some math scripts

This commit is contained in:
Mari Wahl 2014-10-27 20:10:17 -04:00
parent 9dc0d638a4
commit ab54dc8e70
4 changed files with 151 additions and 0 deletions

View File

@ -0,0 +1,26 @@
#!/usr/bin/python
def finding_gcd(a, b):
''' implements the greatest common divider algorithm '''
while(b != 0):
result = b
a, b = b, a % b
return result
def test_finding_gcd():
number1 = 21
number2 = 12
assert(finding_gcd(number1, number2) == 3)
print('Tests passed!')
if __name__ == '__main__':
test_finding_gcd()

View File

@ -0,0 +1,57 @@
#!/usr/bin/python
import math
import random
def finding_prime(number):
''' find whether a number is prime in a simple way'''
num = abs(number)
if num < 4 : return True
for x in range(2, num):
if num % x == 0:
return False
return True
def finding_prime_sqrt(number):
''' find whether a number is prime as soon as it rejects all candidates up to sqrt(n) '''
num = abs(number)
if num < 4 : return True
for x in range(2, int(math.sqrt(num)) + 1):
if number % x == 0:
return False
return True
def finding_prime_fermat(number):
''' find whether a number is prime with Fermat's theorem, using probabilistic tests '''
if number <= 102:
for a in range(2, number):
if pow(a, number- 1, number) != 1:
return False
return True
else:
for i in range(100):
a = random.randint(2, number - 1)
if pow(a, number - 1, number) != 1:
return False
return True
def test_finding_prime():
number1 = 17
number2 = 20
assert(finding_prime(number1) == True)
assert(finding_prime(number2) == False)
assert(finding_prime_sqrt(number1) == True)
assert(finding_prime_sqrt(number2) == False)
assert(finding_prime_fermat(number1) == True)
assert(finding_prime_fermat(number2) == False)
print('Tests passed!')
if __name__ == '__main__':
test_finding_prime()

View File

@ -0,0 +1,33 @@
#!/usr/bin/python
import math
import random
import sys
from finding_prime import finding_prime_sqrt
def generate_prime(number=3):
''' return a n-bit prime '''
while 1:
p = random.randint(pow(2, number-2), pow(2, number-1)-1)
p = 2 * p + 1
if finding_prime_sqrt(p):
return p
if __name__ == '__main__':
if len(sys.argv) < 2:
print ("Usage: generate_prime.py number")
sys.exit()
else:
number = int(sys.argv[1])
print(generate_prime(number))

View File

@ -0,0 +1,35 @@
def quickSelect(seq, k):
# this part is the same as quick sort
len_seq = len(seq)
if len_seq < 2: return seq
ipivot = len_seq // 2
pivot = seq[ipivot]
smallerList = [x for i,x in enumerate(seq) if x <= pivot and i != ipivot]
largerList = [x for i,x in enumerate(seq) if x > pivot and i != ipivot]
# here starts the different part
m = len(smallerList)
if k == m:
return pivot
elif k < m:
return quickSelect(smallerList, k)
else:
return quickSelect(largerList, k-m)
if __name__ == '__main__':
# Checking the Answer
seq = [10, 60, 100, 50, 60, 75, 31, 50, 30, 20, 120, 170, 200]
# we want the middle element
k = len(seq) // 2
# Note that this only work for odd arrays, since median in
# even arrays is the mean of the two middle elements
print(quickSelect(seq, k))
import numpy
print numpy.median(seq)