274: 55 push %ebp
 8048275: 89 e5 mov %esp,%ebp
 8048277: 53 push %ebx
 8048278: 83 ec 04 sub $0x4,%esp
 804827b: e8 00 00 00 00 call 8048280 <_init+0xc>
…
08048374 <main>:
 8048374: 8d 4c 24 04 lea 0x4(%esp),%ecx
 8048378: 83 e4 f0 and $0xfffffff0,%esp
 804837b: ff 71 fc pushl -0x4(%ecx)
 804837e: 55 push %ebp
 804837f: 89 e5 mov %esp,%ebp
 8048381: 51 push %ecx
…

9

objdump -d -M intel hello
hello: file format elf32-i386

Disassembly of section .init:

08048274 <_init>:
 8048274: 55 push ebp
 8048275: 89 e5 mov ebp,esp
 8048277: 53 push ebx
 8048278: 83 ec 04 sub esp,0x4
 804827b: e8 00 00 00 00 call 8048280 <_init+0xc>
…
08048374 <main>:
 8048374: 8d 4c 24 04 lea ecx,[esp+0x4]
 8048378: 83 e4 f0 and esp,0xfffffff0
 804837b: ff 71 fc push DWORD PTR [ecx-0x4]
 804837e: 55 push ebp
 804837f: 89 e5 mov ebp,esp
 8048381: 51 push ecx
…

10

hexdump & xxd
•  Sometimes useful to look at a hexdump to see

opcodes/operands or raw file format info
•  hexdump, hd - ASCII, decimal, hexadecimal, octal

dump
–  hexdump -C for “canonical” hex & ASCII view
–  Use for a quick peek at the hex

•  xxd - make a hexdump or do the reverse
–  Use as a quick and dirty hex editor
–  xxd hello > hello.dump
–  Edit hello.dump
–  xxd -r hello.dump > hello

11

GDB - the GNU debugger
•  A command line debugger - quite a bit less user-

friendly for beginners.
–  There are wrappers such as ddd but I tried them back when I

was learning asm and didn’t find them to be helpful. YMMV

•  Syntax for starting a program in GDB in this class:
–  gdb <program name> -x <command file>
–  gdb Example1 -x myCmds

12
Book p. 57

About GDB -x <command file>

•  Somewhat more memorable long form is
“--command=<command file>”

•  <command file> is a plaintext file with a list of
commands that GDB should execute upon
starting up. Sort of like scripting the
debugger.

•  Absolutely essential to making GDB
reasonable to work with for extended periods
of time (I used GDB for many years copying
and pasting my command list every time I
started GDB, so I was super ultra happy
when I found this option)

13

GDB commands

•  “help” - internal navigation of available
commands

•  “run” or “r” - run the program
•  “r <argv>” - run the program passing

the arguments in <argv>
–  I.e. for Example 2 “r 1 2” would be what

we used in windows

14

GDB commands 2
•  “help display”
•  “display” prints out a statement every time the debugger stops
•  display/FMT EXP
•  FMT can be a combination of the following:

–  i - display as asm instruction
–  x or d - display as hex or decimal
–  b or h or w - display as byte, halfword (2 bytes), word (4 bytes - as

opposed to intel calling that a double word. Confusing!)
–  s - character string (will just keep reading till it hits a null character)
–  <number> - display <number> worth of things (instructions, bytes,

words, strings, etc)
•  “info display” to see all outstanding display statements and their

numbers
•  “undisplay <num>” to remove a display statement by number

15

GDB commands 3
•  “x/FMT EXP” - x for “Examine memory” at expression

–  Always assumes the given value is a memory address, and it dereferences
it to look at the value at that memory address

•  “print/FMT EXP” - print the value of an expression
–  Doesn’t try to dereference memory

•  Both commands take the same type of format specifier as display
•  Example:

(gdb) x/x $ebp
0xbffbcb78: 0xbffbcbe8
(gdb) print/x $ebp
$2 = 0xbffbcb78
(gdb) x/x $eax
0x1: Cannot access memory at address 0x1
(gdb) print/x $eax
$3 = 0x1

16

GDB commands 4
•  For all breakpoint-related commands see “help

breakpoints”
•  “break” or “b” - set a breakpoint

–  With debugging symbols you can do things like “b
main”. Without them you can do things like

 “b *<address>” to break at a given memory address.
–  Note: gdb’s interpretation of where a function begins

may exclude the function prolog like “push ebp”…
•  “info breakpoints” or “info b” - show currently set

breakpoints
•  "delete <num> - deletes breakpoint number

<num>, where <num> came from "info
breakpoints"

17

GDB 7 commands

•  New for GDB 7, released Sept 2009
–  Thanks to Dave Keppler for notifying me of the availability of

these new commands
–  reverse-step ('rs') -- Step program backward until it reaches

the beginning of a previous source line
–  reverse-stepi -- Step backward exactly one instruction
–  reverse-continue ('rc') -- Continue program being

debugged but run it in reverse
–  reverse-finish -- Execute backward until just before the

selected stack frame is called

18

GDB 7 commands 2
–  reverse-next ('rn') -- Step program backward, proceeding

through subroutine calls.
–  reverse-nexti ('rni') -- Step backward one instruction, but

proceed through called subroutines.
–  set exec-direction (forward/reverse) -- Set direction of

execution. All subsequent execution commands (continue,
step, until etc.) will run the program being debugged in the
selected direction.

–  The "disassemble" command now supports an optional /

m modifier to print mixed source+assembly.
–  "disassemble" command with a /r modifier, print the raw

instructions in hex as well as in symbolic form.
–  See “help disassemble” for full syntax 19

initial GDB commands file
•  display/10i $eip
•  display/x $eax
•  display/x $ebx
•  display/x $ecx
•  display/x $edx
•  display/x $edi
•  display/x $esi
•  display/x $ebp
•  display/32xw $esp
•  break main

20

Example run with commands
file

(gdb) r
Starting program: /home/user/hello

Breakpoint 1, main () at hello.c:4
4 printf("hello\n");
9: x/32xw $esp
0xbf9a2550: 0xb7f46db0 0xbf9a2570 0xbf9a25c8 0xb7df2450
0xbf9a2560: 0xb7f53ce0 0x080483b0 0xbf9a25c8 0xb7df2450
<snip>
8: /x $ebp = 0xbf9a2558
7: /x $esi = 0xb7f53ce0
6: /x $edi = 0x0
5: /x $edx = 0xbf9a2590
4: /x $ecx = 0xbf9a2570
3: /x $ebx = 0xb7f26ff4
2: /x $eax = 0x1
1: x/10i $eip
0x8048385 <main+17>: movl $0x8048460,(%esp)
0x804838c <main+24>: call 0x80482d4 <puts@plt>
0x8048391 <main+29>: mov $0x1234,%eax
0x8048396 <main+34>: add $0x4,%esp
0x8048399 <main+37>: pop %ecx
0x804839a <main+38>: pop %ebp
0x804839b <main+39>: lea -0x4(%ecx),%esp
0x804839e <main+42>: ret
0x804839f: nop
0x80483a0 <__libc_csu_fini>: push %ebp

Source code line printed
here if source is

available

21

Stepping
•  “stepi” or “si” - steps one asm instruction at a time

–  Will always “step into” subroutines

•  “step” or “s” - steps one source line at a time (if no
source is available, works like stepi)

•  “until” or “u” - steps until the next source line, not
stepping into subroutines
–  If no source available, this will work like a stepi that will “step

over” subroutines

22

GDB misc commands

•  “set disassembly-flavor intel” - use intel
syntax rather than AT&T
–  Again, not using now, just good to know

•  “continue” or “c” - run until you hit another
breakpoint or the program ends

•  “backtrace” or “bt” - print a trace of the call
stack, showing all the functions which were
called before the current function

23

Lab time:
Running examples with GDB

24

