Reticulum Network Stack
Release 1.0.4

Mark Qvist

Nov 22, 2025

1

3

What is Reticulum?
1.1 Current Status

1.5 Caveat Emptor

Getting Started Fast

2.1 Standalone Reticulum Installation

2.2 Try Using a Reticulum-based Program
2.2.1 Remote Shell
2.2.2 Nomad Network

1.2 What does Reticulum Offer? e e
1.3 Where can Reticulum be Used?
1.4 Interface Types and Devices

CONTENTS

7

.................................... 7

2.1.1 Resolving Dependency & Installation Issues 7
................................. 8
.. 8

8

223 Sideband 9
224 MeshChat o e 10
2.3 Using the Included Utilities e 10
24 Creating a Network With Reticulum 0 .. 0 oo oo 10
2.5 Connecting Reticulum Instances Over the Internet 11
2.6 Connect to the Public Testnet e 11
2.7 Hosting Public Entrypoints e e e e e e e e 12
2.8 Adding Radio Interfaces e e e e 13
2.9 Creating and Using Custom Interfaces 13
2.10 Develop a Program with Reticulum o oo 13
2.11 Participate in Reticulum Development e 14
2.12 Platform-Specific Install Notes o o e e e e e e e 14
2.12.1 Android e e 15
2,122 ARMO4 . . e 16
2.12.3 Debian Bookworm L e e e 16
2,124 MacOS . . . 16
2.12.5 OpenWRT e e e e e e e e 17
2.12.6 Raspberry Pi oL e e e e e e 18
2,127 RISC-V o o e e 18
2.12.8 UbuntuLunar o e e e e e e e e 18
2129 WIndows L e e e e e e e e 19
2.13 Pure-Python Reticulum e 19
Using Reticulum on Your System 21
3.1 Configuration & Data L 21
3.2 Included Utility Programs o 0 e e e e e e e e e e 24
32,1 Thernsd Utility 0 o o e e e e e e e e e 25

33
3.4

3.22 Thernstatus Utility o o e e e e e e e e e e e

323 Thernid Utility o o e e e e e e e e
324 Thernpath Utility o o e e e e e
325 Thernprobe Utility e
32.6 Therncp Utility o o . o e e e
327 Thernx Utility o o e
3.2.8 Thernodeconf Utility e e e
Remote Management L. e e e e e e e e e e
Improving System Configuration. L e
3.4.1 Fixed Serial Port Names e e e
342 ReticulumasaSystem Serviceo o e e e e e e

Understanding Reticulum

4.1
4.2
4.3

4.4

4.5
4.6

5.1
52

53
54
5.5

Motivation e e e e e e e e e e e e e e e e e e e
Goals . . . e e e e e e e e
Introduction & Basic Functionality e
4.3.1 Destinations L. e e e e e
4.3.2 Public Key Announcements e
433 Identities e e e e e e e e e e e e e e e e
434 GettingFurther e
Reticulum Transport o o e e e e e e e e e e e e e
441 Node TYPES . v v v v o e e e e e e e e e e e e e e
442 The Announce Mechanismin Detail
443 Reaching the Destination e
444 RESOUICES . . v v v v v e
Reference Setup L e e e e e e e
Protocol Specifics L e e e e e e e
4.6.1 Packet Prioritisation e
4.6.2 Interface AccessCodes Lo e e e e
4.6.3 Wire Format. e e e e e e e e e
4.6.4 Announce PropagationRules L
4.6.5 Cryptographic Primitives e e e
Communications Hardware
Combining Hardware Types o o e
RNode
5.2.1 Creating RNodes e e e e
5.2.2 Supported Boardsand Devices L o
5.2.3 Installation L e e e e e e e e e e e e
524 UsagewithReticulum.
WiFi-based Hardware e
Ethernet-based Hardware e
Serial Lines & Devices L e e e e e e
Packet Radio Modems e e e e e e e e e

5.6

Configuring Interfaces

6.1
6.2
6.3

6.4
6.5
6.6

Custom Interfaces e e e e e e e e e e e e e e e e
Auto Interface L e e e e e e e
Backbone Interface e e e e e e
6.3.1 LIStENErs o e e e e e e e e e e e e e
6.3.2 Connecting Remotes e e e e e e
TCP Server Interface e e e e e e e e e e e e e e
TCP Client Interface e e e e e e e e e
UDP lInterface e e e

39
39
40
40
41
43
43
44
44
44
44
45
48
48
49
49
49
49
52
53

55
55
55
56
56
62
63
63
63
63
63

6.7 I2PInterface e e e e e e 72

6.8 RNode LoRalnterface e 73

6.9 RNode Multi Interface e 75
6.10 Serial Interface L e e e e e 77
6.11 PipelInterface L e 77
6.12 KISSInterface e 78
6.13 AX25KISS Interface e 79
6.14 Common Interface Options o o v i i e e e e e e e e e e 80
6.15 Interface Modes e e e 81
6.16 Announce Rate Control e e e e e e 82
6.17 New Destination Rate Limiting e 82

7 Building Networks 85
7.1 Concepts & Overview L e 85
7.2 Example Scenarios e e e e e e 86
7.2.1 Interconnected LoRa Sites e e e 86

7.2.2 Bridging Overthe Internet e e 87

7.23 Growthand Convergence ittt e 87

8 Support Reticulum 89
8.1 Donations e e e e e e e e e e e e e e e e e 89

8.2 Provide Feedback e e e e e e 89

8.3 Contribute Code e e e e e 89

9 Code Examples 91
0.1 Minimal e e e e e e 91
02 ANNOUNCE v i i it e e e e e e e e e e e e e e e e e 93

9.3 Broadcast e e 97
9.4 Echo e e e s 99

0.5 LinK. e e e e e e e e e 106
9.6 Identification L e e e e e e e 111

9.7 Requests & Responses 118
9.8 Channel s 123

9.9 Buffer. e 131
9.10 Filetransfer e e e e 137
9.11 Custom Interfaces e e e 149

10 API Reference 157
10.1 Reticulum e e 157
10.2 Identity o o o e e e e e e e e e 158
10.3 Destination e e e e e e e e e e 162
104 Packet. e e e e e e 166
10.5 Packet Receipt o o i e e e e e e e e e 167
10.6 LinK. o e e e 167
10.7 RequestReceipt e 171
10.8 Resource e e e e e e 172
10.9 Channel e e e e 173
10.10 MessageBase e e 174
10.11 Buffer o e 174
10.12 RawChannelReader e 175
10.13 RawChannelWriter e e e e e e e e e e 176
10.14 Transport o o v vt e e e e e e e e e e e e 176
Index 179

Reticulum Network Stack, Release 1.0.4

This manual aims to provide you with all the information you need to understand Reticulum, build networks or develop
programs using it, or to participate in the development of Reticulum itself.

CONTENTS 1

Reticulum Network Stack, Release 1.0.4

2 CONTENTS

CHAPTER
ONE

WHAT IS RETICULUM?

Reticulum is a cryptography-based networking stack for building both local and wide-area networks with readily avail-
able hardware, that can continue to operate under adverse conditions, such as extremely low bandwidth and very high
latency.

Reticulum allows you to build wide-area networks with off-the-shelf tools, and offers end-to-end encryption, forward
secrecy, autoconfiguring cryptographically backed multi-hop transport, efficient addressing, unforgeable packet ac-
knowledgements and more.

From a users perspective, Reticulum allows the creation of applications that respect and empower the autonomy and
sovereignty of communities and individuals. Reticulum enables secure digital communication that cannot be subjected
to outside control, manipulation or censorship.

Reticulum enables the construction of both small and potentially planetary-scale networks, without any need for hi-
erarchical or bureaucratic structures to control or manage them, while ensuring individuals and communities full
sovereignty over their own network segments.

Reticulum is a complete networking stack, and does not need IP or higher layers, although it is easy to utilise IP (with
TCP or UDP) as the underlying carrier for Reticulum. It is therefore trivial to tunnel Reticulum over the Internet or
private IP networks. Reticulum is built directly on cryptographic principles, allowing resilience and stable functionality
in open and trustless networks.

No kernel modules or drivers are required. Reticulum can run completely in userland, and will run on practically any
system that runs Python 3. Reticulum runs well even on small single-board computers like the Pi Zero.

1.1 Current Status

All core protocol features are implemented and functioning, but additions will probably occur as real-world use is
explored. The API and wire-format can be considered complete and stable, but could change if absolutely warranted.

1.2 What does Reticulum Offer?

* Coordination-less globally unique addressing and identification
* Fully self-configuring multi-hop routing over heterogeneous carriers
* Flexible scalability over heterogeneous topologies
— Reticulum can carry data over any mixture of physical mediums and topologies
— Low-bandwidth networks can co-exist and interoperate with large, high-bandwidth networks
¢ Initiator anonymity, communicate without revealing your identity
— Reticulum does not include source addresses on any packets

* Asymmetric X25519 encryption and Ed25519 signatures as a basis for all communication

Reticulum Network Stack, Release 1.0.4

— The foundational Reticulum Identity Keys are 512-bit Elliptic Curve keysets
» Forward Secrecy is available for all communication types, both for single packets and over links

* Reticulum uses the following format for encrypted tokens:

Ephemeral per-packet and link keys and derived from an ECDH key exchange on Curve25519
AES-256 in CBC mode with PKCS7 padding
— HMAC using SHA256 for authentication

— IVs are generated through os.urandom()
» Unforgeable packet delivery confirmations
* Flexible and extensible interface system
— Reticulum includes a large variety of built-in interface types
— Ability to load and utilise custom user- or community-supplied interface types
— Easily create your own custom interfaces for communicating over anything
 Authentication and virtual network segmentation on all supported interface types
* An intuitive and easy-to-use API
— Simpler and easier to use than sockets APIs and simpler, but more powerful
— Makes building distributed and decentralised applications much simpler
* Reliable and efficient transfer of arbitrary amounts of data
— Reticulum can handle a few bytes of data or files of many gigabytes
— Sequencing, compression, transfer coordination and checksumming are automatic
— The APl is very easy to use, and provides transfer progress
* Lightweight, flexible and expandable Request/Response mechanism
* Efficient link establishment
— Total cost of setting up an encrypted and verified link is only 3 packets, totalling 297 bytes
— Low cost of keeping links open at only 0.44 bits per second

* Reliable sequential delivery with Channel and Buffer mechanisms

1.3 Where can Reticulum be Used?

Over practically any medium that can support at least a half-duplex channel with greater throughput than 5 bits per
second, and an MTU of 500 bytes. Data radios, modems, LoRa radios, serial lines, AX.25 TNCs, amateur radio digital
modes, ad-hoc WiFi, free-space optical links and similar systems are all examples of the types of interfaces Reticulum
was designed for.

An open-source LoRa-based interface called RNode has been designed as an example transceiver that is very suitable
for Reticulum. It is possible to build it yourself, to transform a common LoRa development board into one, or it can be
purchased as a complete transceiver from various vendors.

Reticulum can also be encapsulated over existing IP networks, so there’s nothing stopping you from using it over wired
Ethernet or your local WiFi network, where it’ll work just as well. In fact, one of the strengths of Reticulum is how
easily it allows you to connect different mediums into a self-configuring, resilient and encrypted mesh.

4 Chapter 1. What is Reticulum?

https://unsigned.io/rnode

Reticulum Network Stack, Release 1.0.4

As an example, it’s possible to set up a Raspberry Pi connected to both a LoRa radio, a packet radio TNC and a WiFi
network. Once the interfaces are added, Reticulum will take care of the rest, and any device on the WiFi network can
communicate with nodes on the LoRa and packet radio sides of the network, and vice versa.

1.4 Interface Types and Devices

Reticulum implements a range of generalised interface types that covers the communications hardware that Reticulum
can run over. If your hardware is not supported, it’s simple to implement an interface class. Currently, Reticulum can
use the following devices and communication mediums:

* Any Ethernet device
WiFi devices

Wired Ethernet devices

Fibre-optic transceivers

Data radios with Ethernet ports
* LoRa using RNode
— Can be installed on many popular LoRa boards
— Can be purchased as a ready to use transceiver
» Packet Radio TNCs, such as OpenModem
— Any packet radio TNC in KISS mode
— Ideal for VHF and UHF radio
* Any device with a serial port
* The I2P network
* TCP over IP networks
» UDP over IP networks
* Anything you can connect via stdio
— Reticulum can use external programs and pipes as interfaces
— This can be used to easily hack in virtual interfaces
— Or to quickly create interfaces with custom hardware

For a full list and more details, see the Supported Interfaces chapter.

1.5 Caveat Emptor

Reticulum is an experimental networking stack, and should be considered as such. While it has been built with cryp-
tography best-practices very foremost in mind, it has not yet been externally security audited, and there could very
well be privacy-breaking bugs. To be considered secure, Reticulum needs a thorough security review by independent
cryptographers and security researchers. If you want to help out with this, or can help sponsor an audit, please do get
in touch.

1.4. Interface Types and Devices 5

https://unsigned.io/rnode
https://github.com/markqvist/rnodeconfigutil#supported-devices
https://unsigned.io/rnode
https://unsigned.io/openmodem

Reticulum Network Stack, Release 1.0.4

6 Chapter 1. What is Reticulum?

CHAPTER
TWO

GETTING STARTED FAST

The best way to get started with the Reticulum Network Stack depends on what you want to do. This guide will outline
sensible starting paths for different scenarios.

2.1 Standalone Reticulum Installation

If you simply want to install Reticulum and related utilities on a system, the easiest way is via the pip package manager:

[pip install rns]

If you do not already have pip installed, you can install it using the package manager of your system with a command
like sudo apt install python3-pip, sudo pamac install python-pip or similar.

You can also dowload the Reticulum release wheels from GitHub, or other release channels, and install them offline
using pip:

[pip install ./rns-1.0.2-py3-none-any.whl }

On platforms that limit user package installation via pip, you may need to manually allow this using the
--break-system-packages command line flag when installing. This will not actually break any packages, unless
you have installed Reticulum directly via your operating system’s package manager.

[pip install rns --break-system-packages]

For more detailed installation instructions, please see the Platform-Specific Install Notes section.

After installation is complete, it might be helpful to refer to the Using Reticulum on Your System chapter.

2.1.1 Resolving Dependency & Installation Issues

On some platforms, there may not be binary packages available for all dependencies, and pip installation may fail with
an error message. In these cases, the issue can usually be resolved by installing the development essentials packages
for your platform:

Debian / Ubuntu / Derivatives
sudo apt install build-essential

Arch / Manjaro / Derivatives
sudo pamac install base-devel

Fedora
sudo dnf groupinstall "Development Tools" "Development Libraries"

Reticulum Network Stack, Release 1.0.4

With the base development packages installed, pip should be able to compile any missing dependencies from source,
and complete installation even on platforms that don’t have pre- compiled packages available.

2.2 Try Using a Reticulum-based Program

If you simply want to try using a program built with Reticulum, a few different programs exist that allow basic com-
munication and a range of other useful functions, even over extremely low-bandwidth Reticulum networks.

These programs will let you get a feel for how Reticulum works. They have been designed to run well over networks
based on LoRa or packet radio, but can also be used over fast links, such as local WiFi, wired Ethernet, the Internet, or
any combination.

As such, it is easy to get started experimenting, without having to set up any radio transceivers or infrastructure just to
try it out. Launching the programs on separate devices connected to the same WiFi network is enough to get started,
and physical radio interfaces can then be added later.

2.2.1 Remote Shell

The rnsh program lets you establish fully interactive remote shell sessions over Reticulum. It also allows you to pipe
any program to or from a remote system, and is similar to how ssh works. The rnsh is very efficient, and can facilitate
fully interactive shell sessions, even over extremely low-bandwidth links, such as LoRa or packet radio.

2.2.2 Nomad Network

The terminal-based program Nomad Network provides a complete encrypted communications suite built with Reticu-
lum. It features encrypted messaging (both direct and delayed-delivery for offline users), file sharing, and has a built-in
text-browser and page server with support for dynamically rendered pages, user authentication and more.

@ [Conversations] [Network] [Log] [Config] [Guide] [Quit]

Known Nodes Unsigned Testnode 1

io Test Node 1 Frankfurt

() Unsigned Testnode 1

This node is currently not hosting any content.

You can add pages and files can be added by placing them in the relevant storage directories.

Enter URL
URL : 94bcadf1cO 6:/pagesother_page.mu
< Cancel > < Go

Network Stats
Heard P 3 C(last 30m)
Known Node

Local Peer Info
: 0a59377daec8eb8edc3a
UnsignedM

< Node Info

[C-1] Toggle Nodes-/Announces view [C-x] Remove entry [C-w] Disconnect [C-d] Back [<-f] Forward [<-r] Reload [C-ul Enter URL

Nomad Network is a user-facing client for the messaging and information-sharing protocol LXMF, another project
built with Reticulum.

You can install Nomad Network via pip:

8 Chapter 2. Getting Started Fast

https://github.com/acehoss/rnsh
https://github.com/markqvist/nomadnet
_images/nomadnet_3.png
https://github.com/markqvist/nomadnet
https://github.com/markqvist/lxmf

Reticulum Network Stack, Release 1.0.4

Install ...
pip install nomadnet

... and run
nomadnet

Note

If this is the very first time you use pip to install a program on your system, you might need to reboot your system for
your program to become available. If you get a “command not found” error or similar when running the program,
reboot your system and try again. In some cases, you may even need to manually add the pip install path to your

PATH environment variable.

2.2.3 Sideband

If you would rather use a program with a graphical user interface, you can take a look at Sideband, which is available

for Android, Linux, macOS and Windows.

00:54 «f

= Connecﬁvﬁy

Configuring Connectivity

By defaul, Sideband willtry to discover and comect 1o an
availsble Reficulum networks va active WIF| andor Exhariet
interfaces. f any Reticulum Transport Instances are found
Sideband willuse these to connect o wider Reticulum
networks, You can disable this behaviour i you don' want i
You ean also connect to a netwark via a remote or local
Reticulum instance using TCP or 12P. Please Notel
Connecting via I2P requires that you already have 12P
running on your device, and that the SAM API is enabled.

For changes to cannectivity to take effect, you must shut
down and restart Sideband

Connect via local WiFi/Ethernet []

Connect via TCP
Connect via 12P
Connect via RNode
Connect via Bluetooth

Connect via Radio Moder

0000060

Enable Reticulum Transport

01:29 «}

Conversations

Alice:

Raven

Bob <10f69d3339e2676970bBe80cfd74ad8c>

Anonymous Peer <5cf00d0a2e523a08al ecaass.

Sent 2022-10-04 01:23:39 State Delivered
Hi Alice.

‘Sent 2022-10-04 01:24:38 State Delivered

All good, take care

b

Send

Sideband allows you to communicate with other people or LXMF-compatible systems over Reticulum networks using
LoRa, Packet Radio, WiFi, I2P, Encrypted QR Paper Messages, or anything else Reticulum supports. It also interop-

erates with the Nomad Network program.

2.2. Try Using a Reticulum-based Program

https://unsigned.io/sideband
_images/sideband_devices.png

Reticulum Network Stack, Release 1.0.4

2.2.4 MeshChat

The Reticulum MeshChat application is a user-friendly LXMF client for Linux, macOS and Windows, that also includes
a Nomad Network page browser and other interesting functionality.

et e Reticulum MeshChat
j| Reticubum MashChat (D Connected £ Compose
Developed by Liam Cottle
() Messages SHTF EchoBot q
L @ x
<1dbc2281c4223c7a479de BcdBaBBEaeA> 3 hops away
& Nomad Network
Hello Echo Bot! %
&a Interfaces o My Dear Peer delivered @
& 12 seconds ago s
Je Netwark Visualiser SHTF Echod
Hella Echa Bot!
@O About
Thanks for echaing back my me: =

@
@

My Identity m

5364726726704 Tac

LXME Addre:
07249123753

' Announce Announce Now

Every 15 Minutes v

754310aa1e8blefeall

Last announced: 34 seconds ago

. car

hoing back my message! =

EchoBot - Send me your test
messages!

Beleth RNS Message Board
31 minutes age

InternL XMFNode

33 minutes ago

Anonymous Peer
38 minutes ago
Beleth Distribution Graup

urs ago

Anonymous Peer Send a message...
1 hours ago

o Alixpat

de L]

Here's a photo of my solar mesh node. Can you send it back to me?

8 reurssa
Status hours sg0 B AddFiles | P8 Addimage [seoc

|Hung up, waiting for cal

Reticulum MeshChat is of course also compatible with Sideband and Nomad Network, or any other LXMF client.

2.3 Using the Included Utilities

Reticulum comes with a range of included utilities that make it easier to manage your network, check connectivity and
make Reticulum available to other programs on your system.

You can use rnsd to run Reticulum as a background or foreground service, and the rnstatus, rnpath and rnprobe
utilities to view and query network status and connectivity.

To learn more about these utility programs, have a look at the Using Reticulum on Your System chapter of this manual.

2.4 Creating a Network With Reticulum

To create a network, you will need to specify one or more interfaces for Reticulum to use. This is done in the Reticulum
configuration file, which by default is located at ~/.reticulum/config. You can get an example configuration file
with all options via rnsd --exampleconfig.

When Reticulum is started for the first time, it will create a default configuration file, with one active interface. This
default interface uses your existing Ethernet and WiFi networks (if any), and only allows you to communicate with
other Reticulum peers within your local broadcast domains.

To communicate further, you will have to add one or more interfaces. The default configuration includes a number of
examples, ranging from using TCP over the internet, to LoRa and Packet Radio interfaces.

With Reticulum, you only need to configure what interfaces you want to communicate over. There is no need to
configure address spaces, subnets, routing tables, or other things you might be used to from other network types.

10 Chapter 2. Getting Started Fast

https://github.com/liamcottle/reticulum-meshchat
_images/meshchat_1.png

Reticulum Network Stack, Release 1.0.4

Once Reticulum knows which interfaces it should use, it will automatically discover topography and configure transport
of data to any destinations it knows about.

In situations where you already have an established WiFi or Ethernet network, and many devices that want to utilise
the same external Reticulum network paths (for example over LoRa), it will often be sufficient to let one system act as
a Reticulum gateway, by adding any external interfaces to the configuration of this system, and then enabling transport
on it. Any other device on your local WiFi will then be able to connect to this wider Reticulum network just using the
default (Autolnterface) configuration.

Possibly, the examples in the config file are enough to get you started. If you want more information, you can read the
Building Networks and Interfaces chapters of this manual.

2.5 Connecting Reticulum Instances Over the Internet

Reticulum currently offers three interfaces suitable for connecting instances over the Internet: Backbone, TCP and I2P.
Each interface offers a different set of features, and Reticulum users should carefully choose the interface which best
suites their needs.

The TCPServerInterface allows users to host an instance accessible over TCP/IP. This method is generally faster,
lower latency, and more energy efficient than using I2PInterface, however it also leaks more data about the server
host.

The BackboneInterface is a very fast and efficient interface type available on POSIX operating systems, designed
to handle many hundreds of connections simultaneously with low memory, processing and I/O overhead. It is fully
compatible with the TCP-based interface types.

TCP connections reveal the IP address of both your instance and the server to anyone who can inspect the connection.
Someone could use this information to determine your location or identity. Adversaries inspecting your packets may be
able to record packet metadata like time of transmission and packet size. Even though Reticulum encrypts traffic, TCP
does not, so an adversary may be able to use packet inspection to learn that a system is running Reticulum, and what
other IP addresses connect to it. Hosting a publicly reachable instance over TCP also requires a publicly reachable IP
address, which most Internet connections don’t offer anymore.

The I2PInterface routes messages through the Invisible Internet Protocol (I12P). To use this interface, users must
also run an I2P daemon in parallel to rnsd. For always-on I2P nodes it is recommended to use i2pd.

By default, I2P will encrypt and mix all traffic sent over the Internet, and hide both the sender and receiver Reticulum
instance IP addresses. Running an I2P node will also relay other 12P user’s encrypted packets, which will use extra
bandwidth and compute power, but also makes timing attacks and other forms of deep-packet-inspection much more
difficult.

I2P also allows users to host globally available Reticulum instances from non-public IP’s and behind firewalls and NAT.

In general it is recommended to use an I2P node if you want to host a publicly accessible instance, while preserving
anonymity. If you care more about performance, and a slightly easier setup, use TCP.

2.6 Connect to the Public Testnet

An experimental public testnet has been made accessible by volunteers in the community. You can find interface
definitions for adding to your .reticulum/config file on the Reticulum Website or the Community Wiki

You can connect your devices or instances to one or more of these to gain access to any Reticulum networks they are
physically connected to. Simply add one or more interface snippets to your config file in the [interface] section,
like in the example below:

TCP/IP interface to the BetweenTheBorders Hub (community-provided)
[[RNS Testnet BetweenTheBorders]]

(continues on next page)

2.5. Connecting Reticulum Instances Over the Internet 11

https://geti2p.net/en/
https://i2pd.website/
https://reticulum.network/connect.html
https://github.com/markqvist/Reticulum/wiki/Community-Node-List

Reticulum Network Stack, Release 1.0.4

(continued from previous page)
type = TCPClientInterface
enabled = yes
target_host = reticulum.betweentheborders.com
target_port = 4242

Tip

Ideally, set up a Reticulum Transport Node that your own devices can reach locally, and then connect that transport
node to a couple of public entrypoints. This will provide efficient connections and redundancy in case any of them
go down.

Many other Reticulum instances are connecting to this testnet, and you can also join it via other entry points if you
know them. There is absolutely no control over the network topography, usage or what types of instances connect.
It will also occasionally be used to test various failure scenarios, and there are no availability or service guarantees.
Expect weird things to happen on this network, as people experiment and try out things.

Warning

It probably goes without saying, but don’t use the testnet entry-points as hardcoded or default interfaces in any
applications you ship to users. When shipping applications, the best practice is to provide your own default con-
nectivity solutions, if needed and applicable, or in most cases, simply leave it up to the user which networks to
connect to, and how.

2.7 Hosting Public Entrypoints

If you want to host a public (or private) entry-point to a Reticulum network over the Internet, this section offers some
helpful pointers. You will need a machine, physical or virtual with a public IP address, that can be reached by other
devices on the Internet.

The most efficient and performant way to host a connectable entry-point supporting many users is to use
the BackboneInterface. This interface type is fully compatible with the TCPClientInterface and
TCPServerInterface types, but much faster and uses less system resources, allowing your device to handle thousands
of connections even on small systems.

It is also important to set your connectable interface to gateway mode, since this will greatly improve network conver-
gence time and path resolution for anyone connecting to your entry-point.

This example demonstrates a backbone interface
configured for acting as a gateway for users to
connect to either a public or private network

[[Public Gateway]]
type = BackboneInterface
enabled = yes
mode = gateway
listen_on = 0.0.0.0
port = 4242

If instead you want to make a private entry-point from the Internet, you can use the /FAC name and passphrase options
to secure your interface with a network name and passphrase.

12 Chapter 2. Getting Started Fast

Reticulum Network Stack, Release 1.0.4

A private entry-point requiring a pre-shared
network name and passphrase to connect to.

[[Private Gateway]]
type = BackboneInterface
enabled = yes
mode = gateway
listen_on = 0.0.0.0
port = 4242
network_name = private_ret
passphrase = 2owjajquafIanPecAc

If you are hosting an entry-point on an operating system that does not support BackboneInterface, you can use
TCPServerInterface instead, although it will not be as performant.

2.8 Adding Radio Interfaces

Once you have Reticulum installed and working, you can add radio interfaces with any compatible hardware you have
available. Reticulum supports a wide range of radio hardware, and if you already have any available, it is very likely
that it will work with Reticulum. For information on how to configure this, see the /nterfaces section of this manual.

If you do not already have transceiver hardware available, you can easily and cheaply build an RNode, which is a
general-purpose long-range digital radio transceiver, that integrates easily with Reticulum.

To build one yourself requires installing a custom firmware on a supported LoRa development board with an auto-
install script. Please see the Communications Hardware chapter for a guide. If you prefer purchasing a ready-made
unit, you can refer to the list of suppliers. For more information on RNode, you can also refer to these additional
external resources:

* How To Make Your Own RNodes

* Installing RNode Firmware on Compatible LoRa Devices

* Private, Secure and Uncensorable Messaging Over a LoRa Mesh
* RNode Firmware

If you have communications hardware that is not already supported by any of the existing interface types, but you think
would be suitable for use with Reticulum, you are welcome to head over to the GitHub discussion pages and propose
adding an interface for the hardware.

2.9 Creating and Using Custom Interfaces

While Reticulum includes a flexible and broad range of built-in interfaces, these will not cover every conceivable type
of communications hardware that Reticulum can potentially use to communicate.

It is therefore possible to easily write your own interface modules, that can be loaded at run-time and used on-par with
any of the built-in interface types.

For more information on this subject, and code examples to build on, please see the Configuring Interfaces chapter.

2.10 Develop a Program with Reticulum

If you want to develop programs that use Reticulum, the easiest way to get started is to install the latest release of
Reticulum via pip:

2.8. Adding Radio Interfaces 13

https://unsigned.io/how-to-make-your-own-rnodes/
https://unsigned.io/installing-rnode-firmware-on-supported-devices/
https://unsigned.io/private-messaging-over-lora/
https://github.com/markqvist/RNode_Firmware/
https://github.com/markqvist/Reticulum/discussions

Reticulum Network Stack, Release 1.0.4

[pip install rns

The above command will install Reticulum and dependencies, and you will be ready to import and use RNS in your
own programs. The next step will most likely be to look at some Example Programs.

The entire Reticulum API is documented in the API Reference chapter of this manual.

2.11 Participate in Reticulum Development

If you want to participate in the development of Reticulum and associated utilities, you’ll want to get the latest source
from GitHub. In that case, don’t use pip, but try this recipe:

Install dependencies
pip install cryptography pyserial

Clone repository
git clone https://github.com/markgvist/Reticulum.git

Move into Reticulum folder and symlink library to examples folder
cd Reticulum
In -s ../RNS ./Examples/

Run an example
python Examples/Echo.py -s

Unless you've manually created a config file, Reticulum will do so now,
and immediately exit. Make any necessary changes to the file:
nano ~/.reticulum/config

... and launch the example again.
python Examples/Echo.py -s

You can now repeat the process on another computer,
and run the same example with -h to get command line options.
python Examples/Echo.py -h

Run the example in client mode to "ping" the server.
Replace the hash below with the actual destination hash of your server.
python Examples/Echo.py 174a64852a75682259ad8b921b8bf416

Have a look at another example
python Examples/Filetransfer.py -h

When you have experimented with the basic examples, it’s time to go read the Understanding Reticulum chapter. Before
submitting your first pull request, it is probably a good idea to introduce yourself on the disucssion forum on GitHub,
or ask one of the developers or maintainers for a good place to start.

2.12 Platform-Specific Install Notes

Some platforms require a slightly different installation procedure, or have various quirks that are worth being aware of.
These are listed here.

14 Chapter 2. Getting Started Fast

https://github.com/markqvist/Reticulum/discussions

Reticulum Network Stack, Release 1.0.4

2.12.1 Android

Reticulum can be used on Android in different ways. The easiest way to get started is using an app like Sideband.

For more control and features, you can use Reticulum and related programs via the Termux app, at the time of writing
available on F-droid.

Termux is a terminal emulator and Linux environment for Android based devices, which includes the ability to use
many different programs and libraries, including Reticulum.

To use Reticulum within the Termux environment, you will need to install python and the python-cryptography
library using pkg, the package-manager build into Termux. After that, you can use pip to install Reticulum.

From within Termux, execute the following:

First, make sure indexes and packages are up to date.
pkg update
pkg upgrade

Then install python and the cryptography library.
pkg install python python-cryptography

Make sure pip is up to date, and install the wheel module.
pip install wheel pip --upgrade

Install Reticulum
pip install rns

If for some reason the python-cryptography package is not available for your platform via the Termux package
manager, you can attempt to build it locally on your device using the following command:

First, make sure indexes and packages are up to date.
pkg update
pkg upgrade

Then install dependencies for the cryptography library.
pkg install python build-essential openssl libffi rust

Make sure pip is up to date, and install the wheel module.
pip install wheel pip --upgrade

To allow the installer to build the cryptography module,
we need to let it know what platform we are compiling for:
export CARGO_BUILD_TARGET="aarch64-linux-android"

Start the install process for the cryptography module.

Depending on your device, this can take several minutes,
since the module must be compiled locally on your device.
pip install cryptography

If the above installation succeeds, you can now install
Reticulum and any related software
pip install rns

It is also possible to include Reticulum in apps compiled and distributed as Android APKs. A detailed tutorial and
example source code will be included here at a later point. Until then you can use the Sideband source code as an
example and starting point.

2.12. Platform-Specific Install Notes 15

https://unsigned.io/sideband
https://termux.com/
https://f-droid.org
https://github.com/markqvist/sideband

Reticulum Network Stack, Release 1.0.4

2.12.2 ARM64

On some architectures, including ARM64, not all dependencies have precompiled binaries. On such systems, you may
need to install python3-dev (or similar) before installing Reticulum or programs that depend on Reticulum.

Install Python and development packages
sudo apt update
sudo apt install python3 python3-pip python3-dev

Install Reticulum
python3 -m pip install rns

With these packages installed, pip will be able to build any missing dependencies on your system locally.

2.12.3 Debian Bookworm

On versions of Debian released after April 2023, it is no longer possible by default to use pip to install packages
onto your system. Unfortunately, you will need to use the replacement pipx command instead, which places installed
packages in an isolated environment. This should not negatively affect Reticulum, but will not work for including and
using Reticulum in your own scripts and programs.

Install pipx
sudo apt install pipx

Make installed programs available on the command line
pipx ensurepath

Install Reticulum
pipx install rns

Alternatively, you can restore normal behaviour to pip by creating or editing the configuration file located at ~/.
config/pip/pip.conf, and adding the following section:

[global]
break-system-packages = true

For a one-shot installation of Reticulum, without globally enabling the break-system-packages option, you can use
the following command:

[pip install rns --break-system-packages

Note

The --break-system-packages directive is a somewhat misleading choice of words. Setting it will of course
not break any system packages, but will simply allow installing pip packages user- and system-wide. While this
could in rare cases lead to version conflicts, it does not generally pose any problems, especially not in the case of
installing Reticulum.

2.12.4 MacOS

To install Reticulum on macOS, you will need to have Python and the pip package manager installed.

Systems running macOS can vary quite widely in whether or not Python is pre-installed, and if it is, which version is
installed, and whether the pip package manager is also installed and set up. If in doubt, you can download and install
Python manually.

16 Chapter 2. Getting Started Fast

https://www.python.org/downloads/

Reticulum Network Stack, Release 1.0.4

When Python and pip is available on your system, simply open a terminal window and use one of the following
commands:

Install Reticulum and utilities with pip:
pip3 install rns

On some versions, you may need to use the
flag --break-system-packages to install:
pip3 install rns --break-system-packages

Note

The --break-system-packages directive is a somewhat misleading choice of words. Setting it will of course
not break any system packages, but will simply allow installing pip packages user- and system-wide. While this
could in rare cases lead to version conflicts, it does not generally pose any problems, especially not in the case of
installing Reticulum.

Additionally, some version combinations of macOS and Python require you to manually add your installed pip packages
directory to your PATH environment variable, before you can use installed commands in your terminal. Usually, adding
the following line to your shell init script (for example ~/ . zshrc) will be enough:

[export PATH=$PATH:~/Library/Python/3.9/bin J

Adjust Python version and shell init script location according to your system.

2.12.5 OpenWRT

On OpenWRT systems with sufficient storage and memory, you can install Reticulum and related utilities using the
opkg package manager and pip.

Note

At the time of releasing this manual, work is underway to create pre-built Reticulum packages for OpenWRT, with

full configuration, service and uci integration. Please see the feed-reticulum and reticulum-openwrt repositories
for more information.

To install Reticulum on OpenWRT, first log into a command line session, and then use the following instructions:

Install dependencies
opkg install python3 python3-pip python3-cryptography python3-pyserial

Install Reticulum
pip install rns

Start rnsd with debug logging enabled
rnsd -vvv

Note

The above instructions have been verified and tested on OpenWRT 21.02 only. It is likely that other versions may
require slightly altered installation commands or package names. You will also need enough free space in your

2.12. Platform-Specific Install Notes 17

https://github.com/gretel/feed-reticulum
https://github.com/gretel/reticulum-openwrt

Reticulum Network Stack, Release 1.0.4

overlay FS, and enough free RAM to actually run Reticulum and any related programs and utilities.

Depending on your device configuration, you may need to adjust firewall rules for Reticulum connectivity to and from
your device to work. Until proper packaging is ready, you will also need to manually create a service or startup script
to automatically laucnh Reticulum at boot time.

Please also note that the Autolnterface requires link-local IPv6 addresses to be enabled for any Ethernet and WiFi
devices you intend to use. If ip a shows an address starting with £e80: : for the device in question, AutoInterface
should work for that device.

2.12.6 Raspberry Pi

It is currently recommended to use a 64-bit version of the Raspberry Pi OS if you want to run Reticulum on Raspberry
Pi computers, since 32-bit versions don’t always have packages available for some dependencies. If Python and the pip
package manager is not already installed, do that first, and then install Reticulum using pip.

Install dependencies
sudo apt install python3 python3-pip python3-cryptography python3-pyserial

Install Reticulum
pip install rns --break-system-packages

Note

The --break-system-packages directive is a somewhat misleading choice of words. Setting it will of course
not break any system packages, but will simply allow installing pip packages user- and system-wide. While this
could in rare cases lead to version conflicts, it does not generally pose any problems, especially not in the case of
installing Reticulum.

While it is possible to install and run Reticulum on 32-bit Rasperry Pi OSes, it will require manually configuring and
installing required build dependencies, and is not detailed in this manual.

2.12.7 RISC-V

On some architectures, including RISC-V, not all dependencies have precompiled binaries. On such systems, you may
need to install python3-dev (or similar) before installing Reticulum or programs that depend on Reticulum.

Install Python and development packages
sudo apt update
sudo apt install python3 python3-pip python3-dev

Install Reticulum
python3 -m pip install rns

With these packages installed, pip will be able to build any missing dependencies on your system locally.

2.12.8 Ubuntu Lunar

On versions of Ubuntu released after April 2023, it is no longer possible by default to use pip to install packages
onto your system. Unfortunately, you will need to use the replacement pipx command instead, which places installed
packages in an isolated environment. This should not negatively affect Reticulum, but will not work for including and
using Reticulum in your own scripts and programs.

18 Chapter 2. Getting Started Fast

Reticulum Network Stack, Release 1.0.4

Install pipx
sudo apt install pipx

Make installed programs available on the command line
pipx ensurepath

Install Reticulum
pipx install rns

Alternatively, you can restore normal behaviour to pip by creating or editing the configuration file located at ~/.
config/pip/pip.conf, and adding the following section:

[global]
break-system-packages = true

For a one-shot installation of Reticulum, without globally enabling the break-system-packages option, you can use
the following command:

[pip install rns --break-system-packages]

Note

The --break-system-packages directive is a somewhat misleading choice of words. Setting it will of course
not break any system packages, but will simply allow installing pip packages user- and system-wide. While this
could in rare cases lead to version conflicts, it does not generally pose any problems, especially not in the case of
installing Reticulum.

2.12.9 Windows

On Windows operating systems, the easiest way to install Reticulum is by using the pip package manager from the
command line (either the command prompt or Windows Powershell).

If you don’t already have Python installed, download and install Python. At the time of publication of this manual, the
recommended version is Python 3.12.7.

Important! When asked by the installer, make sure to add the Python program to your PATH environment variables.
If you don’t do this, you will not be able to use the pip installer, or run the included Reticulum utility programs (such
as rnsd and rnstatus) from the command line.

After installing Python, open the command prompt or Windows Powershell, and type:

[pip install rns

You can now use Reticulum and all included utility programs directly from your preferred command line interface.

2.13 Pure-Python Reticulum

Warning

If you use the rnspure package to run Reticulum on systems that do not support PyCA/cryptography, it is important
that you read and understand the Cryptographic Primitives section of this manual.

2.13. Pure-Python Reticulum 19

https://www.python.org/downloads/
https://www.python.org/downloads/release/python-3127
https://github.com/pyca/cryptography

Reticulum Network Stack, Release 1.0.4

In some rare cases, and on more obscure system types, it is not possible to install one or more dependencies. In such
situations, you can use the rnspure package instead of the rns package, or use pip with the --no-dependencies
command-line option. The rnspure package requires no external dependencies for installation. Please note that the
actual contents of the rns and rnspure packages are completely identical. The only difference is that the rnspure
package lists no dependencies required for installation.

No matter how Reticulum is installed and started, it will load external dependencies only if they are needed and avail-
able. If for example you want to use Reticulum on a system that cannot support pyserial, it is perfectly possible to do
so using the rnspure package, but Reticulum will not be able to use serial-based interfaces. All other available modules
will still be loaded when needed.

20 Chapter 2. Getting Started Fast

CHAPTER
THREE

USING RETICULUM ON YOUR SYSTEM

Reticulum is not installed as a driver or kernel module, as one might expect of a networking stack. Instead, Reticulum
is distributed as a Python module, containing the networking core, and a set of utility and daemon programs.

This means that no special privileges are required to install or use it. It is also very light-weight, and easy to transfer
to, and install on new systems.

When you have Reticulum installed, any program or application that uses Reticulum will automatically load and ini-
tialise Reticulum when it starts, if it is not already running.

In many cases, this approach is sufficient. When any program needs to use Reticulum, it is loaded, initialised, interfaces
are brought up, and the program can now communicate over any Reticulum networks available. If another program
starts up and also wants access to the same Reticulum network, the already running instance is simply shared. This
works for any number of programs running concurrently, and is very easy to use, but depending on your use case, there
are other options.

3.1 Configuration & Data
Reticulum stores all information that it needs to function in a single file-system directory. When Reticulum is started,
it will look for a valid configuration directory in the following places:

e /etc/reticulum

e ~/.config/reticulum

e ~/.reticulum

If no existing configuration directory is found, the directory ~/.reticulum is created, and the default configuration
will be automatically created here. You can move it to one of the other locations if you wish.

It is also possible to use completely arbitrary configuration directories by specifying the relevant command-line param-
eters when running Reticulum-based programs. You can also run multiple separate Reticulum instances on the same
physical system, either in isolation from each other, or connected together.

In most cases, a single physical system will only need to run one Reticulum instance. This can either be launched at
boot, as a system service, or simply be brought up when a program needs it. In either case, any number of programs
running on the same system will automatically share the same Reticulum instance, if the configuration allows for it,
which it does by default.

The entire configuration of Reticulum is found in the ~/.reticulum/config file. When Reticulum is first started on
a new system, a basic, but fully functional configuration file is created. The default configuration looks like this:

This is the default Reticulum config file.
You should probably edit it to include any additional,
interfaces and settings you might need.

(continues on next page)

21

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

Only the most basic options are included in this default
configuration. To see a more verbose, and much longer,

configuration example, you can run the command:

rnsd --exampleconfig

[reticulum]

If you enable Transport, your system will route traffic
for other peers, pass announces and serve path requests.
This should be done for systems that are suited to act

as transport nodes, ie. if they are stationary and

always-on. This directive is optional and can be removed
for brevity.

enable_transport = No

By default, the first program to launch the Reticulum

Network Stack will create a shared instance, that other

programs can communicate with. Only the shared instance

opens all the configured interfaces directly, and other

local programs communicate with the shared instance over
a local socket. This is completely transparent to the

user, and should generally be turned on. This directive

is optional and can be removed for brevity.

share_instance = Yes

If you want to run multiple *different* shared instances
on the same system, you will need to specify different
instance names for each. On platforms supporting domain
sockets, this can be done with the instance_name option:
instance_name = default

Some platforms don't support domain sockets, and if that
is the case, you can isolate different instances by

specifying a unique set of ports for each:

shared_instance_port = 37428

instance_control_port = 37429

If you want to explicitly use TCP for shared instance
communication, instead of domain sockets, this is also
possible, by using the following option:

shared_instance_type = tcp

(continues on next page)

22 Chapter 3. Using Reticulum on Your System

Reticulum Network Stack, Release 1.0.4

HHoH W R W W R % HHOH W R W W R

%

#

(continued from previous page)

On systems where running instances may not have access
to the same shared Reticulum configuration directory,

it is still possible to allow full interactivity for
running instances, by manually specifying a shared RPC
key. In almost all cases, this option is not needed, but
it can be useful on operating systems such as Android.
The key must be specified as bytes in hexadecimal.

rpc_key = e5c032d3ec4eb64ab6aca9927ba8ab73336780£6d71790

It is possible to allow remote management of Reticulum
systems using the various built-in utilities, such as
rnstatus and rnpath. You will need to specify one or
more Reticulum Identity hashes for authenticating the
queries from client programs. For this purpose, you can
use existing identity files, or generate new ones with
the rnid utility.

enable_remote_management = yes
remote_management_allowed = 9fb6d773498fb3feda407ed8ef2c3229, .,

—.2d882c5586e548d79b5af27bcal776dc

O WK W W

#

oW OH W W W™ R

%

You can configure Reticulum to panic and forcibly close
if an unrecoverable interface error occurs, such as the
hardware device for an interface disappearing. This is

an optional directive, and can be left out for brevity.
This behaviour is disabled by default.

panic_on_interface_error = No

When Transport is enabled, it is possible to allow the
Transport Instance to respond to probe requests from
the rnprobe utility. This can be a useful tool to test
connectivity. When this option is enabled, the probe
destination will be generated from the Identity of the
Transport Instance, and printed to the log at startup.
Optional, and disabled by default.

respond_to_probes = No

[logging]

Valid log levels are O through 7:

0: Log only critical information

1: Log errors and lower log levels

2: Log warnings and lower log levels

3: Log notices and lower log levels

4: Log info and lower (this is the default)
5: Verbose logging

(continues on next page)

3.1. Configuration & Data 23

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

6: Debug logging
7: Extreme logging

loglevel = 4

The interfaces section defines the physical and virtual
interfaces Reticulum will use to communicate on. This

section will contain examples for a variety of interface
types. You can modify these or use them as a basis for
your own config, or simply remove the unused ones.

[interfaces]

This interface enables communication with other
link-local Reticulum nodes over UDP. It does not
need any functional IP infrastructure like routers

or DHCP servers, but will require that at least link-
local IPv6 is enabled in your operating system, which
should be enabled by default in almost any 0S. See
the Reticulum Manual for more configuration options.

R W W W W W

[[Default Interface]]
type = AutolInterface
interface_enabled = True

If Reticulum infrastructure already exists locally, you probably don’t need to change anything, and you may already be
connected to a wider network. If not, you will probably need to add relevant inferfaces to the configuration, in order to
communicate with other systems.

You can generate a much more verbose configuration example by running the command:
rnsd --exampleconfig

The output includes examples for most interface types supported by Reticulum, along with additional options and
configuration parameters.

Itis a good idea to read the comments and explanations in the above default config. It will teach you the basic concepts
you need to understand to configure your network. Once you have done that, take a look at the /nterfaces chapter of
this manual.

3.2 Included Utility Programs

Reticulum includes a range of useful utilities, both for managing your Reticulum networks, and for carrying out common
tasks over Reticulum networks, such as transferring files to remote systems, and executing commands and programs
remotely.

If you often use Reticulum from several different programs, or simply want Reticulum to stay available all the time, for
example if you are hosting a transport node, you might want to run Reticulum as a separate service that other programs,
applications and services can utilise.

24 Chapter 3. Using Reticulum on Your System

Reticulum Network Stack, Release 1.0.4

3.2.1 The rnsd Utility

It is very easy to run Reticulum as a service. Simply run the included rnsd command. When rnsd is running, it will
keep all configured interfaces open, handle transport if it is enabled, and allow any other programs to immediately
utilise the Reticulum network it is configured for.

You can even run multiple instances of rnsd with different configurations on the same system.
Usage Examples

Run rnsd:

$ rnsd

[2023-08-18 17:59:56] [Notice] Started rnsd version 0.5.8

Run rnsd in service mode, ensuring all logging output is sent directly to file:

[$ rnsd -s]

Generate a verbose and detailed configuration example, with explanations of all the various configuration options, and
interface configuration examples:

[$ rnsd --exampleconfig]

All Command-Line Options

usage: rnsd.py [-h] [--config CONFIG] [-v] [-q] [-s] [--exampleconfig] [--version]
Reticulum Network Stack Daemon
options:
-h, --help show this help message and exit
--config CONFIG path to alternative Reticulum config directory
-v, --verbose
-q, --quiet
-s, --service rnsd is running as a service and should log to file
-i, --interactive drop into interactive shell after initialisation
--exampleconfig print verbose configuration example to stdout and exit
--version show program's version number and exit

You can easily add rnsd as an always-on service by configuring a service.

3.2.2 The rnstatus Utility

Using the rnstatus utility, you can view the status of configured Reticulum interfaces, similar to the ifconfig
program.

Usage Examples

Run rnstatus:

$ rnstatus

Shared Instance[37428]
Status : Up
Serving : 1 program

(continues on next page)

3.2. Included Utility Programs 25

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

Rate : 1.00 Gbps
Traffic : 83.13 KB?T
86.10 KB!

AutoInterface[Local]
Status : Up

NMode : Full

Rate : 10.00 Mbps

Peers : 1 reachable

Traffic : 63.23 KB?
80.17 KBJ

TCPInterface[RNS Testnet Dublin/dublin.connect.reticulum.network:4965]
Status : Up

Mode : Full

Rate : 10.00 Mbps

Traffic : 187.27 KB?
74.17 KB

RNodeInterface[RNode UHF]
Status : Up
NMode : Access Point
Rate : 1.30 kbps
Access : 64-bit IFAC by <...e702c42ba8>
Traffic : 8.49 KB?T
9.23 KBl

Reticulum Transport Instance <5245a8efel788c6alcd36144a270el13b> running

Filter output to only show some interfaces:

$ rnstatus rnode

RNodeInterface[RNode UHF]
Status : Up
Mode : Access Point
Rate : 1.30 kbps
Access : 64-bit IFAC by <...e702c42ba8>
Traffic : 8.49 KB?T
9.23 KBY

Reticulum Transport Instance <5245a8efel788c6alcd36144a270el13b> running

All Command-Line Options

usage: rnstatus [-h] [--config CONFIG] [--version] [-a] [-A]
[-1] [-s SORT] [-r] [-j] [-R hash] [-i path]
[-w seconds] [-v] [filter]

Reticulum Network Stack Status

positional arguments:

(continues on next page)

26 Chapter 3. Using Reticulum on Your System

Reticulum Network Stack, Release 1.0.4

filter

options:
-h, --help
--config CONFIG
--version
-a, --all
-A, --announce-stats
-1, --link-stats
-s SORT, --sort SORT
—held]
-r, --reverse
-j, --json
-R hash
— (requires -1i)
-i path
-w seconds
-v, --verbose

only

show
path
show
show
show
show
sort

reverse sorting
output in JSON format

this help message and exit

to alternative Reticulum config directory

program's version number and exit

all interfaces

announce stats

link stats

interfaces by [rate, traffic, rx, tx, announces, arx, atx,.

(continued from previous page)

display interfaces with names including filter

transport identity hash of remote instance to get status from.

path to identity used for remote management
timeout before giving up on remote queries

Note

When using -R to query a remote transport instance, you must also specify -i with the path to a management

identity file that is authorized for remote management on the target system.

3.2.3 The rnid Utility

With the rnid utility, you can generate, manage and view Reticulum Identities. The program can also calculate Desti-

nation hashes, and perform encryption and decryption of files.

Using rnid, it is possible to asymmetrically encrypt files and information for any Reticulum destination hash, and also

to create and verify cryptographic signatures.

Usage Examples

Generate a new Identity:

[$ rnid -g ./new_identity

Display Identity key information:

$ rnid -i ./new_identity -p

Loaded Identity <984b74a3f768bef236af4371e6£248cd> from new_id

Public Key : 0£f4259fef4521ab75a3409e353fe9073eb10783b4912a6a9937c57bf44ab2cle

Private Key : Hidden

Encrypt a file for an LXMF user:

$ rnid -i 8dd57a738226809646089335a6b03695 -e my_file.txt

Recalled Identity <bc7291552be7a58£361522990465165c> for destination
—,<8dd57a738226809646089335a6b03695>

(continues on next page)

3.2. Included Utility Programs

27

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

Encrypting my_file.txt
File my_file.txt encrypted for <bc7291552be7a58£361522990465165c> to my_file.txt.rfe

If the Identity for the destination is not already known, you can fetch it from the network by using the -R command-line
option:

$ rnid -R -i 30602def3b3506a28ed33db6£f60cc6c9 -e my_file.txt

Requesting unknown Identity for <30602def3b3506a28ed33db6£f60cc6c9>. ..

Received Identity <2b489d06eaf7c543808c76a5332a447d> for destination
—<30602def3b3506a28ed33db6£f60cc6c9> from the network

Encrypting my_file.txt

File my_file.txt encrypted for <2b489d06eaf7c543808c76a5332a447d> to my_file.txt.rfe

Decrypt a file using the Reticulum Identity it was encrypted for:

$ rnid -i ./my_identity -d my_file.txt.rfe

Loaded Identity <2225fdeecaf6e2db4556c3c2d7637294> from ./my_identity
Decrypting ./my_file.txt.rfe...
File ./my_file.txt.rfe decrypted with <2225fdeecaf6e2db4556c3c2d7637294> to ./my_file.txt

All Command-Line Options

usage: rnid.py [-h] [--config path] [-i identity] [-g path] [-v] [-q] [-a aspects]
[-H aspects] [-e path] [-d path] [-s path] [-V path] [-r path] [-w path]
[-f] [-R] [-t seconds] [-p] [-P] [--version]

Reticulum Identity & Encryption Utility

options:
-h, --help show this help message and exit
--config path path to alternative Reticulum config directory
-i, --identity identity
hexadecimal Reticulum identity or destination hash, or path to.
—Identity file

-g, --generate file generate a new Identity
-m, --import identity_data
import Reticulum identity in hex, base32 or base64 format
-X, --export export identity to hex, base32 or base64 format
-v, --verbose increase verbosity
-q, --quiet decrease verbosity
-a, --announce aspects
announce a destination based on this Identity
-H, --hash aspects show destination hashes for other aspects for this Identity

-e, --encrypt file encrypt file
-d, --decrypt file decrypt file

-s, --sign path sign file

-V, --validate path validate signature

-r, --read file input file path

-w, --write file output file path

-f, --force write output even if it overwrites existing files
-R, --request request unknown Identities from the network

(continues on next page)

28 Chapter 3. Using Reticulum on Your System

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

-t seconds identity request timeout before giving up
-p, --print-identity print identity info and exit

-P, --print-private allow displaying private keys

-b, --baseb64 Use base64-encoded input and output

-B, --base32 Use base32-encoded input and output
--version show program's version number and exit

3.2.4 The rnpath Utility
With the rnpath utility, you can look up and view paths for destinations on the Reticulum network.
Usage Examples

Resolve path to a destination:

$ rnpath c89b4da®64bf66d280f0e4d8abfd9806

Path found, destination <c89b4da0®064bf66d280f0e4d8abfd9806> is 4 hops away via
—<£53a1c4278e0726bb73fcc623d6ce763> on TCPInterface[Testnet/dublin.connect.reticulum.
—network:4965]

All Command-Line Options

usage: rnpath [-h] [--config CONFIG] [--version] [-t] [-m hops]
[-r] [-d] [-D] [-x] [-w seconds] [-R hash] [-i path]

[-W seconds] [-j] [-v] [destination]

Reticulum Path Discovery Utility

positional arguments:

destination hexadecimal hash of the destination
options:
-h, --help show this help message and exit
--config CONFIG path to alternative Reticulum config directory
--version show program's version number and exit
-t, --table show all known paths
-m hops, --max hops maximum hops to filter path table by
-r, --rates show announce rate info
-d, --drop remove the path to a destination
-D, --drop-announces drop all queued announces
-xX, --drop-via drop all paths via specified transport instance
-w seconds timeout before giving up
-R hash transport identity hash of remote instance to manage
-i path path to identity used for remote management
-W seconds timeout before giving up on remote queries
-j, --json output in JSON format
-v, --verbose

3.2. Included Utility Programs 29

Reticulum Network Stack, Release 1.0.4

3.2.5 The rnprobe Utility

The rnprobe utility lets you probe a destination for connectivity, similar to the ping program. Please note that probes
will only be answered if the specified destination is configured to send proofs for received packets. Many destinations
will not have this option enabled, so most destinations will not be probable.

You can enable a probe-reply destination on Reticulum Transport Instances by setting the respond_to_probes con-
figuration directive. Reticulum will then print the probe destination to the log on Transport Instance startup.

Usage Examples

Probe a destination:

$ rnprobe rnstransport.probe 2d03725b327348980d570£739a3a5708

Sent 16 byte probe to <2d03725b327348980d570f739a3a5708>
Valid reply received from <2d®3725b327348980d570£739a3a5708>
Round-trip time is 38.469 milliseconds over 2 hops

Send a larger probe:

$ rnprobe rnstransport.probe 2d03725b327348980d570£739a3a5708 -s 256

Sent 16 byte probe to <2d®3725b327348980d570£739a3a5708>
Valid reply received from <2d®3725b327348980d570£739a3a5708>
Round-trip time is 38.781 milliseconds over 2 hops

If the interface that receives the probe replies supports reporting radio parameters such as RSSI and SNR, the rnprobe
utility will print these as part of the result as well.

$ rnprobe rnstransport.probe e7536ee90bd4a440e130490b87a25124

Sent 16 byte probe to <e7536ee90bd4a440e130490b87a25124>
Valid reply received from <e7536ee90bd4a440e130490b87a25124>
Round-trip time is 1.809 seconds over 1 hop [RSSI -73 dBm] [SNR 12.0 dB]

All Command-Line Options

usage: rnprobe [-h] [--config CONFIG] [-s SIZE] [-n PROBES]
[-t seconds] [-w seconds] [--version] [-V]
[full_name] [destination_hash]

Reticulum Probe Utility

positional arguments:

full_name full destination name in dotted notation
destination_hash hexadecimal hash of the destination
options:
-h, --help show this help message and exit
--config CONFIG path to alternative Reticulum config directory

-s SIZE, --size SIZE size of probe packet payload in bytes
-n PROBES, --probes PROBES
number of probes to send
-t seconds, --timeout seconds
timeout before giving up
(continues on next page)

30 Chapter 3. Using Reticulum on Your System

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

-w seconds, --wait seconds

time between each probe
--version show program's version number and exit
-v, --verbose

3.2.6 The rncp Utility
The rncp utility is a simple file transfer tool. Using it, you can transfer files through Reticulum.
Usage Examples

Run rncp on the receiving system, specifying which identities are allowed to send files:

[s rncp --listen -a 1726dbad538775b5bf9b0ea25a4079c8 -a c50ccded£7838b6¢31£60ab9032chc62]

You can also specify allowed identity hashes (one per line) in the file ~/.rncp/allowed_identities and simply running
the program in listener mode:

[$ rncp --listen]

From another system, copy a file to the receiving system:

[s rncp ~/path/to/file.tgz 73cbd378bb0286ed11a707c13447bble]

Or fetch a file from the remote system:

[s rncp --fetch ~/path/to/file.tgz 73cbd378bb0286ed11a707c13447bble]

All Command-Line Options

usage: rncp [-h] [--config path] [-v] [-q] [-S] [-1] [-F] [-f]
[-j path] [-b seconds] [-a allowed_hash] [-n] [-p]
[-w seconds] [--version] [file] [destination]
Reticulum File Transfer Utility
positional arguments:
file file to be transferred
destination hexadecimal hash of the receiver
options:
-h, --help show this help message and exit
--config path path to alternative Reticulum config directory
-v, --verbose increase verbosity
-q, --quiet decrease verbosity
-S, --silent disable transfer progress output
-1, --listen listen for incoming transfer requests
-C, --no-compress disable automatic compression
-F, --allow-fetch allow authenticated clients to fetch files
-f, --fetch fetch file from remote listener instead of sending
-j, --jail path restrict fetch requests to specified path
-s, --save path save received files in specified path
-0, --overwrite Allow overwriting received files, instead of adding postfix
-b seconds announce interval, O to only announce at startup

(continues on next page)

3.2. Included Utility Programs 31

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

-a allowed_hash allow this identity (or add in ~/.rncp/allowed_identities)
-n, --no-auth accept requests from anyone

-p, --print-identity print identity and destination info and exit

-w seconds sender timeout before giving up

-P, --phy-rates display physical layer transfer rates

--version show program's version number and exit

3.2.7 The rnx Utility

The rnx utility is a basic remote command execution program. It allows you to execute commands on remote systems
over Reticulum, and to view returned command output. For a fully interactive remote shell solution, be sure to also
take a look at the rnsh program.

Usage Examples

Run rnx on the listening system, specifying which identities are allowed to execute commands:

[$ rnx --listen -a 941bed5e228775e5a8079fc38blccf3f -a 1b03013c25f1c2ca®68a4f080b844a10]

From another system, run a command on the remote:

[$ rnx 7a55144adf826958a9529a3bcf®8b149 "cat /proc/cpuinfo"”]

Or enter the interactive mode pseudo-shell:

[$ rnx 7a55144adf826958a9529a3bcf®8b149 -x]

The default identity file is stored in ~/.reticulum/identities/rnx, but you can use another one, which will be
created if it does not already exist

[s rnx 7a55144adf826958a9529a3bc£08b149 -i /path/to/identity -x]

All Command-Line Options

usage: rnx [-h] [--config path] [-v] [-q] [-p] [-1] [-i identity] [-x] [-b] [-n] [-N]
[-d] [-m] [-a allowed_hash] [-w seconds] [-W seconds] [--stdin STDIN]
[--stdout STDOUT] [--stderr STDERR] [--version] [destination] [command]

Reticulum Remote Execution Utility
positional arguments:
destination hexadecimal hash of the listener

command command to be execute

optional arguments:

-h, --help show this help message and exit

--config path path to alternative Reticulum config directory
-v, --verbose increase verbosity

-q, --quiet decrease verbosity

-p, --print-identity print identity and destination info and exit
-1, --listen listen for incoming commands

-i identity path to identity to use

-X, --interactive enter interactive mode

-b, --no-announce don't announce at program start

(continues on next page)

32 Chapter 3. Using Reticulum on Your System

https://github.com/acehoss/rnsh

Reticulum Network Stack, Release 1.0.4

-a allowed_hash

(continued from previous page)

accept from this identity

-n, --noauth accept files from anyone

-N, --noid don't identify to listener

-d, --detailed show detailed result output

-m mirror exit code of remote command

-w seconds connect and request timeout before giving up
-W seconds max result download time

--stdin STDIN
--stdout STDOUT
--stderr STDERR
--version

pass input to stdin

max size in bytes of returned stdout
max size in bytes of returned stderr
show program's version number and exit

3.2.8 The rnodeconf Utility

The rnodeconf utility allows you to inspect and configure existing RNodes, and to create and provision new RNodes
from any supported hardware devices.

All Command-Line Options

usage: rnodeconf [-h] [-i] [-a] [-u] [-U] [--fw-version version]
[--fw-url url] [--nocheck] [-e] [-E] [-C]
[--baud-flash baud_flash] [-N] [-T] [-b] [-B] [-p] [-D i]
[--display-addr byte] [--freq Hz] [--bw Hz] [--txp dBm]
[--sf factor] [--cr rate] [--eeprom-backup] [--eeprom-dump]
[--eeprom-wipe] [-P] [--trust-key hexbytes] [--version] [-f]
[-r] [-k] [-S] [-H FIRMWARE_HASH] [--platform platform]
[--product product] [--model model] [--hwrev revision]
[port]

RNode Configuration and firmware utility. This program allows you to change
various settings and startup modes of RNode. It can also install, flash and

update the firmware on supported devices.

positional arguments:

port serial port where RNode is attached
options:
-h, --help show this help message and exit
-i, --info Show device info
-a, --autoinstall Automatic installation on various supported devices
-u, --update Update firmware to the latest version

-U, --force-update Update to specified firmware even if version matches or is older.
—~than installed version

--fw-version version Use a specific firmware version for update or autoinstall

--fw-url url Use an alternate firmware download URL

--nocheck Don't check for firmware updates online

-e, --extract Extract firmware from connected RNode for later use

-E, --use-extracted Use the extracted firmware for autoinstallation or update
-C, --clear-cache Clear locally cached firmware files

--baud-flash baud_flash
Set specific baud rate when flashing device. Default is 921600
-N, --normal Switch device to normal mode

(continues on next page)

3.2. Included Utility Programs 33

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

-T, --tnc Switch device to TNC mode

-b, --bluetooth-on Turn device bluetooth on

-B, --bluetooth-off Turn device bluetooth off

-p, --bluetooth-pair Put device into bluetooth pairing mode

-D, --display i Set display intensity (0-255)

-t, --timeout s Set display timeout in seconds, 0 to disable
-R, --rotation rotation

Set display rotation, valid values are O through 3
--display-addr byte Set display address as hex byte (00 - FF)
--recondition-display

Start display reconditioning

--np i Set NeoPixel intensity (0-255)

--freq Hz Frequency in Hz for TNC mode

--bw Hz Bandwidth in Hz for TNC mode

--txp dBm TX power in dBm for TNC mode

--sf factor Spreading factor for TNC mode (7 - 12)
--Ccr rate Coding rate for TNC mode (5 - 8)

-X, --ia-enable Enable interference avoidance

-X, --ia-disable Disable interference avoidance

-c, --config Print device configuration

--eeprom-backup Backup EEPROM to file

--eeprom-dump Dump EEPROM to console

--eeprom-wipe Unlock and wipe EEPROM

-P, --public Display public part of signing key
--trust-key hexbytes Public key to trust for device verification
--version Print program version and exit

-f, --flash Flash firmware and bootstrap EEPROM

-r, --rom Bootstrap EEPROM without flashing firmware
-k, --key Generate a new signing key and exit

-S, --sign Display public part of signing key

-H, --firmware-hash FIRMWARE_HASH
Set installed firmware hash
--platform platform Platform specification for device bootstrap

--product product Product specification for device bootstrap
--model model Model code for device bootstrap
--hwrev revision Hardware revision for device bootstrap

For more information on how to create your own RNodes, please read the Creating RNodes section of this manual.

3.3 Remote Management

It is possible to allow remote management of Reticulum systems using the various built-in utilities, such as rnstatus
and rnpath. To do so, you will need to set the enable_remote_management directive in the [reticulum] section
of the configuration file. You will also need to specify one or more Reticulum Identity hashes for authenticating the
queries from client programs. For this purpose, you can use existing identity files, or generate new ones with the rnid
utility.

The following is a truncated example of enabling remote management in the Reticulum configuration file:

[reticulum]

enable_remote_management = yes

(continues on next page)

34 Chapter 3. Using Reticulum on Your System

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

remote_management_allowed = 9fb6d773498fb3feda407ed8ef2c3229,..
—.2d882c5586e548d79b5af27bcal776dc

For a complete example configuration, you can run rnsd --exampleconfig.

3.4 Improving System Configuration

If you are setting up a system for permanent use with Reticulum, there is a few system configuration changes that can
make this easier to administrate. These changes will be detailed here.

3.4.1 Fixed Serial Port Names

On a Reticulum instance with several serial port based interfaces, it can be beneficial to use the fixed device names for
the serial ports, instead of the dynamically allocated shorthands such as /dev/ttyUSB®. Under most Debian-based
distributions, including Ubuntu and Raspberry Pi OS, these nodes can be found under /dev/serial/by-id.

You can use such a device path directly in place of the numbered shorthands. Here is an example of a packet radio
TNC configured as such:

[[Packet Radio KISS Interface]]
type = KISSInterface
interface_enabled = True
outgoing = true
port = /dev/serial/by-id/usb-FTDI_FT230X_Basic_UART_43891CKM-if00-port®
speed = 115200
databits = 8
parity = none
stopbits = 1
preamble = 150
txtail = 10
persistence = 200
slottime = 20

Using this methodology avoids potential naming mix-ups where physical devices might be plugged and unplugged in
different orders, or when device name assignment varies from one boot to another.

3.4.2 Reticulum as a System Service

Instead of starting Reticulum manually, you can install rnsd as a system service and have it start automatically at boot.

Systemwide Service

If you installed Reticulum with pip, the rnsd program will most likely be located in a user-local installation path only,
which means systemd will not be able to execute it. In this case, you can simply symlink the rnsd program into a
directory that is in systemd’s path:

[sudo In -s $(which rnsd) /usr/local/bin/

You can then create the service file /etc/systemd/system/rnsd. service with the following content:

[Unit]
Description=Reticulum Network Stack Daemon
(continues on next page)

3.4. Improving System Configuration 35

Reticulum Network Stack, Release 1.0.4

After=multi-user.target

[Service]

If you run Reticulum on WiFi devices,
or other devices that need some extra
time to initialise, you might want to
add a short delay before Reticulum is
started by systemd:

ExecStartPre=/bin/sleep 10
Type=simple

Restart=always

RestartSec=3

User=USERNAMEHERE

ExecStart=rnsd --service

[Install]
WantedBy=multi-user.target

(continued from previous page)

Be sure to replace USERNAMEHERE with the user you want to run rnsd as.

To manually start rnsd run:

[sudo systemctl start rnsd

If you want to automatically start rnsd at boot, run:

[sudo systemctl enable rnsd

Userspace Service

Alternatively you can use a user systemd service instead of a system wide one. This way the whole setup can be done
as a regular user. Create a user systemd service files ~/.config/systemd/user/rnsd. service with the following

content:

[Unit]
Description=Reticulum Network Stack Daemon
After=default.target

[Service]

If you run Reticulum on WiFi devices,
or other devices that need some extra
time to initialise, you might want to
add a short delay before Reticulum is
started by systemd:

ExecStartPre=/bin/sleep 10

Type=simple

Restart=always

RestartSec=3
ExecStart=RNS_BIN_DIR/rnsd --service

[Install]
WantedBy=default.target

Replace RNS_BIN_DIR with the path to your Reticulum binary directory (eg. /home/USERNAMEHERE/rns/bin).

36 Chapter 3. Using Reticulum on Your System

Reticulum Network Stack, Release 1.0.4

Start user service:

systemctl --user daemon-reload
systemctl --user start rnsd.service

If you want to automatically start rnsd without having to log in as the USERNAMEHERE, do:

sudo loginctl enable-linger USERNAMEHERE
systemctl --user enable rnsd.service

3.4. Improving System Configuration 37

Reticulum Network Stack, Release 1.0.4

38

Chapter 3. Using Reticulum on Your System

CHAPTER
FOUR

UNDERSTANDING RETICULUM

This chapter will briefly describe the overall purpose and operating principles of Reticulum. It should give you an
overview of how the stack works, and an understanding of how to develop networked applications using Reticulum.

This chapter is not an exhaustive source of information on Reticulum, at least not yet. Currently, the only complete
repository, and final authority on how Reticulum actually functions, is the Python reference implementation and API
reference. That being said, this chapter is an essential resource in understanding how Reticulum works from a high-level
perspective, along with the general principles of Reticulum, and how to apply them when creating your own networks
or software.

After reading this document, you should be well-equipped to understand how a Reticulum network operates, what it
can achieve, and how you can use it yourself. If you want to help out with the development, this is also the place to start,
since it will provide a pretty clear overview of the sentiments and the philosophy behind Reticulum, what problems it
seeks to solve, and how it approaches those solutions.

4.1 Motivation

The primary motivation for designing and implementing Reticulum has been the current lack of reliable, functional
and secure minimal-infrastructure modes of digital communication. It is my belief that it is highly desirable to create
a reliable and efficient way to set up long-range digital communication networks that can securely allow exchange of
information between people and machines, with no central point of authority, control, censorship or barrier to entry.

Almost all of the various networking systems in use today share a common limitation: They require large amounts of
coordination and centralised trust and power to function. To join such networks, you need approval of gatekeepers in
control. This need for coordination and trust inevitably leads to an environment of central control, where it’s very easy
for infrastructure operators or governments to control or alter traffic, and censor or persecute unwanted actors. It also
makes it completely impossible to freely deploy and use networks at will, like one would use other common tools that
enhance individual agency and freedom.

Reticulum aims to require as little coordination and trust as possible. It aims to make secure, anonymous and permis-
sionless networking and information exchange a tool that anyone can just pick up and use.

Since Reticulum is completely medium agnostic, it can be used to build networks on whatever is best suited to the
situation, or whatever you have available. In some cases, this might be packet radio links over VHF frequencies, in
other cases it might be a 2.4 GHz network using off-the-shelf radios, or it might be using common LoRa development
boards.

At the time of release of this document, the fastest and easiest setup for development and testing is using LoRa radio
modules with an open source firmware (see the section Reference Setup), connected to any kind of computer or mobile
device that Reticulum can run on.

The ultimate aim of Reticulum is to allow anyone to be their own network operator, and to make it cheap and easy
to cover vast areas with a myriad of independent, interconnectable and autonomous networks. Reticulum is not one

39

Reticulum Network Stack, Release 1.0.4

network, it is a tool to build thousands of networks. Networks without kill-switches, surveillance, censorship and con-
trol. Networks that can freely interoperate, associate and disassociate with each other, and require no central oversight.
Networks for human beings. Networks for the people.

4.2 Goals

To be as widely usable and efficient to deploy as possible, the following goals have been used to guide the design of
Reticulum:

 Fully useable as open source software stack
Reticulum must be implemented with, and be able to run using only open source software. This is critical
to ensuring the availability, security and transparency of the system.

* Hardware layer agnosticism
Reticulum must be fully hardware agnostic, and shall be useable over a wide range of physical networking
layers, such as data radios, serial lines, modems, handheld transceivers, wired Ethernet, WiFi, or anything
else that can carry a digital data stream. Hardware made for dedicated Reticulum use shall be as cheap as
possible and use off-the-shelf components, so it can be easily modified and replicated by anyone interested
in doing so.

¢ Very low bandwidth requirements
Reticulum should be able to function reliably over links with a transmission capacity as low as 5 bits per
second.

* Encryption by default
Reticulum must use strong encryption by default for all communication.

¢ Initiator Anonymity
It must be possible to communicate over a Reticulum network without revealing any identifying information
about oneself.

* Unlicensed use
Reticulum shall be functional over physical communication mediums that do not require any form of license
to use. Reticulum must be designed in a way, so it is usable over ISM radio frequency bands, and can
provide functional long distance links in such conditions, for example by connecting a modem to a PMR
or CB radio, or by using LoRa or WiFi modules.

¢ Supplied software
In addition to the core networking stack and API, that allows a developer to build applications with Retic-
ulum, a basic set of Reticulum-based communication tools must be implemented and released along with
Reticulum itself. These shall serve both as a functional, basic communication suite, and as an example and
learning resource to others wishing to build applications with Reticulum.

» Ease of use
The reference implementation of Reticulum is written in Python, to make it easy to use and understand. A
programmer with only basic experience should be able to use Reticulum to write networked applications.

* Low cost
It shall be as cheap as possible to deploy a communication system based on Reticulum. This should be
achieved by using cheap off-the-shelf hardware that potential users might already own. The cost of setting
up a functioning node should be less than $100 even if all parts needs to be purchased.

4.3 Introduction & Basic Functionality

Reticulum is a networking stack suited for high-latency, low-bandwidth links. Reticulum is at its core a message
oriented system. It is suited for both local point-to-point or point-to-multipoint scenarios where all nodes are within

40 Chapter 4. Understanding Reticulum

Reticulum Network Stack, Release 1.0.4

range of each other, as well as scenarios where packets need to be transported over multiple hops in a complex network
to reach the recipient.

Reticulum does away with the idea of addresses and ports known from IP, TCP and UDP. Instead Reticulum uses the
singular concept of destinations. Any application using Reticulum as its networking stack will need to create one or
more destinations to receive data, and know the destinations it needs to send data to.

All destinations in Reticulum are represented as a 16 byte hash. This hash is derived from truncating a full SHA-
256 hash of identifying characteristics of the destination. To users, the destination addresses will be displayed as 16
hexadecimal bytes, like this example: <13425ec15b621c1d928589718000d814>.

The truncation size of 16 bytes (128 bits) for destinations has been chosen as a reasonable trade-off between address
space and packet overhead. The address space accommodated by this size can support many billions of simultaneously
active devices on the same network, while keeping packet overhead low, which is essential on low-bandwidth networks.
In the very unlikely case that this address space nears congestion, a one-line code change can upgrade the Reticulum
address space all the way up to 256 bits, ensuring the Reticulum address space could potentially support galactic-
scale networks. This is obviously complete and ridiculous over-allocation, and as such, the current 128 bits should be
sufficient, even far into the future.

By default Reticulum encrypts all data using elliptic curve cryptography and AES. Any packet sent to a destination
is encrypted with a per-packet derived key. Reticulum can also set up an encrypted channel to a destination, called a
Link. Both data sent over Links and single packets offer Initiator Anonymity. Links additionally offer Forward Secrecy
by default, employing an Elliptic Curve Diffie Hellman key exchange on Curve25519 to derive per-link ephemeral
keys. Asymmetric, link-less packet communication can also provide forward secrecy, with automatic key ratcheting,
by enabling ratchets on a per-destination basis. The multi-hop transport, coordination, verification and reliability layers
are fully autonomous and also based on elliptic curve cryptography.

Reticulum also offers symmetric key encryption for group-oriented communications, as well as unencrypted packets
(for local broadcast purposes only).

Reticulum can connect to a variety of interfaces such as radio modems, data radios and serial ports, and offers the
possibility to easily tunnel Reticulum traffic over IP links such as the Internet or private IP networks.

4.3.1 Destinations

To receive and send data with the Reticulum stack, an application needs to create one or more destinations. Reticulum
uses three different basic destination types, and one special:

* Single
The single destination type is the most common type in Reticulum, and should be used for most purposes.
It is always identified by a unique public key. Any data sent to this destination will be encrypted using
ephemeral keys derived from an ECDH key exchange, and will only be readable by the creator of the
destination, who holds the corresponding private key.

* Plain
A plain destination type is unencrypted, and suited for traffic that should be broadcast to a number of users,
or should be readable by anyone. Traffic to a plain destination is not encrypted. Generally, plain destinations
can be used for broadcast information intended to be public. Plain destinations are only reachable directly,
and packets addressed to plain destinations are never transported over multiple hops in the network. To be
transportable over multiple hops in Reticulum, information must be encrypted, since Reticulum uses the
per-packet encryption to verify routing paths and keep them alive.

¢ Group
The group special destination type, that defines a symmetrically encrypted virtual destination. Data sent
to this destination will be encrypted with a symmetric key, and will be readable by anyone in possession
of the key, but as with the plain destination type, packets to this type of destination are not currently trans-
ported over multiple hops, although a planned upgrade to Reticulum will allow globally reachable group
destinations.

4.3. Introduction & Basic Functionality 41

Reticulum Network Stack, Release 1.0.4

* Link
A link is a special destination type, that serves as an abstract channel to a single destination, directly con-
nected or over multiple hops. The /ink also offers reliability and more efficient encryption, forward secrecy,
initiator anonymity, and as such can be useful even when a node is directly reachable. It also offers a more
capable API and allows easily carrying out requests and responses, large data transfers and more.

Destination Naming

Destinations are created and named in an easy to understand dotted notation of aspects, and represented on the network
as a hash of this value. The hash is a SHA-256 truncated to 128 bits. The top level aspect should always be a unique
identifier for the application using the destination. The next levels of aspects can be defined in any way by the creator
of the application.

Aspects can be as long and as plentiful as required, and a resulting long destination name will not impact efficiency, as
names are always represented as truncated SHA-256 hashes on the network.

As an example, a destination for a environmental monitoring application could be made up of the application name, a
device type and measurement type, like this:

app name : environmentlogger
aspects : remotesensor, temperature

full name : environmentlogger.remotesensor.temperature
hash : 4faflb2e0a077e6a9d92fa®51£256038

For the single destination, Reticulum will automatically append the associated public key as a destination aspect before
hashing. This is done to ensure only the correct destination is reached, since anyone can listen to any destination name.
Appending the public key ensures that a given packet is only directed at the destination that holds the corresponding
private key to decrypt the packet.

Take note! There is a very important concept to understand here:
* Anyone can use the destination name environmentlogger.remotesensor. temperature

 Each destination that does so will still have a unique destination hash, and thus be uniquely addressable, because
their public keys will differ.

In actual use of single destination naming, it is advisable not to use any uniquely identifying features in aspect naming.
Aspect names should be general terms describing what kind of destination is represented. The uniquely identifying
aspect is always achieved by appending the public key, which expands the destination into a uniquely identifiable one.
Reticulum does this automatically.

Any destination on a Reticulum network can be addressed and reached simply by knowing its destination hash (and
public key, but if the public key is not known, it can be requested from the network simply by knowing the destination
hash). The use of app names and aspects makes it easy to structure Reticulum programs and makes it possible to filter
what information and data your program receives.

To recap, the different destination types should be used in the following situations:

* Single
When private communication between two endpoints is needed. Supports multiple hops.

¢ Group
When private communication between two or more endpoints is needed. Supports multiple hops indirectly,
but must first be established through a single destination.

* Plain
When plain-text communication is desirable, for example when broadcasting information, or for local dis-
COVery purposes.

42 Chapter 4. Understanding Reticulum

Reticulum Network Stack, Release 1.0.4

To communicate with a single destination, you need to know its public key. Any method for obtaining the public key is
valid, but Reticulum includes a simple mechanism for making other nodes aware of your destinations public key, called
the announce. It is also possible to request an unknown public key from the network, as all transport instances serve
as a distributed ledger of public keys.

Note that public key information can be shared and verified in other ways than using the built-in announce functionality,
and that it is therefore not required to use the announce and path request functionality to obtain public keys. It is by
far the easiest though, and should definitely be used if there is not a very good reason for doing it differently.

4.3.2 Public Key Announcements

An announce will send a special packet over any relevant interfaces, containing all needed information about the desti-
nation hash and public key, and can also contain some additional, application specific data. The entire packet is signed
by the sender to ensure authenticity. It is not required to use the announce functionality, but in many cases it will be
the simplest way to share public keys on the network. The announce mechanism also serves to establish end-to-end
connectivity to the announced destination, as the announce propagates through the network.

As an example, an announce in a simple messenger application might contain the following information:
* The announcers destination hash
* The announcers public key
* Application specific data, in this case the users nickname and availability status

* A random blob, making each new announce unique

An Ed25519 signature of the above information, verifying authenticity

With this information, any Reticulum node that receives it will be able to reconstruct an outgoing destination to securely
communicate with that destination. You might have noticed that there is one piece of information lacking to reconstruct
full knowledge of the announced destination, and that is the aspect names of the destination. These are intentionally
left out to save bandwidth, since they will be implicit in almost all cases. The receiving application will already know
them. If a destination name is not entirely implicit, information can be included in the application specific data part
that will allow the receiver to infer the naming.

It is important to note that announces will be forwarded throughout the network according to a certain pattern. This
will be detailed in the section The Announce Mechanism in Detail.

In Reticulum, destinations are allowed to move around the network at will. This is very different from protocols such
as IP, where an address is always expected to stay within the network segment it was assigned in. This limitation does
not exist in Reticulum, and any destination is completely portable over the entire topography of the network, and can
even be moved to other Reticulum networks than the one it was created in, and still become reachable. To update its
reachability, a destination simply needs to send an announce on any networks it is part of. After a short while, it will
be globally reachable in the network.

Seeing how single destinations are always tied to a private/public key pair leads us to the next topic.

4.3.3 ldentities

In Reticulum, an identity does not necessarily represent a personal identity, but is an abstraction that can represent any
kind of verifiable entity. This could very well be a person, but it could also be the control interface of a machine, a
program, robot, computer, sensor or something else entirely. In general, any kind of agent that can act, or be acted upon,
or store or manipulate information, can be represented as an identity. An identity can be used to create any number of
destinations.

A single destination will always have an identity tied to it, but not plain or group destinations. Destinations and identities
share a multilateral connection. You can create a destination, and if it is not connected to an identity upon creation, it
will just create a new one to use automatically. This may be desirable in some situations, but often you will probably
want to create the identity first, and then use it to create new destinations.

4.3. Introduction & Basic Functionality 43

Reticulum Network Stack, Release 1.0.4

As an example, we could use an identity to represent the user of a messaging application. Destinations can then be
created by this identity to allow communication to reach the user. In all cases it is of great importance to store the
private keys associated with any Reticulum Identity securely and privately, since obtaining access to the identity keys
equals obtaining access and controlling reachability to any destinations created by that identity.

4.3.4 Getting Further

The above functions and principles form the core of Reticulum, and would suffice to create functional networked
applications in local clusters, for example over radio links where all interested nodes can directly hear each other. But
to be truly useful, we need a way to direct traffic over multiple hops in the network.

In the following sections, two concepts that allow this will be introduced, paths and links.

4.4 Reticulum Transport

The methods of routing used in traditional networks are fundamentally incompatible with the physical medium types
and circumstances that Reticulum was designed to handle. These mechanisms mostly assume trust at the physical layer,
and often needs a lot more bandwidth than Reticulum can assume is available. Since Reticulum is designed to survive
running over open radio spectrum, no such trust can be assumed, and bandwidth is often very limited.

To overcome such challenges, Reticulum’s Transport system uses asymmetric elliptic curve cryptography to implement
the concept of paths that allow discovery of how to get information closer to a certain destination. It is important to note
that no single node in a Reticulum network knows the complete path to a destination. Every Transport node participating
in a Reticulum network will only know the most direct way to get a packet one hop closer to it’s destination.

4.4.1 Node Types

Currently, Reticulum distinguishes between two types of network nodes. All nodes on a Reticulum network are Reticu-
lum Instances, and some are also Transport Nodes. If a system running Reticulum is fixed in one place, and is intended
to be kept available most of the time, it is a good contender to be a Transport Node.

Any Reticulum Instance can become a Transport Node by enabling it in the configuration. This distinction is made by
the user configuring the node, and is used to determine what nodes on the network will help forward traffic, and what
nodes rely on other nodes for wider connectivity.

If a node is an Instance it should be given the configuration directive enable_transport = No, which is the default
setting.

If it is a Transport Node, it should be given the configuration directive enable_transport = Yes.

4.4.2 The Announce Mechanism in Detail

When an announce for a destination is transmitted by a Reticulum instance, it will be forwarded by any transport node
receiving it, but according to some specific rules:

» If this exact announce has already been received before, ignore it.

* If not, record into a table which Transport Node the announce was received from, and how many times in total
it has been retransmitted to get here.

* If the announce has been retransmitted m+1 times, it will not be forwarded any more. By default, m is set to
128.

¢ After a randomised delay, the announce will be retransmitted on all interfaces that have bandwidth available for
processing announces. By default, the maximum bandwidth allocation for processing announces is set at 2%,
but can be configured on a per-interface basis.

44 Chapter 4. Understanding Reticulum

Reticulum Network Stack, Release 1.0.4

* If any given interface does not have enough bandwidth available for retransmitting the announce, the announce
will be assigned a priority inversely proportional to its hop count, and be inserted into a queue managed by the
interface.

* When the interface has bandwidth available for processing an announce, it will prioritise announces for
destinations that are closest in terms of hops, thus prioritising reachability and connectivity of local nodes, even
on slow networks that connect to wider and faster networks.

 After the announce has been re-transmitted, and if no other nodes are heard retransmitting the announce with a
greater hop count than when it left this node, transmitting it will be retried r times. By default, r is set to 1.

« If a newer announce from the same destination arrives, while an identical one is already waiting to be
transmitted, the newest announce is discarded. If the newest announce contains different application specific
data, it will replace the old announce.

Once an announce has reached a transport node in the network, any other node in direct contact with that transport
node will be able to reach the destination the announce originated from, simply by sending a packet addressed to that
destination. Any transport node with knowledge of the announce will be able to direct the packet towards the destination
by looking up the most efficient next node to the destination.

According to these rules, an announce will propagate throughout the network in a predictable way, and make the
announced destination reachable in a short amount of time. Fast networks that have the capacity to process many
announces can reach full convergence very quickly, even when constantly adding new destinations. Slower segments
of such networks might take a bit longer to gain full knowledge about the wide and fast networks they are connected
to, but can still do so over time, while prioritising full and quickly converging end-to-end connectivity for their local,
slower segments.

Tip

Even very slow networks, that simply don’t have the capacity to ever reach full convergence will generally still
be able to reach any other destination on any connected segments, since interconnecting transport nodes will
prioritize announces into the slower segments that are actually requested by nodes on these.

This means that slow, low-capacity or low-resource segments don’t need to have full network knowledge, since
paths can always be recursively resolved from other segments that do have knowledge about them.

In general, even extremely complex networks, that utilize the maximum 128 hops will converge to full end-to-end con-
nectivity in about one minute, given there is enough bandwidth available to process the required amount of announces.

4.4.3 Reaching the Destination

In networks with changing topology and trustless connectivity, nodes need a way to establish verified connectivity
with each other. Since the underlying network mediums are assumed to be trustless, Reticulum must provide a way to
guarantee that the peer you are communicating with is actually who you expect. Reticulum offers two ways to do this.

For exchanges of small amounts of information, Reticulum offers the Packet API, which works exactly like you would
expect - on a per packet level. The following process is employed when sending a packet:

* A packet is always created with an associated destination and some payload data. When the packet is sent to a
single destination type, Reticulum will automatically create an ephemeral encryption key, perform an ECDH
key exchange with the destination’s public key (or ratchet key, if available), and encrypt the information.

* Itis important to note that this key exchange does not require any network traffic. The sender already knows the
public key of the destination from an earlier received announce, and can thus perform the ECDH key exchange
locally, before sending the packet.

* The public part of the newly generated ephemeral key-pair is included with the encrypted token, and sent along
with the encrypted payload data in the packet.

4.4. Reticulum Transport 45

Reticulum Network Stack, Release 1.0.4

* When the destination receives the packet, it can itself perform an ECDH key exchange and decrypt the packet.
* A new ephemeral key is used for every packet sent in this way.

* Once the packet has been received and decrypted by the addressed destination, that destination can opt to prove
its receipt of the packet. It does this by calculating the SHA-256 hash of the received packet, and signing this
hash with its Ed25519 signing key. Transport nodes in the network can then direct this proof back to the
packets origin, where the signature can be verified against the destination’s known public signing key.

* In case the packet is addressed to a group destination type, the packet will be encrypted with the pre-shared
AES-256 key associated with the destination. In case the packet is addressed to a plain destination type, the
payload data will not be encrypted. Neither of these two destination types can offer forward secrecy. In general,
it is recommended to always use the single destination type, unless it is strictly necessary to use one of the
others.

For exchanges of larger amounts of data, or when longer sessions of bidirectional communication is desired, Reticulum
offers the Link API. To establish a link, the following process is employed:

* First, the node that wishes to establish a link will send out a link request packet, that traverses the network and
locates the desired destination. Along the way, the Transport Nodes that forward the packet will take note of
this link request, and mark it as pending.

» Second, if the destination accepts the link request , it will send back a packet that proves the authenticity of its
identity (and the receipt of the link request) to the initiating node. All nodes that initially forwarded the packet
will also be able to verify this proof, and thus accept the validity of the link throughout the network. The link is
now marked as established.

* When the validity of the /ink has been accepted by forwarding nodes, these nodes will remember the link , and
it can subsequently be used by referring to a hash representing it.

* As a part of the link request, an Elliptic Curve Diffie-Hellman key exchange takes place, that sets up an
efficiently encrypted tunnel between the two nodes. As such, this mode of communication is preferred, even for
situations when nodes can directly communicate, when the amount of data to be exchanged numbers in the tens
of packets, or whenever the use of the more advanced API functions is desired.

e When a link has been set up, it automatically provides message receipt functionality, through the same proof
mechanism discussed before, so the sending node can obtain verified confirmation that the information reached
the intended recipient.

* Once the link has been set up, the initiator can remain anonymous, or choose to authenticate towards the
destination using a Reticulum Identity. This authentication is happening inside the encrypted link, and is only
revealed to the verified destination, and no intermediaries.

In a moment, we will discuss the details of how this methodology is implemented, but let’s first recap what purposes this
methodology serves. We first ensure that the node answering our request is actually the one we want to communicate
with, and not a malicious actor pretending to be so. At the same time we establish an efficient encrypted channel. The
setup of this is relatively cheap in terms of bandwidth, so it can be used just for a short exchange, and then recreated as
needed, which will also rotate encryption keys. The link can also be kept alive for longer periods of time, if this is more
suitable to the application. The procedure also inserts the link id , a hash calculated from the link request packet, into
the memory of forwarding nodes, which means that the communicating nodes can thereafter reach each other simply
by referring to this link id.

The combined bandwidth cost of setting up a link is 3 packets totalling 297 bytes (more info in the Binary Packet Format
section). The amount of bandwidth used on keeping a link open is practically negligible, at 0.45 bits per second. Even
on a slow 1200 bits per second packet radio channel, 100 concurrent links will still leave 96% channel capacity for
actual data.

46 Chapter 4. Understanding Reticulum

Reticulum Network Stack, Release 1.0.4

Link Establishment in Detail

After exploring the basics of the announce mechanism, finding a path through the network, and an overview of the link
establishment procedure, this section will go into greater detail about the Reticulum link establishment process.

The link in Reticulum terminology should not be viewed as a direct node-to-node link on the physical layer, but as an
abstract channel, that can be open for any amount of time, and can span an arbitrary number of hops, where information
will be exchanged between two nodes.

When a node in the network wants to establish verified connectivity with another node, it will randomly
generate a new X25519 private/public key pair. It then creates a link request packet, and broadcast it.

It should be noted that the X25519 public/private keypair mentioned above is two separate keypairs: An
encryption key pair, used for derivation of a shared symmetric key, and a signing key pair, used for signing and
verifying messages on the link. They are sent together over the wire, and can be considered as single public key
for simplicity in this explanation.

The link request is addressed to the destination hash of the desired destination, and contains the following data:
The newly generated X25519 public key LKi.

The broadcasted packet will be directed through the network according to the rules laid out previously.

Any node that forwards the link request will store a link id in it’s link table , along with the amount of hops the
packet had taken when received. The link id is a hash of the entire link request packet. If the link request packet
is not proven by the addressed destination within some set amount of time, the entry will be dropped from the
link table again.

When the destination receives the link request packet, it will decide whether to accept the request. If it is
accepted, the destination will also generate a new X25519 private/public key pair, and perform a Diffie
Hellman Key Exchange, deriving a new symmetric key that will be used to encrypt the channel, once it has
been established.

A link proof packet is now constructed and transmitted over the network. This packet is addressed to the link id
of the link. It contains the following data: The newly generated X25519 public key LKr and an Ed25519
signature of the /ink id and LKr made by the original signing key of the addressed destination.

By verifying this link proof packet, all nodes that originally transported the link request packet to the
destination from the originator can now verify that the intended destination received the request and accepted it,
and that the path they chose for forwarding the request was valid. In successfully carrying out this verification,
the transporting nodes marks the link as active. An abstract bi-directional communication channel has now
been established along a path in the network. Packets can now be exchanged bi-directionally from either end of
the link simply by adressing the packets to the link id of the link.

When the source receives the proof , it will know unequivocally that a verified path has been established to the
destination. It can now also use the X25519 public key contained in the link proof to perform it’s own Diffie
Hellman Key Exchange and derive the symmetric key that is used to encrypt the channel. Information can now
be exchanged reliably and securely.

Note

It’s

important to note that this methodology ensures that the source of the request does not need to reveal any

identifying information about itself. The link initiator remains completely anonymous.

When using links, Reticulum will automatically verify all data sent over the link, and can also automate retransmissions
if Resources are used.

4.4.

Reticulum Transport 47

Reticulum Network Stack, Release 1.0.4

4.4.4 Resources

For exchanging small amounts of data over a Reticulum network, the Packet interface is sufficient, but for exchanging
data that would require many packets, an efficient way to coordinate the transfer is needed.

This is the purpose of the Reticulum Resource. A Resource can automatically handle the reliable transfer of an arbi-
trary amount of data over an established Link. Resources can auto-compress data, will handle breaking the data into
individual packets, sequencing the transfer, integrity verification and reassembling the data on the other end.

Resources are programmatically very simple to use, and only requires a few lines of codes to reliably transfer any
amount of data. They can be used to transfer data stored in memory, or stream data directly from files.

4.5 Reference Setup

This section will detail a recommended Reference Setup for Reticulum. It is important to note that Reticulum is designed
to be usable on more or less any computing device, and over more or less any medium that allows you to send and receive
data, which satisfies some very low minimum requirements.

The communication channel must support at least half-duplex operation, and provide an average throughput of 5 bits
per second or greater, and supports a physical layer MTU of 500 bytes. The Reticulum stack should be able to run on
more or less any hardware that can provide a Python 3.x runtime environment.

That being said, this reference setup has been outlined to provide a common platform for anyone who wants to help in
the development of Reticulum, and for everyone who wants to know a recommended setup to get started experimenting.
A reference system consists of three parts:

* An Interface Device
Which provides access to the physical medium whereupon the communication takes place, for example a
radio with an integrated modem. A setup with a separate modem connected to a radio would also be an
interface device.

* A Host Device
Some sort of computing device that can run the necessary software, communicate with the interface device,
and provide user interaction.

* A Software Stack
The software implementing the Reticulum protocol and applications using it.

The reference setup can be considered a relatively stable platform to develop on, and also to start building networks or
applications on. While details of the implementation might change at the current stage of development, it is the goal to
maintain hardware compatibility for as long as entirely possible, and the current reference setup has been determined
to provide a functional platform for many years into the future. The current Reference System Setup is as follows:

* Interface Device
A data radio consisting of a LoRa radio module, and a microcontroller with open source firmware, that can
connect to host devices via USB. It operates in either the 430, 868 or 900 MHz frequency bands. More
details can be found on the RNode Page.

* Host Device
Any computer device running Linux and Python. A Raspberry Pi with a Debian based OS is a good place
to start, but anything can be used.

* Software Stack
The most recently released Python Implementation of Reticulum, running on a Linux-based operating sys-
tem.

Note

48 Chapter 4. Understanding Reticulum

https://github.com/markqvist/rnode_firmware

Reticulum Network Stack, Release 1.0.4

To avoid confusion, it is very important to note, that the reference interface device does not use the LoRaWAN
standard, but uses a custom MAC layer on top of the plain LoRa modulation! As such, you will need a plain LoRa
radio module connected to a controller with the correct firmware. Full details on how to get or make such a device
is available on the RNode Page.

With the current reference setup, it should be possible to get on a Reticulum network for around 100$ even if you have
none of the hardware already, and need to purchase everything.

This reference setup is of course just a recommendation for getting started easily, and you should tailor it to your own
specific needs, or whatever hardware you have available.

4.6 Protocol Specifics

This chapter will detail protocol specific information that is essential to the implementation of Reticulum, but non-
critical in understanding how the protocol works on a general level. It should be treated more as a reference than as
essential reading.

4.6.1 Packet Prioritisation

Currently, Reticulum is completely priority-agnostic regarding general traffic. All traffic is handled on a first-come,
first-serve basis. Announce re-transmission and other maintenance traffic is handled according to the re-transmission
times and priorities described earlier in this chapter.

4.6.2 Interface Access Codes

Reticulum can create named virtual networks, and networks that are only accessible by knowing a preshared passphrase.
The configuration of this is detailed in the Common Interface Options section. To implement this feature, Reticulum
uses the concept of Interface Access Codes, that are calculated and verified per-packet.

An interface with a named virtual network or passphrase authentication enabled will derive a shared Ed25519 signing
identity, and for every outbound packet generate a signature of the entire packet. This signature is then inserted into
the packet as an Interface Access Code before transmission. Depending on the speed and capabilities of the interface,
the IFAC can be the full 512-bit Ed25519 signature, or a truncated version. Configured IFAC length can be inspected
for all interfaces with the rnstatus utility.

Upon receipt, the interface will check that the signature matches the expected value, and drop the packet if it does not.
This ensures that only packets sent with the correct naming and/or passphrase parameters are allowed to pass onto the
network.

4.6.3 Wire Format

== Reticulum Wire Format ======
A Reticulum packet is composed of the following fields:
[HEADER 2 bytes] [ADDRESSES 16/32 bytes] [CONTEXT 1 byte] [DATA 0-465 bytes]
* The HEADER field is 2 bytes long.
* Byte 1: [IFAC Flag], [Header Type], [Context Flag], [Propagation Type],
[Destination Type] and [Packet Type]

* Byte 2: Number of hops

* Interface Access Code field if the IFAC flag was set.
(continues on next page)

4.6. Protocol Specifics 49

https://github.com/markqvist/rnode_firmware

Reticulum Network Stack, Release 1.0.4

(continued from previous page)
* The length of the Interface Access Code can vary from

1 to 64 bytes according to physical interface
capabilities and configuration.

* The ADDRESSES field contains either 1 or 2 addresses.
* Each address is 16 bytes long.
* The Header Type flag in the HEADER field determines
whether the ADDRESSES field contains 1 or 2 addresses.
* Addresses are SHA-256 hashes truncated to 16 bytes.

* The CONTEXT field is 1 byte.
* It is used by Reticulum to determine packet context.

* The DATA field is between 0 and 465 bytes.
* It contains the packets data payload.

IFAC Flag

open ® Packet for publically accessible interface
authenticated 1 Interface authentication is included in packet
Header Types

type 1 ® Two byte header, one 16 byte address field
type 2 1 Two byte header, two 16 byte address fields
Context Flag

unset 0 The context flag is used for various types

set 1 of signalling, depending on packet context

broadcast 0
transport 1

Destination Types

single 00
group 01
plain 10
link 11

data 00
announce 01

(continues on next page)

50 Chapter 4. Understanding Reticulum

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

link request 10
proof 11

+- Packet Example -+

HEADER FIELD DESTINATION FIELDS CONTEXT FIELD DATA FIELD
| I | I
I | I I

|

01010000 00000100 [HASH1, 16 bytes] [HASH2, 16 bytes] [CONTEXT, 1 byte] [DATA]

[I I

[I +-- Hops =4

I | +------- Packet Type = DATA

|| | +-=====--- Destination Type = SINGLE

|| +--—-------- Propagation Type = TRANSPORT

[+---———om - Header Type = HEADER_2 (two byte header, two address fields)

B e Access Codes = DISABLED

+- Packet Example -+

HEADER FIELD DESTINATION FIELD CONTEXT FIELD DATA FIELD

I I I —I-
| I [|1 |
00000000 00000111 [HASH1, 16 bytes] [CONTEXT, 1 byte] [DATA]
o I

[+-- Hops =7

[l || +------- Packet Type = DATA

Il | +---=-=-=---- Destination Type = SINGLE

T ——— Propagation Type = BROADCAST

[4mmmmmmmmmmmme Header Type = HEADER_1 (two byte header, one address field)

tomm e Access Codes = DISABLED

+- Packet Example -+

HEADER FIELD IFAC FIELD DESTINATION FIELD CONTEXT FIELD DATA FIELD
I I I I -
(N |1 (I (I I

|

10000000 00000111 [IFAC, N bytes] [HASH1, 16 bytes] [CONTEXT, 1 byte] [DATA]

[I |

[+-- Hops =7

Il | | +------- Packet Type = DATA

|| | +---=--=---- Destination Type = SINGLE

|| +------=-—-- Propagation Type = BROADCAST

|+---—mm == Header Type = HEADER_1 (two byte header, one address field)

B e Access Codes = ENABLED

Size examples of different packet types

(continues on next page)

4.6. Protocol Specifics 51

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

The following table lists example sizes of various
packet types. The size listed are the complete on-
wire size counting all fields including headers,
but excluding any interface access codes.

- Path Request : 51 bytes
- Announce : 167 bytes
- Link Request : 83 Dbytes
- Link Proof : 115 bytes
- Link RTT packet : 99 bytes
- Link keepalive : 20 bytes

4.6.4 Announce Propagation Rules

The following table illustrates the rules for automatically propagating announces from one interface type to another,
for all possible combinations. For the purpose of announce propagation, the Full and Gateway modes are identical.

Full v — v — Full

AP v > Full >—/8@1— x — AP
Boundary — v — —— v — Boundary
Roaming — v —— —— v — Roaming
Full X — v — Full

AP X > AP >—— x — AP
Boundary — x — — v — Boundary
Roaming — x — —— v — Roaming
Full v — v — Full

AP v > Roaming >—1t— x — AP
Boundary — x — —— X — Boundary
Roaming — x — — X — Roaming
Full v — v — Full

AP v > Boundary >—T— x — AP
Boundary — v — — v — Boundary
Roaming — X — —— X — Roaming

See the Interface Modes section for a conceptual overview of the different interface modes, and how they are configured.

52 Chapter 4. Understanding Reticulum

Reticulum Network Stack, Release 1.0.4

4.6.5 Cryptographic Primitives

Reticulum uses a simple suite of efficient, strong and well-tested cryptographic primitives, with widely available im-
plementations that can be used both on general-purpose CPUs and on microcontrollers.

One of the primary considerations for choosing this particular set of primitives is that they can be implemented safely
with relatively few pitfalls, on practically all current computing platforms.

The primitives listed here are authoritative. Anything claiming to be Reticulum, but not using these exact primitives
is not Reticulum, and possibly an intentionally compromised or weakened clone. The utilised primitives are:

» Ed25519 for signatures

* X25519 for ECDH key exchanges

* HKDF for key derivation

* Encrypted tokens are based on the Fernet spec
— Ephemeral keys derived from an ECDH key exchange on Curve25519
— AES-256 in CBC mode with PKCS7 padding
— HMAC using SHA256 for message authentication

IVs must be generated through os.urandom() or better

No Fernet version and timestamp metadata fields
* SHA-256
* SHA-512

In the default installation configuration, the X25519, Ed25519 and AES-256-CBC primitives are provided by OpenSSL
(via the PyCA/cryptography package). The hashing functions SHA-256 and SHA-512 are provided by the standard
Python hashlib. The HKDF, HMAC, Token primitives, and the PKCS7 padding function are always provided by the
following internal implementations:

e RNS/Cryptography/HKDF.py
* RNS/Cryptography/HMAC. py
e RNS/Cryptography/Token.py
* RNS/Cryptography/PKCS7.py

Reticulum also includes a complete implementation of all necessary primitives in pure Python. If OpenSSL & PyCA are
not available on the system when Reticulum is started, Reticulum will instead use the internal pure-python primitives.
A trivial consequence of this is performance, with the OpenSSL backend being much faster. The most important
consequence however, is the potential loss of security by using primitives that has not seen the same amount of scrutiny,
testing and review as those from OpenSSL.

Using the normal RNS installation procedures, it is not possible to install Reticulum on a system without the required
OpenSSL primitives being available, and if they are not, they will be resolved and installed as a dependency. It is only
possible to use the pure-python primitives by manually specifying this, for example by using the rnspure package.

Warning

If you want to use the internal pure-python primitives, it is highly advisable that you have a good understanding
of the risks that this pose, and make an informed decision on whether those risks are acceptable to you.

4.6. Protocol Specifics 53

https://www.openssl.org/
https://github.com/pyca/cryptography
https://docs.python.org/3/library/hashlib.html

Reticulum Network Stack, Release 1.0.4

54

Chapter 4. Understanding Reticulum

CHAPTER
FIVE

COMMUNICATIONS HARDWARE

One of the truly valuable aspects of Reticulum is the ability to use it over almost any conceivable kind of commu-
nications medium. The inferface types available for configuration in Reticulum are flexible enough to cover the use
of most wired and wireless communications hardware available, from decades-old packet radio modems to modern
millimeter-wave backhaul systems.

If you already have or operate some kind of communications hardware, there is a very good chance that it will work
with Reticulum out of the box. In case it does not, it is possible to provide the necessary glue with very little effort
using for example the Pipelnterface or the TCPClientInterface in combination with code like TCP KISS Server by
simplyequipped.

It is also very easy to write and load custom interface modules into Reticulum, allowing you to communicate with more
or less anything you can think of.

While this broad support and flexibility is very useful, an abundance of options can sometimes make it difficult to know
where to begin, especially when you are starting from scratch.

This chapter will outline a few different sensible starting paths to get real-world functional wireless communications up
and running with minimal cost and effort. Two fundamental devices categories will be covered, RNodes and WiFi-based
radios. Additionally, other common options will be briefly described.

Knowing how to employ just a few different types of hardware will make it possible to build a wide range of useful
networks with little effort.

5.1 Combining Hardware Types

It is useful to combine different link and hardware types when designing and building a network. One useful design
pattern is to employ high-capacity point-to-point links based on WiFi or millimeter-wave radios (with high-gain direc-
tional antennas) for the network backbone, and using LoRa-based RNodes for covering large areas with connectivity
for client devices.

5.2 RNode

Reliable and general-purpose long-range digital radio transceiver systems are commonly either very expensive, difficult
to set up and operate, hard to source, power-hungry, or all of the above at the same time. In an attempt to alleviate this
situation, the transceiver system RNode was designed. It is important to note that RNode is not one specific device,
from one particular vendor, but an open plaform that anyone can use to build interoperable digital transceivers suited
to their needs and particular situations.

An RNode is a general purpose, interoperable, low-power and long-range, reliable, open and flexible radio communica-
tions device. Depending on its components, it can operate on many different frequency bands, and use many different
modulation schemes, but most commonly, and for the purposes of this chapter, we will limit the discussion to RNodes
using LoRa modulation in common ISM bands.

55

https://github.com/simplyequipped/tcpkissserver
https://github.com/simplyequipped

Reticulum Network Stack, Release 1.0.4

Avoid Confusion! RNodes can use LoRa as a physical-layer modulation, but it does not use, and has nothing to
do with the LoRaWAN protocol and standard, commonly used for centrally controlled IoT devices. RNodes use raw
LoRa modulation, without any additional protocol overhead. All high-level protocol functionality is handled directly
by Reticulum.

5.2.1 Creating RNodes

RNode has been designed as a system that is easy to replicate across time and space. You can put together a functioning
transceiver using commonly available components, and a few open source software tools. While you can design and
build RNodes completely from scratch, to your exact desired specifications, this chapter will explain the easiest possible
approach to creating RNodes: Using common LoRa development boards. This approach can be boiled down to two
simple steps:

1. Obtain one or more supported development boards
2. Install the RNode firmware with the automated installer

Once the firmware has been installed and provisioned by the install script, it is ready to use with any software that
supports RNodes, including Reticulum. The device can be used with Reticulum by adding an RNodelnterface to the
configuration.

5.2.2 Supported Boards and Devices

To create one or more RNodes, you will need to obtain supported development boards or completed devices. The
following boards and devices are supported by the auto-installer.

+ BME
+ PSRAM
+ SDCARD
+ 0SC

LilyGO T-Beam Supreme
* Transceiver IC Semtech SX1262 or SX1268
* Device Platform ESP32
* Manufacturer LilyGO

56 Chapter 5. Communications Hardware

https://lilygo.cn

Reticulum Network Stack, Release 1.0.4

LilyGO T-Beam
* Transceiver IC Semtech SX1262, SX1268, SX1276 or SX1278
* Device Platform ESP32
¢ Manufacturer LilyGO

T
g ;

|

g8 eee sl

LilyGO T3S3
¢ Transceiver IC Semtech SX1262, SX1268, SX1276 or SX1278
* Device Platform ESP32
* Manufacturer LilyGO

5.2. RNode

57

https://lilygo.cn
https://lilygo.cn

Reticulum Network Stack, Release 1.0.4

n

& RAK"

loT Made Easy c

oooooon

u! IE RAKA4B30H) 2
g FCC ID:2AF6B-RAK4630Y
= DevEUL AG1F08 ==
FFFEO14593

N L_F

s 25332 @

b

2

2

2
>
b

2

>

2

o

’

RAK4631-based Boards
* Transceiver IC Semtech SX1262 or SX1268
* Device Platform nRF52
e Manufacturer RAK Wireless

,J:

!

F

e,

OpenCom XL
¢ Transceiver ICs Semtech SX1262 and SX1280 (dual transceiver)

* Device Platform nRF52
¢ Manufacturer Liberated Embedded Systems

Unsigned RNode v2.x
¢ Transceiver IC Semtech SX1276 or SX1278

¢ Device Platform ESP32

58 Chapter 5. Communications Hardware

https://www.rakwireless.com
https://liberatedsystems.co.uk/

Reticulum Network Stack, Release 1.0.4

* Manufacturer unsigned.io

W TR -
sooo-ot_vupoo

LilyGO LoRa32 v2.1
* Transceiver IC Semtech SX1276 or SX1278
* Device Platform ESP32
* Manufacturer LilyGO

). @

LilyGO LoRa32 v2.0
* Transceiver IC Semtech SX1276 or SX1278
* Device Platform ESP32
* Manufacturer LilyGO

P e IO
[Cape

5.2. RNode

59

https://unsigned.io
https://lilygo.cn
https://lilygo.cn

Reticulum Network Stack, Release 1.0.4

LilyGO LoRa32 v1.0
* Transceiver IC Semtech SX1276 or SX1278
* Device Platform ESP32
¢ Manufacturer LilyGO

LILYGO® T-Keyboard

LilyGO T-Deck
* Transceiver IC Semtech SX1262 or SX1268
* Device Platform ESP32
e Manufacturer LilyGO

60 Chapter 5. Communications Hardware

https://lilygo.cn
https://lilygo.cn

Reticulum Network Stack, Release 1.0.4

LilyGO T-Echo
* Transceiver IC Semtech SX1262 or SX1268
* Device Platform nRF52
¢ Manufacturer LilyGO

0uFal=2=3836cTdc=dirty

Ftirsara.ufl HT=-n5262

& =[]

heltec.ong

Heltec T114
¢ Transceiver IC Semtech SX1262 or SX1268
¢ Device Platform nRF52

e Manufacturer Heltec Automation

gl.................

. i ELTEC

AUTOMATION

B gl

N :
‘il 000000000 OOOO®O OO

e Designed & Produced by HelTec AutoMation

Heltec LoRa32 v4.0
¢ Transceiver IC Semtech SX1262
¢ Device Platform ESP32

e Manufacturer Heltec Automation

5.2. RNode 61

https://lilygo.cn
https://heltec.org
https://heltec.org

Reticulum Network Stack, Release 1.0.4

Heltec LoRa32 v3.0
¢ Transceiver IC Semtech SX1262 or SX1268
¢ Device Platform ESP32

¢ Manufacturer Heltec Automation

Heltec LoRa32 v2.0
¢ Transceiver IC Semtech SX1276 or SX1278
¢ Device Platform ESP32

e Manufacturer Heltec Automation

5.2.3 Installation

Once you have obtained compatible boards, you can install the RNode Firmware using the RNode Configuration Utility.
If you have installed Reticulum on your system, the rnodeconf program will already be available. If not, make sure
that Python3 and pip is installed on your system, and then install Reticulum with with pip:

[pip install rns]

Once installation has completed, it is time to start installing the firmware on your devices. Run rnodeconf in auto-
install mode like so:

{rnodeconf --autoinstall]

The utility will guide you through the installation process by asking a series of questions about your hardware. Simply
follow the guide, and the utility will auto-install and configure your devices.

62 Chapter 5. Communications Hardware

https://heltec.org
https://heltec.org
https://github.com/markqvist/RNode_Firmware
https://github.com/markqvist/rnodeconfigutil

Reticulum Network Stack, Release 1.0.4

5.2.4 Usage with Reticulum

When the devices have been installed and provisioned, you can use them with Reticulum by adding the relevant interface
section to the configuration file of Reticulum. In the configuraion you can specify all interface parameters, such as serial
port and on-air parameters.

5.3 WiFi-based Hardware

It is possible to use all kinds of both short- and long-range WiFi-based hardware with Reticulum. Any kind of hardware
that fully supports bridged Ethernet over the WiFi interface will work with the Autolnterface in Reticulum. Most devices
will behave like this by default, or allow it via configuration options.

This means that you can simply configure the physical links of the WiFi based devices, and start communicating over
them using Reticulum. It is not necessary to enable any IP infrastructure such as DHCP servers, DNS or similar, as
long as at least Ethernet is available, and packets are passed transparently over the physical WiFi-based devices.

Below is a list of example WiFi (and similar) radios that work well for high capacity Reticulum links over long distances:
* Ubiquiti airMAX radios
» Ubiquiti LTU radios
* MikroTik radios

This list is by no means exhaustive, and only serves as a few examples of radio hardware that is relatively cheap while
providing long range and high capacity for Reticulum networks. As in all other cases, it is also possible for Reticulum
to co-exist with IP networks running concurrently on such devices.

5.4 Ethernet-based Hardware

Reticulum can run over any kind of hardware that can provide a switched Ethernet-based medium. This means that
anything from a plain Ethernet switch, to fiber-optic systems, to data radios with Ethernet interfaces can be used by
Reticulum.

The Ethernet medium does not need to have any IP infrastructure such as DHCP servers or routing set up, but in case
such infrastructure does exist, Reticulum will simply co-exist with.

To use Reticulum over Ethernet-based mediums, it is generally enough to use the included Autointerface. This interface
also works over any kind of virtual networking adapter, such as tun and tap devices in Linux.

5.5 Serial Lines & Devices

Using Reticulum over any kind of raw serial line is also possible with the Seriallnterface. This interface type is also
useful for using Reticulum over communications hardware that provides a serial port interface.

5.6 Packet Radio Modems

Any packet radio modem that provides a standard KISS interface over USB, serial or TCP can be used with Reticulum.
This includes virtual software modems such as FreeDV TNC and Dire Wolf.

5.3. WiFi-based Hardware 63

https://store.ui.com/collections/operator-airmax-devices
https://store.ui.com/collections/operator-ltu
https://mikrotik.com/products/group/wireless-systems
https://github.com/xssfox/freedv-tnc
https://github.com/wb2osz/direwolf

Reticulum Network Stack, Release 1.0.4

64

Chapter 5. Communications Hardware

CHAPTER
SIX

CONFIGURING INTERFACES

Reticulum supports using many kinds of devices as networking interfaces, and allows you to mix and match them in
any way you choose. The number of distinct network topologies you can create with Reticulum is more or less endless,
but common to them all is that you will need to define one or more interfaces for Reticulum to use.

The following sections describe the interfaces currently available in Reticulum, and gives example configurations for
the respective interface types.

For a high-level overview of how networks can be formed over different interface types, have a look at the Building
Networks chapter of this manual.

6.1 Custom Interfaces

In addition to the built-in interface types, Reticulum is fully extensible with custom, user- or community-supplied
interfaces, and creating custom interface modules is straightforward. Please see the custom interface example for basic
interface code to build upon.

6.2 Auto Interface

The AutoInterface enables communication with other discoverable Reticulum nodes over any kind of local Ethernet
or WiFi-based medium. Even though it uses IPv6 for peer discovery, and UDP for packet transport, it does not need
any functional IP infrastructure like routers or DHCP servers, on your physical network.

Warning

If you have firewall software running on your computer, it may block traffic required for AutoInterface to work.
If this is the case, you will have to allow UDP traffic on port 29716 and 42671.

As long as there is at least some sort of switching medium present between peers (a wired switch, a hub, a WiFi access
point or similar, or simply two devices connected directly by Ethernet cable), it will work without any configuration,
setup or intermediary devices.

For AutoInterface peer discovery to work, it’s also required that link-local IPv6 support is available on your system,
which it should be by default in all current operating systems, both desktop and mobile.

Note

Almost all current Ethernet and WiFi hardware will work without any kind of configuration or setup with
AutoInterface, but a small subset of devices turn on options that limit device-to-device communication by de-

65

Reticulum Network Stack, Release 1.0.4

fault, resulting in AutoInterface peer discovery being blocked. This issue is most commonly seen on very cheap,
ISP-supplied WiFi routers, and can sometimes be turned off in the router configuration.

#
#
#
#
#
[

#
#
#
#

[

This example demonstrates a bare-minimum setup
of an Auto Interface. It will allow communica-
tion with all other reachable devices on all
usable physical ethernet-based devices that
are available on the system.

[Default Interface]]

type = AutolInterface

enabled = yes

This example demonstrates an more specifically
configured Auto Interface, that only uses spe-
cific physical interfaces, and has a number of
other configuration options set.

[Default Interface]]

type = AutolInterface

enabled = yes

You can create multiple isolated Reticulum
networks on the same physical LAN by

specifying different Group IDs.

group_id = reticulum

You can also choose the multicast address type:
temporary (default, Temporary Multicast Address)
or permanent (Permanent Multicast Address)
multicast_address_type = permanent

You can also select specifically which
kernel networking devices to use.
devices = wlan®,ethl

Or let AutoInterface use all suitable
devices except for a list of ignored ones.
ignored_devices = tun0®,eth®

If you are connected to the Internet with IPv6, and your provider will route IPv6 multicast, you can potentially configure
the Auto Interface to globally autodiscover other Reticulum nodes within your selected Group ID. You can specify the
discovery scope by setting it to one of 1ink, admin, site, organisation or global

[

[Default Interface]]
type = AutolInterface
enabled = yes

Configure global discovery

group_id = custom_network_name
discovery_scope = global

Other configuration options

(continues on next page)

66

Chapter 6. Configuring Interfaces

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

discovery_port = 48555
data_port = 49555

6.3 Backbone Interface

The Backbone interface is a very fast and resource efficient interface type, primarily intended for interconnecting Retic-
ulum instances over many different types of mediums. It uses a kernel-event I/O backend, and can handle thousands
of interfaces and/or clients with relatively low system resource utilisation. This interface type is currently only sup-
ported on Linux and Android.

Note

The Backbone Interface is fully compatible with the TCPServerInterface and TCPClientInterface types, and
they can be used interchangably, and cross-connect with each other. On systems that support BackboneInterface,
it is generally recommended to use it, unless you need specific options or features that the TCP server and client
interfaces provide.

While the goal is to support all socket types and I/O devices provided by the underlying operating system, the initial
release only provides support for TCP connections over IPv4 and IPvo6.

For all types of connections over a BackboneInterface, Reticulum will gracefully handle intermittency, link loss,
and connections that come and go.

6.3.1 Listeners

The following examples illustrates various ways to set up BackboneInterface listeners.

This example demonstrates a backbone interface
that listens for incoming connections on the
specified IP address and port number.
[[Backbone Listener]]

type = BackboneInterface

enabled = yes

listen_on = 0.0.0.0

port = 4242

Alternatively you can bind to a specific IP
[[Backbone Listener]]

type = BackboneInterface

enabled = yes

listen_on = 10.0.0.88

port = 4242

Or a specific network device
[[Backbone Listener]]
type = BackboneInterface
enabled = yes
device = eth®
port = 4242

6.3. Backbone Interface 67

Reticulum Network Stack, Release 1.0.4

If you are using the interface on a device which has both IPv4 and IPv6 addresses available, you can use the
prefer_ipve6 option to bind to the IPv6 address:

This example demonstrates a backbone interface
listening on the IPv6 address of a specified
kernel networking device.
[[Backbone Listener]]

type = BackboneInterface

enabled = yes

prefer_ipv6 = yes

device = eth0®

port = 4242

To use the BackboneInterface over Yggdrasil, you can simply specify the Yggdrasil tun device and a listening port,
like so:

This example demonstrates a backbone interface
listening for connections over Yggdrasil.
[[Yggdrasil Backbone Interface]]

type = BackboneInterface

enabled = yes

device = tun®

port = 4343

6.3.2 Connecting Remotes

The following examples illustrates various ways to connect to remote BackboneInterface listeners. As noted above,
BackboneInterface interfaces can also connect to remote TCPServerInterface, and as such these interface types
can be used interchangably.

Here's an example of a backbone interface that
connects to a remote listener.
[[Backbone Remote]]
type = BackboneInterface
enabled = yes
remote = amsterdam.connect.reticulum.network
target_port = 4251

To connect to remotes over Yggdrasil, simply specify the target Yggdrasil IPv6 address and port, like so:

[[Yggdrasil Remote]]
type = BackbonelInterface
enabled = yes
target_host = 201:5d78:af73:5caf:adde:a79£:3278:71e5
target_port = 4343

6.4 TCP Server Interface

The TCP Server interface is suitable for allowing other peers to connect over the Internet or private IPv4 and IPv6
networks. When a TCP server interface has been configured, other Reticulum peers can connect to it with a TCP Client
interface.

68 Chapter 6. Configuring Interfaces

https://yggdrasil-network.github.io/
https://yggdrasil-network.github.io/

Reticulum Network Stack, Release 1.0.4

This example demonstrates a TCP server interface.
It will listen for incoming connections on all IP
interfaces on port 4242.
[[TCP Server Interface]]

type = TCPServerInterface

enabled = yes

listen_ip = 0.0.0.0

listen_port = 4242

Alternatively you can bind to a specific IP
[[TCP Server Interface]]

type = TCPServerInterface

enabled = yes

listen_ip = 10.0.0.88

listen_port = 4242

Or a specific network device
[[TCP Server Interface]]
type = TCPServerInterface
enabled = yes
device = eth®
listen_port = 4242

If you are using the interface on a device which has both IPv4 and IPv6 addresses available, you can use the
prefer_ipve6 option to bind to the IPv6 address:

This example demonstrates a TCP server interface.
It will listen for incoming connections on the
specified IP address and port number.

[[TCP Server Interface]]
type = TCPServerInterface
enabled = yes
prefer_ipv6 = True
device = eth0®
port = 4242

To use the TCP Server Interface over Yggdrasil, you can simply specify the Yggdrasil tun device and a listening port,
like so:

[[Yggdrasil TCP Server Interface]]
type = TCPServerInterface
enabled = yes
device = tun0
listen_port = 4343

Note

The TCP interfaces support tunneling over I12P, but to do so reliably, you must use the i2p_tunneled option:

{[[TCP Server on I2P]]

(continues on next page)

6.4. TCP Server Interface 69

https://yggdrasil-network.github.io/

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

type = TCPServerInterface
enabled = yes

listen_ip = 127.0.0.1
listen_port = 5001
i2p_tunneled = yes

In almost all cases, it is easier to use the dedicated I2PInterface, but for complete control, and using I2P routers
running on external systems, this option also exists.

6.5 TCP Client Interface

To connect to a TCP server interface, you can use the TCP client interface. Many TCP Client interfaces from different
peers can connect to the same TCP Server interface at the same time.

The TCP interface types can also tolerate intermittency in the IP link layer. This means that Reticulum will gracefully
handle IP links that go up and down, and restore connectivity after a failure, once the other end of a TCP interface
reappears.

Here's an example of a TCP Client interface. The
target_host can be a hostname or an IPv4 or IPv6 address.
[[TCP Client Interface]]

type = TCPClientInterface

enabled = yes

target_host = 127.0.0.1

target_port = 4242

To use the TCP Client Interface over Yggdrasil, simply specify the target Yggdrasil IPv6 address and port, like so:

[[Yggdrasil TCP Client Interface]]
type = TCPClientInterface
enabled = yes
target_host
target_port

201:5d78:af73:5caf:a4de:a79£:3278:71e5
4343

It is also possible to use this interface type to connect via other programs or hardware devices that expose a KISS
interface on a TCP port, for example software-based soundmodems. To do this, use the kiss_framing option:

Here's an example of a TCP Client interface that connects
to a software TNC soundmodem on a KISS over TCP port.

[L[TCP KISS Interface]]
type = TCPClientInterface
enabled = yes
kiss_framing = True
target_host = 127.0.0.1
target_port = 8001

Caution! Only use the KISS framing option when connecting to external devices and programs like soundmodems and
similar over TCP. When using the TCPClientInterface in conjunction with the TCPServerInterface you should
never enable kiss_framing, since this will disable internal reliability and recovery mechanisms that greatly improves
performance over unreliable and intermittent TCP links.

70 Chapter 6. Configuring Interfaces

https://yggdrasil-network.github.io/

Reticulum Network Stack, Release 1.0.4

Note

The TCP interfaces support tunneling over I12P, but to do so reliably, you must use the i2p_tunneled option:

[L[TCP Client over I2P]]

type = TCPClientInterface
enabled = yes

target_host = 127.0.0.1
target_port = 5001
i2p_tunneled = yes

6.6 UDP Interface

A UDP interface can be useful for communicating over IP networks, both private and the internet. It can also allow
broadcast communication over IP networks, so it can provide an easy way to enable connectivity with all other peers
on a local area network.

Warning

Using broadcast UDP traffic has performance implications, especially on WiFi. If your goal is simply to enable easy
communication with all peers in your local Ethernet broadcast domain, the Auto Interface performs much better,
and is even easier to use.

This example enables communication with other
local Reticulum peers over UDP.

[[UDP Interface]]
type = UDPInterface
enabled = yes

listen_ip = 0.0.0.0
=4

listen_port

242

forward_ip = 255.255.255.255
forward_port = 4242

#
#
#

H* R

H oW R W

The above configuration will allow communication
within the local broadcast domains of all local
IP interfaces.

Instead of specifying listen_ip, listen_port,
forward_ip and forward_port, you can also bind
to a specific network device like below.

device = eth0
port = 4242

Assuming the eth® device has the address
10.55.0.72/24, the above configuration would
be equivalent to the following manual setup.

Note that we are both listening and forwarding to
(continues on next page)

6.6.

UDP Interface 71

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

H

the broadcast address of the network segments.

listen_ip = 10.55.0.255
listen_port = 4242
forward_ip = 10.55.0.255
forward_port = 4242

HH R R W

You can of course also communicate only with
a single IP address

H H

listen_ip = 10.55.0.15
listen_port = 4242
forward_ip = 10.55.0.16
forward_port = 4242

H oW R R

6.7 12P Interface

The I2P interface lets you connect Reticulum instances over the Invisible Internet Protocol. This can be especially
useful in cases where you want to host a globally reachable Reticulum instance, but do not have access to any public
IP addresses, have a frequently changing IP address, or have firewalls blocking inbound traffic.

Using the I2P interface, you will get a globally reachable, portable and persistent I2P address that your Reticulum
instance can be reached at.

To use the I2P interface, you must have an I12P router running on your system. The easiest way to achieve this is to
download and install the latest release of the i2pd package. For more details about I2P, see the geti2p.net website.

When an I2P router is running on your system, you can simply add an I2P interface to Reticulum:

[[12P]]
type = I2PInterface

enabled = yes
connectable = yes

On the first start, Reticulum will generate a new I12P address for the interface and start listening for inbound traffic on
it. This can take a while the first time, especially if your I2P router was also just started, and is not yet well-connected
to the I2P network. When ready, you should see I2P base32 address printed to your log file. You can also inspect the
status of the interface using the rnstatus utility.

To connect to other Reticulum instances over I2P, just add a comma-separated list of I2P base32 addresses to the peers
option of the interface:

[[12P]]
type = I2PInterface
enabled = yes
connectable = yes
peers = 5Survjicpzi7q3ybztsef4iSow2ag4soktfj7zedz53s47r54jnqq.b32.1i2p

It can take anywhere from a few seconds to a few minutes to establish I2P connections to the desired peers, so Reticulum
handles the process in the background, and will output relevant events to the log.

Note

72 Chapter 6. Configuring Interfaces

https://i2pd.website
https://github.com/PurpleI2P/i2pd/releases/latest
https://geti2p.net/en/about/intro

Reticulum Network Stack, Release 1.0.4

While the I2P interface is the simplest way to use Reticulum over I2P, it is also possible to tunnel the TCP server
and client interfaces over I2P manually. This can be useful in situations where more control is needed, but requires
manual tunnel setup through the I2P daemon configuration.

It is important to note that the two methods are interchangably compatible. You can use the 12PInterface to connect
to a TCPServerInterface that was manually tunneled over I2P, for example. This offers a high degree of flexibility in
network setup, while retaining ease of use in simpler use-cases.

6.8 RNode LoRa Interface

To use Reticulum over LoRa, the RNode interface can be used, and offers full control over LoRa parameters.

Warning

Radio frequency spectrum is a legally controlled resource, and legislation varies widely around the world. It is your
responsibility to be aware of any relevant regulation for your location, and to make decisions accordingly.

Here's an example of how to add a LoRa interface
using the RNode LoRa transceiver.

[[RNode LoRa Interface]]
type = RNodelInterface

Enable interface if you want use it!
enabled = yes

Serial port for the device
port = /dev/ttyUSBO

You can connect wirelessly to the
RNode device if it supports WiFi.

Connect by IP address
port = tcp://10.0.0.1

H

Or, connect by hostname
port = tcp://rnodef3b9.local

H

It is also possible to use BLE devices
instead of wired serial ports. The
target RNode must be paired with the
host device before connecting. BLE
devices can be connected by name,

BLE MAC address or by any available.

HH R R R W W

%

Connect to specific device by name
port = ble://RNode 3B87

Or by BLE MAC address
port = ble://F4:12:73:29:4E:89

(continues on next page)

6.8. RNode LoRa Interface 73

https://unsigned.io/rnode/

Reticulum Network Stack, Release 1.0.4

Or connect to the first available,
paired device
port = ble://

Set frequency to 867.2 MHz
frequency = 867200000

Set LoRa bandwidth to 125 KHz
bandwidth = 125000

Set TX power to 7 dBm (5 mi)
txpower = 7

Select spreading factor 8. Valid
range is 7 through 12, with 7

being the fastest and 12 having
the longest range.
spreadingfactor = 8

Select coding rate 5. Valid range
is 5 throough 8, with 5 being the
fastest, and 8 the longest range.
codingrate = 5

You can configure the RNode to send
out identification on the channel with
a set interval by configuring the
following two parameters.

oW K W

id_callsign = MYCALL-0
id_interval = 600

H* W

For certain homebrew RNode interfaces
with low amounts of RAM, using packet
flow control can be useful. By default
it is disabled.

H R W W

H

flow_control = False

It is possible to limit the airtime
utilisation of an RNode by using the
following two configuration options.
The short-term limit is applied in a
window of approximately 15 seconds,
and the long-term limit is enforced
over a rolling 60 minute window. Both
options are specified in percent.

o W W W W R R

airtime_limit_long = 1.5
airtime_limit_short = 33

(continued from previous page)

74

. Configuring Interfaces

Reticulum Network Stack, Release 1.0.4

6.9 RNode Multi Interface

For RNodes that support multiple LoRa transceivers, the RNode Multi interface can be used to configure sub-interfaces
individually.

Warning

Radio frequency spectrum is a legally controlled resource, and legislation varies widely around the world. It is your
responsibility to be aware of any relevant regulation for your location, and to make decisions accordingly.

Here's an example of how to add an RNode Multi interface
using the RNode LoRa transceiver.

[[RNode Multi Interface]]
type = RNodeMultiInterface

Enable interface if you want to use it!
enabled = yes

Serial port for the device
port = /dev/ttyACMO

You can configure the RNode to send
out identification on the channel with
a set interval by configuring the
following two parameters.

H R R W

H

id_callsign = MYCALL-0
id_interval = 600

A subinterface

[[[High Datarate]]]
Subinterfaces can be enabled and disabled in of themselves
enabled = yes

Set frequency to 2.4GHz
frequency = 2400000000

Set LoRa bandwidth to 1625 KHz
bandwidth = 1625000

Set TX power to ® dBm (0.12 miW)
txpower = 0

The virtual port, only the manufacturer
or the person who wrote the board config
can tell you what it will be for which
physical hardware interface

vport = 1

Select spreading factor 5. Valid
range is 5 through 12, with 5

(continues on next page)

6.9. RNode Multi Interface 75

Reticulum Network Stack, Release 1.0.4

being the fastest and 12 having
the longest range.
spreadingfactor = 5

Select coding rate 5. Valid range
is 5 throough 8, with 5 being the
fastest, and 8 the longest range.
codingrate = 5

It is possible to limit the airtime
utilisation of an RNode by using the
following two configuration options.
The short-term limit is applied in a
window of approximately 15 seconds,
and the long-term limit is enforced
over a rolling 60 minute window. Both
options are specified in percent.

o R W W W R R

H

airtime_limit_long = 100
airtime_limit_short = 100

[[[Low Datarate]]]
Subinterfaces can be enabled and disabled in of themselves
enabled = yes

Set frequency to 865.6 MHz
frequency = 865600000

The virtual port, only the manufacturer
or the person who wrote the board config
can tell you what it will be for which
physical hardware interface

vport = 0

Set LoRa bandwidth to 125 KHz
bandwidth = 125000

Set TX power to O® dBm (0.12 miW)
txpower = 0

Select spreading factor 7. Valid
range is 5 through 12, with 5

being the fastest and 12 having
the longest range.
spreadingfactor = 7

Select coding rate 5. Valid range
is 5 throough 8, with 5 being the
fastest, and 8 the longest range.
codingrate = 5

It is possible to limit the airtime

(continued from previous page)

(continues on next page)

76

Chapter 6

. Configuring Interfaces

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

utilisation of an RNode by using the
following two configuration options.
The short-term limit is applied in a
window of approximately 15 seconds,
and the long-term limit is enforced
over a rolling 60 minute window. Both
options are specified in percent.

o R W W W R

H

airtime_limit_long = 100
airtime_limit_short = 100

6.10 Serial Interface

Reticulum can be used over serial ports directly, or over any device with a serial port, that will transparently pass data.

Useful for communicating directly over a wire-pair, or for using devices such as data radios and lasers.

[[Serial Interface]]
type = SerialInterface
enabled = yes

Serial port for the device
port = /dev/ttyUSBO

Set the serial baud-rate and other
configuration parameters.

speed = 115200

databits = 8

parity = none

stopbits = 1

6.11 Pipe Interface

Using this interface, Reticulum can use any program as an interface via stdin and stdout. This can be used to easily

create virtual interfaces, or to interface with custom hardware or other systems.

[[Pipe Interface]]
type = Pipelnterface
enabled = yes

External command to execute
command = netcat -1 5757

Optional respawn delay, in seconds
respawn_delay = 5

Reticulum will write all packets to stdin of the command option, and will continuously read and scan its stdout for
Reticulum packets. If EOF is reached, Reticulum will try to respawn the program after waiting for respawn_interval

seconds.

6.10. Serial Interface

Reticulum Network Stack, Release 1.0.4

6.12 KISS Interface

With the KISS interface, you can use Reticulum over a variety of packet radio modems and TNCs, including OpenMo-
dem. KISS interfaces can also be configured to periodically send out beacons for station identification purposes.

Warning

Radio frequency spectrum is a legally controlled resource, and legislation varies widely around the world. It is your
responsibility to be aware of any relevant regulation for your location, and to make decisions accordingly.

[[Packet Radio KISS Interface]]
type = KISSInterface
enabled = yes

Serial port for the device
port = /dev/ttyUSB1

Set the serial baud-rate and other
configuration parameters.

speed = 115200

databits = 8

parity = none

stopbits = 1

Set the modem preamble.
preamble = 150

Set the modem TX tail.
txtail = 10

Configure CDMA parameters. These
settings are reasonable defaults.
persistence = 200

slottime = 20

You can configure the interface to send
out identification on the channel with
a set interval by configuring the
following two parameters. The KISS
interface will only ID if the set
interval has elapsed since it's last
actual transmission. The interval is
configured in seconds.

This option is commented out and not
used by default.

id_callsign = MYCALL-0

id_interval = 600

HHoR W W W W W R R R W%

Whether to use KISS flow-control.

This is useful for modems that have
a small internal packet buffer, but
support packet flow control instead.

H R W W

(continues on next page)

78

. Configuring Interfaces

https://unsigned.io/openmodem/
https://unsigned.io/openmodem/

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

{ flow_control = false

6.13 AX.25 KISS Interface

If you’re using Reticulum on amateur radio spectrum, you might want to use the AX.25 KISS interface. This way,
Reticulum will automatically encapsulate it’s traffic in AX.25 and also identify your stations transmissions with your
callsign and SSID.

Only do this if you really need to! Reticulum doesn’t need the AX.25 layer for anything, and it incurs extra overhead
on every packet to encapsulate in AX.25.

A more efficient way is to use the plain KISS interface with the beaconing functionality described above.

Warning

Radio frequency spectrum is a legally controlled resource, and legislation varies widely around the world. It is your
responsibility to be aware of any relevant regulation for your location, and to make decisions accordingly.

[[Packet Radio AX.25 KISS Interface]l]
type = AX25KISSInterface

Set the station callsign and SSID
callsign = NO1CLL
ssid = 0

Enable interface if you want use it!
enabled = yes

Serial port for the device
port = /dev/ttyUSB2

Set the serial baud-rate and other
configuration parameters.

speed = 115200

databits = 8

parity = none

stopbits = 1

Set the modem preamble. A 150ms
preamble should be a reasonable
default, but may need to be

increased for radios with slow-
opening squelch and long TX/RX
turnaround

preamble = 150

Set the modem TX tail. In most

cases this should be kept as low
as possible to not waste airtime.
txtail = 10

(continues on next page)

6.13. AX.25 KISS Interface 79

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

Configure CDMA parameters. These
settings are reasonable defaults.
persistence = 200

slottime = 20

Whether to use KISS flow-control.
This is useful for modems with a
small internal packet buffer.
flow_control = false

6.14 Common Interface Options

A

number of general configuration options are available on most interfaces. These can be used to control various

aspects of interface behaviour.

* The enabled option tells Reticulum whether or not to bring up the interface. Defaults to False. For any
interface to be brought up, the enabled option must be set to True or Yes.

* The mode option allows selecting the high-level behaviour of the interface from a number of options.
— The default value is full. In this mode, all discovery, meshing and transport functionality is available.

— In the access_point (or shorthand ap) mode, the interface will operate as a network access point. In this
mode, announces will not be automatically broadcasted on the interface, and paths to destinations on the
interface will have a much shorter expiry time. This mode is useful for creating interfaces that are mostly
quiet, unless when someone is actually using them. An example of this could be a radio interface serving
a wide area, where users are expected to connect momentarily, use the network, and then disappear again.

* The outgoing option sets whether an interface is allowed to transmit. Defaults to True. If set to False or No
the interface will only receive data, and never transmit.

* The network_name option sets the virtual network name for the interface. This allows multiple separate
network segments to exist on the same physical channel or medium.

* The passphrase option sets an authentication passphrase on the interface. This option can be used in
conjunction with the network_name option, or be used alone.

* The ifac_size option allows customising the length of the Interface Authentication Codes carried by each
packet on named and/or authenticated network segments. It is set by default to a size suitable for the interface
in question, but can be set to a custom size between 8 and 512 bits by using this option. In normal usage, this
option should not be changed from the default.

* The announce_cap option lets you configure the maximum bandwidth to allocate, at any given time, to
propagating announces and other network upkeep traffic. It is configured at 2% by default, and should normally
not need to be changed. Can be set to any value between 1 and 100.

If an interface exceeds its announce cap, it will queue announces for later transmission. Reticulum
will always prioritise propagating announces from nearby nodes first. This ensures that the local
topology is prioritised, and that slow networks are not overwhelmed by interconnected fast networks.

Destinations that are rapidly re-announcing will be down-prioritised further. Trying to get “first-in-
line” by announce spamming will have the exact opposite effect: Getting moved to the back of the
queue every time a new announce from the excessively announcing destination is received.

This means that it is always beneficial to select a balanced announce rate, and not announce more
often than is actually necesarry for your application to function.

80

Chapter 6. Configuring Interfaces

Reticulum Network Stack, Release 1.0.4

The bitrate option configures the interface bitrate. Reticulum will use interface speeds reported by hardware,
or try to guess a suitable rate when the hardware doesn’t report any. In most cases, the automatically found rate
should be sufficient, but it can be configured by using the bitrate option, to set the interface speed in bits per
second.

6.15 Interface Modes

The optional mode setting is available on all interfaces, and allows selecting the high-level behaviour of the interface
from a number of modes. These modes affect how Reticulum selects paths in the network, how announces are propa-
gated, how long paths are valid and how paths are discovered.

Configuring modes on interfaces is not strictly necessary, but can be useful when building or connecting to more
complex networks. If your Reticulum instance is not running a Transport Node, it is rarely useful to configure interface
modes, and in such cases interfaces should generally be left in the default mode.

The default mode is full. In this mode, all discovery, meshing and transport functionality is activated.

The gateway mode (or shorthand gw) also has all discovery, meshing and transport functionality available, but
will additionally try to discover unknown paths on behalf of other nodes residing on the gateway interface. If

Reticulum receives a path request for an unknown destination, from a node on a gateway interface, it will try to
discover this path via all other active interfaces, and forward the discovered path to the requestor if one is found.

If you want to allow other nodes to widely resolve paths or connect to a network via an interface, it might be
useful to put it in this mode. By creating a chain of gateway interfaces, other nodes will be able to
immediately discover paths to any destination along the chain.

Please note! 1t is the interface facing the clients that must be put into gateway mode for this to work, not the
interface facing the wider network (for this, the boundary mode can be useful, though).

In the access_point (or shorthand ap) mode, the interface will operate as a network access point. In this
mode, announces will not be automatically broadcasted on the interface, and paths to destinations on the
interface will have a much shorter expiry time. In addition, path requests from clients on the access point
interface will be handled in the same way as the gateway interface.

This mode is useful for creating interfaces that remain quiet, until someone actually starts using them. An
example of this could be a radio interface serving a wide area, where users are expected to connect
momentarily, use the network, and then disappear again.

The roaming mode should be used on interfaces that are roaming (physically mobile), seen from the
perspective of other nodes in the network. As an example, if a vehicle is equipped with an external LoRa
interface, and an internal, WiFi-based interface, that serves devices that are moving with the vehicle, the
external LoRa interface should be configured as roaming, and the internal interface can be left in the default
mode. With transport enabled, such a setup will allow all internal devices to reach each other, and all other
devices that are available on the LoRa side of the network, when they are in range. Devices on the LoRa side of
the network will also be able to reach devices internal to the vehicle, when it is in range. Paths via roaming
interfaces also expire faster.

The purpose of the boundary mode is to specify interfaces that establish connectivity with network segments
that are significantly different than the one this node exists on. As an example, if a Reticulum instance is part of

6.15.

Interface Modes 81

Reticulum Network Stack, Release 1.0.4

a LoRa-based network, but also has a high-speed connection to a public Transport Node available on the
Internet, the interface connecting over the Internet should be set to boundary mode.

For a table describing the impact of all modes on announce propagation, please see the Announce Propagation Rules
section.

6.16 Announce Rate Control

The built-in announce control mechanisms and the default announce_cap option described above are sufficient most
of the time, but in some cases, especially on fast interfaces, it may be useful to control the target announce rate. Using
the announce_rate_target, announce_rate_grace and announce_rate_penalty options, this can be done on
a per-interface basis, and moderates the rate at which received announces are re-broadcasted to other interfaces.

* The announce_rate_target option sets the minimum amount of time, in seconds, that should pass between
received announces, for any one destination. As an example, setting this value to 3600 means that announces
received on this interface will only be re-transmitted and propagated to other interfaces once every hour, no
matter how often they are received.

* The optional announce_rate_grace defines the number of times a destination can violate the announce rate
before the target rate is enforced.

* The optional announce_rate_penalty configures an extra amount of time that is added to the normal rate
target. As an example, if a penalty of 7200 seconds is defined, once the rate target is enforced, the destination
in question will only have its announces propagated every 3 hours, until it lowers its actual announce rate to
within the target.

These mechanisms, in conjunction with the annouce_cap mechanisms mentioned above means that it is essential to
select a balanced announce strategy for your destinations. The more balanced you can make this decision, the easier it
will be for your destinations to make it into slower networks that many hops away. Or you can prioritise only reaching
high-capacity networks with more frequent announces.

Current statistics and information about announce rates can be viewed using the rnpath -r command.

It is important to note that there is no one right or wrong way to set up announce rates. Slower networks will naturally
tend towards using less frequent announces to conserve bandwidth, while very fast networks can support applications
that need very frequent announces. Reticulum implements these mechanisms to ensure that a large span of network
types can seamlessly co-exist and interconnect.

6.17 New Destination Rate Limiting

On public interfaces, where anyone may connect and announce new destinations, it can be useful to control the rate at
which announces for new destinations are processed.

If a large influx of announces for newly created or previously unknown destinations occur within a short amount of
time, Reticulum will place these announces on hold, so that announce traffic for known and previously established
destinations can continue to be processed without interruptions.

After the burst subsides, and an additional waiting period has passed, the held announces will be released at a slow rate,
until the hold queue is cleared. This also means, that should a node decide to connect to a public interface, announce a
large amount of bogus destinations, and then disconnect, these destination will never make it into path tables and waste
network bandwidth on retransmitted announces.

It’s important to note that the ingress control works at the level of individual sub-interfaces. As an example, this means
that one client on a TCP Server Interface cannot disrupt processing of incoming announces for other connected clients
on the same TCP Server Interface. All other clients on the same interface will still have new announces processed
without interruption.

82 Chapter 6. Configuring Interfaces

Reticulum Network Stack, Release 1.0.4

By default, Reticulum will handle this automatically, and ingress announce control will be enabled on interface where
it is sensible to do so. It should generally not be neccessary to modify the ingress control configuration, but all the
parameters are exposed for configuration if needed.

The ingress_control option tells Reticulum whether or not to enable announce ingress control on the
interface. Defaults to True.

The ic_new_time option configures how long (in seconds) an interface is considered newly spawned. Defaults
to 2*60%60 seconds. This option is useful on publicly accessible interfaces that spawn new sub-interfaces
when a new client connects.

The ic_burst_freq_new option sets the maximum announce ingress frequency for newly spawned interfaces.
Defaults to 3.5 announces per second.

The ic_burst_£freq option sets the maximum announce ingress frequency for other interfaces. Defaults to 12
announces per second.

If an interface exceeds its burst frequency, incoming announces for unknown destinations will be
temporarily held in a queue, and not processed until later.

The ic_max_held_announces option sets the maximum amount of unique announces that will be held in the
queue. Any additional unique announces will be dropped. Defaults to 256 announces.

The ic_burst_hold option sets how much time (in seconds) must pass after the burst frequency drops below
its threshold, for the announce burst to be considered cleared. Defaults to 60 seconds.

The ic_burst_penalty option sets how much time (in seconds) must pass after the burst is considered
cleared, before held announces can start being released from the queue. Defaults to 5*60 seconds.

The ic_held_release_interval option sets how much time (in seconds) must pass between releasing each
held announce from the queue. Defaults to 30 seconds.

6.17.

New Destination Rate Limiting 83

Reticulum Network Stack, Release 1.0.4

84

Chapter 6. Configuring Interfaces

CHAPTER
SEVEN

BUILDING NETWORKS

This chapter will provide you with the knowledge needed to build networks with Reticulum, which can often be easier
than using traditional stacks, since you don’t have to worry about coordinating addresses, subnets and routing for an
entire network that you might not know how will evolve in the future. With Reticulum, you can simply add more
segments to your network when it becomes necessary, and Reticulum will handle the convergence of the entire network
automatically.

7.1

Concepts & Overview

There are important points that need to be kept in mind when building networks with Reticulum:

In a Reticulum network, any node can autonomously generate as many addresses (called destinations in
Reticulum terminology) as it needs, which become globally reachable to the rest of the network. There is no
central point of control over the address space.

Reticulum was designed to handle both very small, and very large networks. While the address space can
support billions of endpoints, Reticulum is also very useful when just a few devices needs to communicate.

Low-bandwidth networks, like LoRa and packet radio, can interoperate and interconnect with much larger and
higher bandwidth networks without issue. Reticulum automatically manages the flow of information to and
from various network segments, and when bandwidth is limited, local traffic is prioritised.

Reticulum provides sender/initiator anonymity by default. There is no way to filter traffic or discriminate it
based on the source of the traffic.

All traffic is encrypted using ephemeral keys generated by an Elliptic Curve Diffie-Hellman key exchange on
Curve25519. There is no way to inspect traffic contents, and no way to prioritise or throttle certain kinds of
traffic. All transport and routing layers are thus completely agnostic to traffic type, and will pass all traffic
equally.

Reticulum can function both with and without infrastructure. When transport nodes are available, they can
route traffic over multiple hops for other nodes, and will function as a distributed cryptographic keystore. When
there is no transport nodes available, all nodes that are within communication range can still communicate.

Every node can become a transport node, simply by enabling it in it’s configuration, but there is no need for
every node on the network to be a transport node. Letting every node be a transport node will in most cases
degrade the performance and reliability of the network.

In general terms, if a node is stationary, well-connected and kept running most of the time, it is a good
candidate to be a transport node. For optimal performance, a network should contain the amount of
transport nodes that provides connectivity to the intended area / topography, and not many more than
that.

Reticulum is designed to work reliably in open, trustless environments. This means you can use it to create
open-access networks, where participants can join and leave in a free and unorganised manner. This property

85

Reticulum Network Stack, Release 1.0.4

allows an entirely new, and so far, mostly unexplored class of networked applications, where networks, and the
information flow within them can form and dissolve organically.

* You can just as easily create closed networks, since Reticulum allows you to add authentication to any interface.
This means you can restrict access on any interface type, even when using legacy devices, such as modems.
You can also mix authenticated and open interfaces on the same system. See the Common Interface Options
section of the Interfaces chapter of this manual for information on how to set up interface authentication.

Reticulum allows you to mix very different kinds of networking mediums into a unified mesh, or to keep everything
within one medium. You could build a “virtual network” running entirely over the Internet, where all nodes commu-
nicate over TCP and UDP “channels”. You could also build such a network using other already-established communi-
cations channels as the underlying carrier for Reticulum.

However, most real-world networks will probably involve either some form of wireless or direct hardline communica-
tions. To allow Reticulum to communicate over any type of medium, you must specify it in the configuration file, by
default located at ~/.reticulum/config. See the Supported Interfaces chapter of this manual for interface configu-
ration examples.

Any number of interfaces can be configured, and Reticulum will automatically decide which are suitable to use in any
given situation, depending on where traffic needs to flow.

7.2 Example Scenarios

This section illustrates a few example scenarios, and how they would, in general terms, be planned, implemented and
configured.

7.2.1 Interconnected LoRa Sites

An organisation wants to provide communication and information services to it’'s members, which are located mainly
in three separate areas. Three suitable hill-top locations are found, where the organisation can install equipment: Site
A, B and C.

Since the amount of data that needs to be exchanged between users is mainly text- based, the bandwidth requirements
are low, and LoRa radios are chosen to connect users to the network.

Due to the hill-top locations found, there is radio line-of-sight between site A and B, and also between site B and
C. Because of this, the organisation does not need to use the Internet to interconnect the sites, but purchases four
Point-to-Point WiFi based radios for interconnecting the sites.

At each site, a Raspberry Pi is installed to function as a gateway. A LoRa radio is connected to the Pi with a USB cable,
and the WiFi radio is connected to the Ethernet port of the Pi. At site B, two WiFi radios are needed to be able to reach
both site A and site C, so an extra Ethernet adapter is connected to the Pi in this location.

Once the hardware has been installed, Reticulum is installed on all the Pis, and at site A and C, one interface is added
for the LoRa radio, as well as one for the WiFi radio. At site B, an interface for the LoRa radio, and one interface for
each WiFi radio is added to the Reticulum configuration file. The transport node option is enabled in the configuration
of all three gateways.

The network is now operational, and ready to serve users across all three areas. The organisation prepares a LoRa
radio that is supplied to the end users, along with a Reticulum configuration file, that contains the right parameters for
communicating with the LoRa radios installed at the gateway sites.

Once users connect to the network, anyone will be able to communicate with anyone else across all three sites.

86 Chapter 7. Building Networks

Reticulum Network Stack, Release 1.0.4

7.2.2 Bridging Over the Internet

As the organisation grows, several new communities form in places too far away from the core network to be reachable
over WiFi links. New gateways similar to those previously installed are set up for the new communities at the new sites
D and E, but they are islanded from the core network, and only serve the local users.

After investigating the options, it is found that it is possible to install an Internet connection at site A, and an interface
on the Internet connection is configured for Reticulum on the Raspberry Pi at site A.

A member of the organisation at site D, named Dori, is willing to help by sharing the Internet connection she already
has in her home, and is able to leave a Raspberry Pi running. A new Reticulum interface is configured on her Pi,
connecting to the newly enabled Internet interface on the gateway at site A. Dori is now connected to both the nodes
at her own local site (through the hill-top LoRa gateway), and all the combined users of sites A, B and C. She then
enables transport on her node, and traffic from site D can now reach everyone at site A, B and C, and vice versa.

7.2.3 Growth and Convergence

As the organisation grows, more gateways are added to keep up with the growing user base. Some local gateways even
add VHF radios and packet modems to reach outlying users and communities that are out of reach for the LoRa radios
and WiFi backhauls.

As more sites, gateways and users are connected, the amount of coordination required is kept to a minimum. If one
community wants to add connectivity to the next one over, it can simply be done without having to involve everyone or
coordinate address space or routing tables.

With the added geographical coverage, the operators at site A one day find that the original internet bridged interfaces
are no longer utilised. The network has converged to be completely self-connected, and the sites that were once poorly
connected outliers are now an integral part of the network.

7.2. Example Scenarios 87

Reticulum Network Stack, Release 1.0.4

88

Chapter 7. Building Networks

CHAPTER
EIGHT

SUPPORT RETICULUM

You can help support the continued development of open, free and private communications systems by donating, pro-
viding feedback and contributing code and learning resources.

8.1 Donations

Donations are gratefully accepted via the following channels:

Monero:
84FpY1QbxHcgdseePYNmhTHcrgMX4nF fBYtz2GKYToqHVVhIp8Eaw1Z1EedRnKD19b3B8NiLCGVxzKV17UMmmeEsCrPyASw

Ethereum:
0x81F7B979fEa6134bA9FD5c701b3501A2e61E897a

Bitcoin:
3CPmacGm34qYVR6XWLVEJmi2aNe3PZqUuq

Liberapay:
https://liberapay.com/Reticulum/

Ko-Fi:
https://ko-fi.com/markqvist

Are certain features in the development roadmap are important to you or your organisation? Make them a reality quickly
by sponsoring their implementation.

8.2 Provide Feedback

All feedback on the usage, functioning and potential dysfunctioning of any and all components of the system is very
valuable to the continued development and improvement of Reticulum.

Absolutely no automated analytics, telemetry, error reporting or statistics is collected and reported by Reticulum under
any circumstances, so we rely on old-fashioned human feedback.

8.3 Contribute Code

Join us on the GitHub repository to report issues, suggest functionality and contribute code to Reticulum.

89

https://github.com/markqvist/reticulum

Reticulum Network Stack, Release 1.0.4

90

Chapter 8. Support Reticulum

CHAPTER
NINE

CODE EXAMPLES

A number of examples are included in the source distribution of Reticulum. You can use these examples to learn how

to write your own programs.

9.1 Minimal

The Minimal example demonstrates the bare-minimum setup required to connect to a Reticulum network from your
program. In about five lines of code, you will have the Reticulum Network Stack initialised, and ready to pass traffic

in your program.

HAARHH AR AR RRARRRHH AR RARBRAAG R AAARHRRRRRRG A AR ARRBRARGHHAS

This RNS example demonstrates a minimal setup, that
will start up the Reticulum Network Stack, generate a
new destination, and let the user send an announce.

RRR R R R AR ARRRARRR AR RRRRAARR AR RRRAAR AR BB ARRARARRRHRHS

import argparse
import sys
import RNS

Let's define an app name. We'll use this for all

destinations we create. Since this basic example

is part of a range of example utilities, we'll put

them all within the app namespace "example_utilities"
APP_NAME = "example_utilities"

This initialisation is executed when the program is started
def program_setup(configpath):

We must first initialise Reticulum

reticulum = RNS.Reticulum(configpath)

Randomly create a new identity for our example
identity = RNS.Identity()

Using the identity we just created, we create a destination.
Destinations are endpoints in Reticulum, that can be addressed
and communicated with. Destinations can also announce their
existence, which will let the network know they are reachable
and automatically create paths to them, from anywhere else

in the network.

destination = RNS.Destination(

H R R R W W

(continues on next page)

91

Reticulum Network Stack, Release 1.0.4

def

(continued from previous page)
identity,
RNS.Destination.IN,
RNS.Destination.SINGLE,
APP_NAME,
"minimalsample"

)

We configure the destination to automatically prove all

packets addressed to it. By doing this, RNS will automatically
generate a proof for each incoming packet and transmit it

back to the sender of that packet. This will let anyone that

tries to communicate with the destination know whether their

communication was received correctly.
destination.set_proof_strategy(RNS.Destination.PROVE_ALL)

Everything's ready!
Let's hand over control to the announce loop
announcelLoop (destination)

announcelLoop(destination) :
Let the user know that everything is ready
RNS.log(
"Minimal example "+
RNS.prettyhexrep(destination.hash)+
" running, hit enter to manually send an announce (Ctrl-C to quit)"

We enter a loop that runs until the users exits.
If the user hits enter, we will announce our server
destination on the network, which will let clients
know how to create messages directed towards it.
while True:
entered = input()
destination.announce()
RNS.log("Sent announce from "+RNS.prettyhexrep(destination.hash))

i
Program Startup ###AAAH#HHHHAHHRARARHHHHAARRRARBAH A
2

This part of the program gets run at startup,
and parses input from the user, and then starts
the desired program mode.

if __name__ == "__main__":
try:
parser = argparse.ArgumentParser(
description="Minimal example to start Reticulum and create a destination"
)
parser.add_argument (
(continues on next page)

92

Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)
"--config",
action="store",
default=None,
help="path to alternative Reticulum config directory",
type=str

args = parser.parse_args()

if args.config:

configarg = args.config
else:

configarg = None

program_setup(configarg)
except KeyboardInterrupt:

print("")
sys.exit(0)

This example can also be found at https://github.com/markqvist/Reticulum/blob/master/Examples/Minimal.py.

9.2 Announce

The Announce example builds upon the previous example by exploring how to announce a destination on the network,
and how to let your program receive notifications about announces from relevant destinations.

HARH AR HRHARH AR RHARA AR RAARARAARA AR AR A RA AR AR A RA AR RAARAA
This RNS example demonstrates setting up announce
callbacks, which will let an application receive a
notification when an announce relevant for it arrives
HARH AR A AR ARH AR RH AR AR RA AR AR ARH AR AR A RH AR AR AR AR SRR AR A

import argparse
import random
import sys
import RNS

Let's define an app name. We'll use this for all

destinations we create. Since this basic example

is part of a range of example utilities, we'll put

them all within the app namespace "example_utilities"
APP_NAME = "example_utilities"

We initialise two lists of strings to use as app_data
fruits = ["Peach", "Quince", "Date", "Tangerine", "Pomelo", "Carambola", "Grape"]
noble_gases = ["Helium", "Neon", "Argon", "Krypton", "Xenon", "Radon", "Oganesson'"]

This initialisation is executed when the program is started
def program_setup(configpath):
We must first initialise Reticulum

reticulum = RNS.Reticulum(configpath)
(continues on next page)

9.2. Announce 93

https://github.com/markqvist/Reticulum/blob/master/Examples/Minimal.py

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

Randomly create a new identity for our example
identity = RNS.Identity()

Using the identity we just created, we create two destinations
in the "example_utilities.announcesample" application space.

Destinations are endpoints in Reticulum, that can be addressed
and communicated with. Destinations can also announce their
existence, which will let the network know they are reachable
and automatically create paths to them, from anywhere else

in the network.

destination_1 = RNS.Destination(

identity,

RNS.Destination. IN,

RNS.Destination.SINGLE,

APP_NAME,

"announcesample",

"fruits"

o R W W W R R

destination_2 = RNS.Destination(
identity,
RNS.Destination.IN,
RNS.Destination.SINGLE,
APP_NAME,
"announcesample",
"noble_gases"

We configure the destinations to automatically prove all

packets addressed to it. By doing this, RNS will automatically
generate a proof for each incoming packet and transmit it

back to the sender of that packet. This will let anyone that

tries to communicate with the destination know whether their
communication was received correctly.
destination_1.set_proof_strategy(RNS.Destination.PROVE_ALL)
destination_2.set_proof_strategy(RNS.Destination.PROVE_ALL)

We create an announce handler and configure it to only ask for

announces from "example_utilities.announcesample.fruits".

Try changing the filter and see what happens.

announce_handler = ExampleAnnounceHandler(
aspect_filter="example_utilities.announcesample.fruits"

We register the announce handler with Reticulum
RNS.Transport.register_announce_handler (announce_handler)

Everything's ready!
Let's hand over control to the announce loop
announcelLoop(destination_1, destination_2)

(continues on next page)

94

Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

def announceloop(destination_1, destination_2):

Let the user know that everything is ready

RNS.log("Announce example running, hit enter to manually send an announce (Ctrl-C to.
—quit)™)

We enter a loop that runs until the users exits.
If the user hits enter, we will announce our server
destination on the network, which will let clients
know how to create messages directed towards it.
while True:

entered = input()

Randomly select a fruit
fruit = fruits[random.randint(®,len(fruits)-1)]

Send the announce including the app data
destination_1.announce(app_data=fruit.encode("utf-8"))
RNS.1log(

"Sent announce from "+

RNS.prettyhexrep(destination_1.hash)+

" ("+destination_1.name+")"

Randomly select a noble gas
noble_gas = noble_gases[random.randint (0, len(noble_gases)-1)]

Send the announce including the app data
destination_2.announce(app_data=noble_gas.encode("utf-8"))
RNS.1log(

"Sent announce from "+

RNS.prettyhexrep(destination_2.hash)+

" ("+destination_2.name+")"

We will need to define an announce handler class that

Reticulum can message when an announce arrives.

class ExampleAnnounceHandler:
The initialisation method takes the optional
aspect_filter argument. If aspect_filter is set to
None, all announces will be passed to the instance.
If only some announces are wanted, it can be set to
an aspect string.
def __init__(self, aspect_filter=None):

self.aspect_filter = aspect_filter

This method will be called by Reticulums Transport

system when an announce arrives that matches the

configured aspect filter. Filters must be specific,

and cannot use wildcards.

def received_announce(self, destination_hash, announced_identity, app_data):

(continues on next page)

9.2. Announce 95

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

RNS.log(
"Received an announce from "+
RNS.prettyhexrep(destination_hash)
)

if app_data:
RNS.log(
"The announce contained the following app data: "+
app_data.decode("utf-8")

RRR R R R AR RRRRARR R AR R RRRRRRAARRRRRRRRRARAA AR R RRARRARARRRHRH
Program Startup ###AAAHH#HH#HAAHRARARHHHHAARRRARARHHHH
2

This part of the program gets run at startup,
and parses input from the user, and then starts
the desired program mode.
if __name__ == "__main__":
try:
parser = argparse.ArgumentParser(
description="Reticulum example that demonstrates announces and announce,
—handlers"

)

parser.add_argument (
"--config",
action="store",
default=None,
help="path to alternative Reticulum config directory",
type=str

args = parser.parse_args()

if args.config:

configarg = args.config
else:

configarg = None

program_setup(configarg)
except KeyboardInterrupt:

print("")
sys.exit(0)

This example can also be found at https://github.com/markqvist/Reticulum/blob/master/Examples/ Announce.py.

96 Chapter 9. Code Examples

https://github.com/markqvist/Reticulum/blob/master/Examples/Announce.py

Reticulum Network Stack, Release 1.0.4

9.3 Broadcast

The Broadcast example explores how to transmit plaintext broadcast messages over the network.

HARH AR AR ARH AR AR AR AR RA AR AR ARH AR AR AR AR AR AR AR AR AR A
This RNS example demonstrates broadcasting unencrypted
information to any listening destinations.
L B e v

import sys
import argparse
import RNS

Let's define an app name. We'll use this for all

destinations we create. Since this basic example

is part of a range of example utilities, we'll put

them all within the app namespace "example_utilities"
APP_NAME = "example_utilities"

This initialisation is executed when the program is started
def program_setup(configpath, channel=None):

We must first initialise Reticulum

reticulum = RNS.Reticulum(configpath)

If the user did not select a '"channel" we use
a default one called "public_information".
This "channel" is added to the destination name-
space, so the user can select different broadcast
channels.
if channel == None:

channel = "public_information"

We create a PLAIN destination. This is an uncencrypted endpoint
that anyone can listen to and send information to.
broadcast_destination = RNS.Destination(

None,

RNS.Destination.IN,

RNS.Destination.PLAIN,

APP_NAME,

"broadcast",

channel

)

We specify a callback that will get called every time
the destination receives data.
broadcast_destination.set_packet_callback(packet_callback)

Everything's ready!
Let's hand over control to the main loop
broadcastLoop(broadcast_destination)

def packet_callback(data, packet):
Simply print out the received data

(continues on next page)

9.3. Broadcast

97

Reticulum Network Stack, Release 1.0.4

(continued from previous page)
print("")
print("Received data: "+data.decode("utf-8")+"\r\n> ", end="")
sys.stdout. flush()

def broadcastLoop(destination):
Let the user know that everything is ready
RNS.log(
"Broadcast example "+
RNS.prettyhexrep(destination.hash)+
" running, enter text and hit enter to broadcast (Ctrl-C to quit)"

We enter a loop that runs until the users exits.
If the user hits enter, we will send the information
that the user entered into the prompt.
while True:

print("> ", end="")

entered = input()

if entered != "":
data entered.encode("utf-8")
packet = RNS.Packet(destination, data)
packet.send()

HAR R R R AR ARRRAR AR AR AR RRRRAR AR AR RRAAAR LR AR ARRRAARRR AR
Program Startup ####H###HHHHRRARRHHAAAHHHH AR A AR AARHHAA
HARHHHHAAAHRARAA R A AR A A RRRRAR A A AR ARRARAR A AR RRRARA A A

This part of the program gets run at startup,
and parses input from the user, and then starts
the program.
if _name__ == "__main__":
try:
parser = argparse.ArgumentParser(
description="Reticulum example demonstrating sending and receiving broadcasts

)

parser.add_argument (
"--config",
action="store",
default=None,
help="path to alternative Reticulum config directory",
type=str

parser.add_argument (
"--channel",
action="store",
default=None,

(continues on next page)

98 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)
help="broadcast channel name",
type=str

)
args = parser.parse_args()

if args.config:

configarg = args.config
else:

configarg = None

if args.channel:

channelarg = args.channel
else:

channelarg = None

program_setup(configarg, channelarg)
except KeyboardInterrupt:

print(n ||)
sys.exit(0)

This example can also be found at https://github.com/markqvist/Reticulum/blob/master/Examples/Broadcast.py.

9.4 Echo

The Echo example demonstrates communication between two destinations using the Packet interface.

[s saaaadddssssaaadtdsd e aaaddad sttt sttt
This RNS example demonstrates a simple client/server
echo utility. A client can send an echo request to the
server, and the server will respond by proving receipt
of the packet.
P A R R R

import argparse
import sys
import RNS

Let's define an app name. We'll use this for all

destinations we create. Since this echo example

is part of a range of example utilities, we'll put

them all within the app namespace "example_utilities"
APP_NAME = "example_utilities"

RRR BB RRRRAR AR RRRRRARR TR RRRRARAA AR BB RRRRRARRRRRS
Server Part #####HHHAAHHHHHHHHHRARARHHHHAAAAAARARHHHH
B

This initialisation is executed when the users chooses

to run as a server
(continues on next page)

9.4. Echo 99

https://github.com/markqvist/Reticulum/blob/master/Examples/Broadcast.py

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

def server(configpath):

def

global reticulum

We must first initialise Reticulum
reticulum = RNS.Reticulum(configpath)

Randomly create a new identity for our echo server
server_identity = RNS.Identity()

We create a destination that clients can query. We want
to be able to verify echo replies to our clients, so we
create a "single" destination that can receive encrypted
messages. This way the client can send a request and be
certain that no-one else than this destination was able
to read it.

echo_destination = RNS.Destination(

server_identity,

RNS.Destination.IN,

RNS.Destination.SINGLE,

APP_NAME,

"echo",

"request"

H R R KR W

We configure the destination to automatically prove all

packets addressed to it. By doing this, RNS will automatically
generate a proof for each incoming packet and transmit it

back to the sender of that packet.
echo_destination.set_proof_strategy(RNS.Destination.PROVE_ALL)

Tell the destination which function in our program to
run when a packet is received. We do this so we can
print a log message when the server receives a request
echo_destination.set_packet_callback(server_callback)

Everything's ready!
Let's Wait for client requests or user input
announceLoop (echo_destination)

announcelLoop(destination) :
Let the user know that everything is ready
RNS.log(
"Echo server "+
RNS.prettyhexrep(destination.hash)+
" running, hit enter to manually send an announce (Ctrl-C to quit)"

We enter a loop that runs until the users exits.

If the user hits enter, we will announce our server
destination on the network, which will let clients
know how to create messages directed towards it.

(continues on next page)

100

Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

while True:
entered = input()
destination.announce()
RNS.log("Sent announce from "+RNS.prettyhexrep(destination.hash))

def server_callback(message, packet):
global reticulum

Tell the user that we received an echo request, and
that we are going to send a reply to the requester.
Sending the proof is handled automatically, since we
set up the destination to prove all incoming packets.
reception_stats = ""
if reticulum.is_connected_to_shared_instance:
reception_rssi = reticulum.get_packet_rssi(packet.packet_hash)
reception_snr = reticulum.get_packet_snr(packet.packet_hash)

if reception_rssi != None:
reception_stats += " [RSSI "+str(reception_rssi)+" dBm]"

if reception_snr != None:

reception_stats += " [SNR "+str(reception_snr)+" dBm]"

else:
if packet.rssi != None:
reception_stats += " [RSSI "+str(packet.rssi)+" dBm]"
if packet.snr != None:
reception_stats += " [SNR "+str(packet.snr)+" dB]"

RNS.log("Received packet from echo client, proof sent"+reception_stats)

2
Client Part #####HAHHARAHHHARAHHARAAHAAAAHHARAAHARAAAA
RAR R R R AR ARRRARR R AR ARRRRAARR AR ARRRAAAR AR BB ARRAAARRRHRHS

This initialisation is executed when the users chooses

to run as a client

def client(destination_hexhash, configpath, timeout=None):
global reticulum

We need a binary representation of the destination
hash that was entered on the command line
try:

dest_len = (RNS.Reticulum.TRUNCATED_HASHLENGTH//8)*2

if len(destination_hexhash) != dest_len:

raise ValueError/(
"Destination length is invalid, must be {hex} hexadecimal characters (
—{byte} bytes).".format(hex=dest_len, byte=dest_len//2)

(continues on next page)

9.4. Echo 101

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

)

destination_hash = bytes.fromhex(destination_hexhash)
except Exception as e:

RNS.log("Invalid destination entered. Check your input!")

RNS.log(str(e)+"\n")

sys.exit(0)

We must first initialise Reticulum
reticulum = RNS.Reticulum(configpath)

We override the loglevel to provide feedback when
an announce is received
if RNS.loglevel < RNS.LOG_INFO:

RNS.loglevel = RNS.LOG_INFO

Tell the user that the client is ready!

RNS.log(
"Echo client ready, hit enter to send echo request to
destination_hexhash+
" (Ctrl-C to quit)"

+

We enter a loop that runs until the user exits.
If the user hits enter, we will try to send an
echo request to the destination specified on the
command line.
while True:

input()

Let's first check if RNS knows a path to the destination.
If it does, we'll load the server identity and create a packet
if RNS.Transport.has_path(destination_hash):

To address the server, we need to know it's public
key, so we check if Reticulum knows this destination.
This is done by calling the '"recall" method of the
Identity module. If the destination is known, it will
return an Identity instance that can be used in
outgoing destinations.

server_identity = RNS.Identity.recall(destination_hash)

oW R W R W

lle got the correct identity instance from the
recall method, so let's create an outgoing
destination. We use the naming convention:
example_utilities.echo.request

This matches the naming we specified in the
server part of the code.

request_destination = RNS.Destination(
server_identity,

RNS.Destination.OUT,
RNS.Destination.SINGLE,

H R R R W W%

(continues on next page)

102

Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)
APP_NAME,
"echo",
"request"

The destination is ready, so let's create a packet.

We set the destination to the request_destination

that was just created, and the only data we add

1is a random hash.

echo_request = RNS.Packet(request_destination, RNS.Identity.get_random_

—~hash(Q))

Send the packet! If the packet is successfully
sent, it will return a PacketReceipt instance.
packet_receipt = echo_request.send()

If the user specified a timeout, we set this

timeout on the packet receipt, and configure

a callback function, that will get called if

the packet times out.

if timeout != None:
packet_receipt.set_timeout(timeout)
packet_receipt.set_timeout_callback(packet_timed_out)

We can then set a delivery callback on the receipt.
This will get automatically called when a proof for
this specific packet is received from the destination.
packet_receipt.set_delivery_callback(packet_delivered)

Tell the user that the echo request was sent

RNS.log("Sent echo request to "+RNS.prettyhexrep(request_destination.hash))
else:

If we do not know this destination, tell the

user to wait for an announce to arrive.

RNS.log("Destination is not yet known. Requesting path...")

RNS.log("Hit enter to manually retry once an announce is received.")

RNS.Transport.request_path(destination_hash)

This function is called when our reply destination
receives a proof packet.
def packet_delivered(receipt):

global reticulum

if receipt.status == RNS.PacketReceipt.DELIVERED:
rtt = receipt.get_rtt()
if (rtt >= 1):
rtt = round(rtt, 3)
rttstring = str(rtt)+" seconds"
else:
rtt = round(rtt*1000, 3)
rttstring = str(rtt)+" milliseconds"

(continues on next page)

9.4.

Echo 103

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

reception_stats =
if reticulum.is_connected_to_shared_instance:
reception_rssi = reticulum.get_packet_rssi(receipt.proof_packet.packet_hash)
reception_snr = reticulum.get_packet_snr(receipt.proof_packet.packet_hash)

if reception_rssi != None:
reception_stats += " [RSSI "+str(reception_rssi)+" dBm]"

if reception_snr != None:

reception_stats += " [SNR "+str(reception_snr)+" dB]"

else:
if receipt.proof_packet != None:
if receipt.proof_packet.rssi != None:
reception_stats += " [RSSI "+str(receipt.proof_packet.rssi)+" dBm]"
if receipt.proof_packet.snr != None:
reception_stats += " [SNR "+str(receipt.proof_packet.snr)+" dB]"
RNS.1log(

"Valid reply received from "+
RNS.prettyhexrep(receipt.destination.hash)+
", round-trip time is "+rttstring+
reception_stats

This function is called if a packet times out.
def packet_timed_out(receipt):
if receipt.status == RNS.PacketReceipt.FAILED:
RNS.log("Packet "+RNS.prettyhexrep(receipt.hash)+" timed out")

i
Program Startup ###AAAHHHH##HHHHRARAHHHHHAHRRRARAHHHHH
HARHHH A A AHRRARAR A AR ARRRAR AR AR AARARAR A A AR ARARAR AR

This part of the program gets run at startup,
and parses input from the user, and then starts
the desired program mode.
if __name__ == "__main_
try:
parser = argparse.ArgumentParser(description="Simple echo server and client.
—utility™)

parser.add_argument (
n_gh
"--server",
action="store_true",
help="wait for incoming packets from clients"

)

parser.add_argument (

(continues on next page)

104 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)
ey
"-—timeout",
action="store",
metavar="s",
default=None,
help="set a reply timeout in seconds",
type=float

)

parser.add_argument ("--config",
action="store",
default=None,
help="path to alternative Reticulum config directory",

type=str
)
parser.add_argument
"destination",
nargs="7",

default=None,
help="hexadecimal hash of the server destination",
type=str

)

args = parser.parse_args()

if args.server:
configarg=None
if args.config:
configarg = args.config
server(configarg)
else:
if args.config:
configarg = args.config
else:
configarg = None

if args.timeout:

timeoutarg = float(args.timeout)
else:

timeoutarg = None

if (args.destination == None):
print("")
parser.print_help()
print("")
else:
client(args.destination, configarg, timeout=timeoutarg)
except KeyboardInterrupt:
print("")
sys.exit(0)

This example can also be found at https://github.com/markqvist/Reticulum/blob/master/Examples/Echo.py.

9.4. Echo 105

https://github.com/markqvist/Reticulum/blob/master/Examples/Echo.py

Reticulum Network Stack, Release 1.0.4

9.5 Link

The Link example explores establishing an encrypted link to a remote destination, and passing traffic back and forth
over the link.

HARH AR HRHARH AR RHARA AR RAARA AR ARA AR RHARH AR AR A RA AR SRR A RAA
This RNS example demonstrates how to set up a link to
a destination, and pass data back and forth over it.
RABBARA AR ARG ARARB ARG AUARRRRSRRARG ARG ARRRGARARRA RS ARAARARAA

import os
import sys
import time
import argparse
import RNS

Let's define an app name. We'll use this for all

destinations we create. Since this echo example

is part of a range of example utilities, we'll put

them all within the app namespace "example_utilities"
APP_NAME = "example_utilities"

HAR R R R AR ARRRAA AR AR AR ARARAR AR AR AR RRAA ARG AR AARRRAA AR A AR
Server Part #HHHHHHHHHHHHHHAAAHHHHHAHHHHHHHHAAAARHHAA
RRR R R R RARRRARRR AR AR ARAARRRRRRRRRRAARRRRRRARRARARRRHRH

A reference to the latest client link that connected
latest_client_link = None

This initialisation is executed when the users chooses
to run as a server
def server(configpath):

We must first initialise Reticulum

reticulum = RNS.Reticulum(configpath)

Randomly create a new identity for our link example
server_identity = RNS.Identity()

We create a destination that clients can connect to. lWe
want clients to create links to this destination, so we
need to create a '"single" destination type.
server_destination = RNS.Destination(

server_identity,

RNS.Destination. IN,

RNS.Destination.SINGLE,

APP_NAME,

"linkexample"

)
We configure a function that will get called every time
a new client creates a link to this destination.

server_destination.set_link_established_callback(client_connected)

(continues on next page)

106 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

Everything's ready!
Let's Wait for client requests or user input
server_loop(server_destination)

def server_loop(destination):
Let the user know that everything is ready
RNS.log(
"Link example "+
RNS.prettyhexrep(destination.hash)+
" running, waiting for a connection."

)
RNS.log("Hit enter to manually send an announce (Ctrl-C to quit)'")

We enter a loop that runs until the users exits.
If the user hits enter, we will announce our server
destination on the network, which will let clients
know how to create messages directed towards it.
while True:
entered = input()
destination.announce()
RNS.log("Sent announce from "+RNS.prettyhexrep(destination.hash))

When a client establishes a link to our server
destination, this function will be called with
a reference to the link.
def client_connected(link):

global latest_client_link

RNS.log("Client connected")
link.set_link_closed_callback(client_disconnected)
link.set_packet_callback(server_packet_received)
latest_client_link = link

def client_disconnected(link):
RNS.log("Client disconnected")

def server_packet_received(message, packet):
global latest_client_link

When data is received over any active link,
it will all be directed to the last client
that connected.

text = message.decode("utf-8")
RNS.log("Received data on the link: "+text)

reply_text = "I received \""+text+"\" over the link"

reply_data = reply_text.encode("'utf-8")
RNS.Packet(latest_client_link, reply_data).send()

HARRHH A AR AR AR AR ARARAR AR AR AR ARAR AR AR AR ARRA R AT

(continues on next page)

9.5. Link

107

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

Client Part ######H#HARHHHAARAHHARAAHARAAAARRAAAARAAAH
HARARRHARAH B RRR AR RA AR RRR A RA AR RRRAARA AR RRRAARAAARARAARAHAHR

A reference to the server link
server_link = None

This initialisation is executed when the users chooses
to run as a client
def client(destination_hexhash, configpath):
We need a binary representation of the destination
hash that was entered on the command line
try:
dest_len = (RNS.Reticulum.TRUNCATED_HASHLENGTH//8)*2
if len(destination_hexhash) != dest_len:
raise ValueError(
"Destination length is invalid, must be {hex} hexadecimal characters (
—{byte} bytes).".format(hex=dest_len, byte=dest_len//2)
)

destination_hash = bytes.fromhex(destination_hexhash)
except:

RNS.log("Invalid destination entered. Check your input!\n")

sys.exit(0)

We must first initialise Reticulum
reticulum = RNS.Reticulum(configpath)

Check if we know a path to the destination
if not RNS.Transport.has_path(destination_hash):
RNS.log("Destination is not yet known. Requesting path and waiting for announce.
—to arrive...")
RNS.Transport.request_path(destination_hash)
while not RNS.Transport.has_path(destination_hash):
time.sleep(0.1)

Recall the server identity
server_identity = RNS.Identity.recall(destination_hash)

Inform the user that we'll begin connecting
RNS.log("Establishing link with server...")

When the server identity is known, we set
up a destination
server_destination = RNS.Destination(
server_identity,
RNS.Destination.OUT,
RNS.Destination.SINGLE,
APP_NAME,
"linkexample"

And create a link

(continues on next page)

108 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

def

(continued from previous page)

link = RNS.Link(server_destination)

We set a callback that will get executed

every time a packet is received over the

link
link.set_packet_callback(client_packet_received)

We'll also set up functions to inform the

user when the link is established or closed
link.set_link_established_callback(link_established)
link.set_link_closed_callback(link_closed)

Everything is set up, so let's enter a loop
for the user to interact with the example
client_loop()

client_loop():
global server_link

Wait for the link to become active
while not server_link:
time.sleep(0.1)

should_quit = False
while not should_quit:
try:
print("> ", end=" ")
text = input()

Check if we should quit the example
if text == "quit" or text == "q" or text == "exit":
should_quit = True

server_link. teardown()

If not, send the entered text over the link
if text != "":
data = text.encode("utf-8")
if len(data) <= RNS.Link.MDU:
RNS.Packet(server_link, data).send()

else:
RNS.1log(
"Cannot send this packet, the data size of "+
str(len(data))+" bytes exceeds the link packet MDU of "+
str(RNS.Link.MDU)+" bytes",
RNS.LOG_ERROR
)

except Exception as e:
RNS.log("Error while sending data over the link: "+str(e))
should_quit = True
server_link.teardown()

(continues on next page)

9.5.

Link 109

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

This function is called when a link
has been established with the server

def

link_established(link):

We store a reference to the link
instance for later use

global server_link

server_link = link

Inform the user that the server is
connected
RNS.log("Link established with server, enter some text to send, or \"quit\" to quit")

When a link is closed, we'll inform the
user, and exit the program

def

link_closed(link):
if link.teardown_reason == RNS.Link.TIMEOUT:
RNS.log("The link timed out, exiting now")
elif link.teardown_reason == RNS.Link.DESTINATION_CLOSED:
RNS.log("The link was closed by the server, exiting now")
else:
RNS.log("Link closed, exiting now")

time.sleep(1.5)
sys.exit(0)

When a packet is received over the link, we
simply print out the data.

def

client_packet_received(message, packet):
text = message.decode('utf-8")
RNS.log("Received data on the link: "+text)
print("> ", end=" ")

sys.stdout. flush()

HARBHH A A HHRRAR AR A A AR ARRRAR AR A AR ARAR AR A A A AR ARRARRA A
Program Startup ###HAAH#HHHFAHHRARARBHHHAARARARBRAHHH
HAR R R R A AR ARRRAR AR AR AR ARARARRR AR AR RRAA ARG AR A ARRRAA AR A AR

This part of the program runs at startup,

and parses input of from the user, and then
starts up the desired program mode.

if _name__ == "__main__":

try:
parser = argparse.ArgumentParser(description="Simple link example")

parser.add_argument (
n_gh
"--server",
action="store_true",
help="wait for incoming link requests from clients"

(continues on next page)

110

Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

parser.add_argument (
"--config",
action="store",
default=None,
help="path to alternative Reticulum config directory",

type=str
)
parser.add_argument (
"destination",
nargs="7",

default=None,
help="hexadecimal hash of the server destination",
type=str

args = parser.parse_args()

if args.config:

configarg = args.config
else:

configarg = None

if args.server:
server(configarg)
else:
if (args.destination == None):
print("")
parser.print_help()
print("")
else:
client(args.destination, configarg)

except KeyboardInterrupt:
print("")
sys.exit(0)

This example can also be found at https://github.com/markqvist/Reticulum/blob/master/Examples/Link.py.

9.6 Identification

The Identify example explores identifying an intiator of a link, once the link has been established.

HARH AR HRHARH AR RH AR A AR RAARARAARA AR RHARA AR AR A RA AR RAARAA
This RNS example demonstrates how to set up a link to
a destination, and identify the initiator to it's peer
HAHRB R AR HARRARARA AR AR ARARARA AR AR AR AR HRARARA AR AR AR ARARH AR

import os
import sys
import time

import argparse
(continues on next page)

9.6. Identification 111

https://github.com/markqvist/Reticulum/blob/master/Examples/Link.py

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

import RNS

Let's define an app name. We'll use this for all

destinations we create. Since this echo example

is part of a range of example utilities, we'll put

them all within the app namespace "example_utilities"
APP_NAME = "example_utilities"

HAR R R R A AR AR AR AR AR AR AR AR ARAR R R A ARAAARRA R
Server Part #####HAAAAHHRHHHARARAAARGH AR ARRAAARRAHAHS
i

A reference to the latest client link that connected
latest_client_link = None

This initialisation is executed when the users chooses
to run as a server
def server(configpath):

We must first initialise Reticulum

reticulum = RNS.Reticulum(configpath)

Randomly create a new identity for our link example
server_identity = RNS.Identity()

We create a destination that clients can connect to. We
want clients to create links to this destination, So we
need to create a '"single" destination type.
server_destination = RNS.Destination(

server_identity,

RNS.Destination.IN,

RNS.Destination.SINGLE,

APP_NAME,

"identifyexample"

)

We configure a function that will get called every time
a new client creates a link to this destination.
server_destination.set_link_established_callback(client_connected)

Everything's ready!
Let's Wait for client requests or user input
server_loop(server_destination)

def server_loop(destination):
Let the user know that everything is ready
RNS.1log(
"Link identification example "+
RNS.prettyhexrep(destination.hash)+
" running, waiting for a connection."

)

RNS.log("Hit enter to manually send an announce (Ctrl-C to quit)'")

(continues on next page)

112 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

We enter a loop that runs until the users exits.
If the user hits enter, we will announce our server
destination on the network, which will let clients
know how to create messages directed towards it.
while True:
entered = input()
destination.announce()
RNS.log("Sent announce from "+RNS.prettyhexrep(destination.hash))

When a client establishes a link to our server
destination, this function will be called with
a reference to the link.
def client_connected(link):

global latest_client_link

RNS.log("Client connected™)
link.set_link_closed_callback(client_disconnected)
link.set_packet_callback(server_packet_received)
link.set_remote_identified_callback(remote_identified)
latest_client_link = link

def client_disconnected(link):
RNS.log("Client disconnected")

def remote_identified(link, identity):
RNS.log("Remote identified as: "+str(identity))

def server_packet_received(message, packet):
global latest_client_link

Get the originating identity for display

remote_peer = "unidentified peer"

if packet.link.get_remote_identity() != None:
remote_peer = str(packet.link.get_remote_identity())

When data is received over any active link,
it will all be directed to the last client
that connected.

text = message.decode("utf-8")

RNS.log("Received data from "+remote_peer+": "+text)
reply_text = "I received \""+text+"\" over the link from "+remote_peer
reply_data = reply_text.encode("'utf-8")

RNS.Packet(latest_client_link, reply_data).send()

RAR R R R AR AR RRRAR AR AR RRARARRR AR ARRRRAAR AR BB ARRRRARRRHRHS
Client Part #H#HHHHAHAHHHHHHHAARRRARAAAHHHHHHHHAARARAAAA
HAFARBHARR R ARRHARA AR RRR A RA BB RRRAARA AR RRRTARARBRAABARARAHR

(continues on next page)

9.6. Identification 113

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

A reference to the server link
server_link = None

A reference to the client identity
client_identity = None

This initialisation is executed when the users chooses
to run as a client
def client(destination_hexhash, configpath):
global client_identity
We need a binary representation of the destination
hash that was entered on the command line
try:
dest_len = (RNS.Reticulum.TRUNCATED_HASHLENGTH//8)*2
if len(destination_hexhash) != dest_len:
raise ValueError(
"Destination length is invalid, must be {hex} hexadecimal characters (
—{byte} bytes).".format(hex=dest_len, byte=dest_len//2)
)

destination_hash = bytes.fromhex(destination_hexhash)
except:

RNS.log("Invalid destination entered. Check your input!\n")

sys.exit(0)

We must first initialise Reticulum
reticulum = RNS.Reticulum(configpath)

Create a new client identity
client_identity = RNS.Identity()
RNS.log(
"Client created new identity "+
str(client_identity)
)

Check if we know a path to the destination
if not RNS.Transport.has_path(destination_hash):
RNS.log("Destination is not yet known. Requesting path and waiting for announce.
—to arrive...")
RNS.Transport.request_path(destination_hash)
while not RNS.Transport.has_path(destination_hash):
time.sleep(0.1)

Recall the server identity
server_identity = RNS.Identity.recall(destination_hash)

Inform the user that we'll begin connecting
RNS.log("Establishing link with server...")

When the server identity is known, we set
up a destination
server_destination = RNS.Destination(

(continues on next page)

114 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

def

(continued from previous page)

server_identity,
RNS.Destination.OUT,
RNS.Destination.SINGLE,
APP_NAME,
"identifyexample"

)

And create a link
link = RNS.Link(server_destination)

We set a callback that will get executed

every time a packet is received over the

link
link.set_packet_callback(client_packet_received)

We'll also set up functions to inform the

user when the link is established or closed
link.set_link_established_callback(link_established)
link.set_link_closed_callback(link_closed)

Everything is set up, so let's enter a loop
for the user to interact with the example
client_loop()

client_loop(Q):
global server_link

Wait for the link to become active
while not server_link:
time.sleep(0.1)

should_quit = False
while not should_quit:
try:
print("> ", end=" ")
text = input()

Check if we should quit the example
if text == "quit" or text == "q" or text == "exit":
should_quit = True

server_link.teardown()

If not, send the entered text over the link
if text != "":
data = text.encode('utf-8")
if len(data) <= RNS.Link.MDU:
RNS.Packet(server_link, data).send()

else:
RNS.log(
"Cannot send this packet, the data size of "+
str(len(data))+" bytes exceeds the link packet MDU of "+
str(RNS.Link.MDU)+" bytes",
(continues on next page)
9.6. Identification 115

Reticulum Network Stack, Release 1.0.4

RNS.LOG_ERROR
)

except Exception as e:
RNS.log("Error while sending data over the link: "+str(e))
should_quit = True
server_link.teardown()

This function is called when a link
has been established with the server
def link_established(link):
We store a reference to the link
instance for later use
global server_link, client_identity
server_link = link

Inform the user that the server is
connected

RNS.log("Link established with server, identifying to remote peer..

link.identify(client_identity)

When a link is closed, we'll inform the
user, and exit the program
def link_closed(link):
if link.teardown_reason == RNS.Link.TIMEOUT:
RNS.log("The link timed out, exiting now")
elif link.teardown_reason == RNS.Link.DESTINATION_CLOSED:
RNS.log("The link was closed by the server, exiting now")
else:
RNS.log("Link closed, exiting now")

time.sleep(1.5)
sys.exit(0)

When a packet is received over the link, we

simply print out the data.

def client_packet_received(message, packet):
text = message.decode("utf-8")
RNS.log("Received data on the link: "+text)
print("> ", end=" ")
sys.stdout. flush()

HARRHH ARG AR RRARBRHH AR RARBRAAG R AR RHRRRRAR G AR RAARBRAAGHHHS
Program Startup ##AHAA##HHHFHHHRARARBHHHAARARARRRHHHH
HAR B R R H AR AA AR AR AR ARAR AR AR AR AR AR AR AR AR AR AARR A A

This part of the program runs at startup,

and parses input of from the user, and then
starts up the desired program mode.

if __name__ == "__main__":

(continued from previous page)

!

(continues on next page)

116 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)
try:
parser = argparse.ArgumentParser(description="Simple link example")

parser.add_argument (
n_gh,
"--server",
action="store_true",
help="wait for incoming link requests from clients"

)

parser.add_argument (
"--config",
action="store",
defaul t=None,
help="path to alternative Reticulum config directory",

type=str
)
parser.add_argument (
"destination",
nargs="7",

default=None,
help="hexadecimal hash of the server destination",
type=str

)

args = parser.parse_args()

if args.config:

configarg = args.config
else:

configarg = None

if args.server:
server(configarg)
else:
if (args.destination == None):
print("")
parser.print_help()
print("")
else:

client(args.destination, configarg)

except KeyboardInterrupt:

print("")
sys.exit(0)

This example can also be found at https://github.com/markqvist/Reticulum/blob/master/Examples/Identify.py.

9.6. Identification 117

https://github.com/markqvist/Reticulum/blob/master/Examples/Identify.py

Reticulum Network Stack, Release 1.0.4

9.7 Requests & Responses

The Request example explores sending requests and receiving responses.

HARH AR AR ARH AR AR AR AR RA AR AR ARH AR AR AR AR AR AR AR AR AR A
This RNS example demonstrates how to perform requests
and receive responses over a link.
L B e v

import os
import sys
import time
import random
import argparse
import RNS

Let's define an app name. We'll use this for all

destinations we create. Since this echo example

is part of a range of example utilities, we'll put

them all within the app namespace "example_utilities"
APP_NAME = "example_utilities"

HAR R R R AR ARRRAA AR AR AR ARARAR AR AR AR RRAA ARG AR AARRRAA AR A AR
Server Part #HHHHHHHHHHHHHHAAAHHHHHAHHHHHHHHAAAARHHAA
RRR R R R RARRRARRR AR AR ARAARRRRRRRRRRAARRRRRRARRARARRRHRH

A reference to the latest client link that connected
latest_client_link = None

def random_text_generator(path, data, request_id, link_id, remote_identity, requested_
—at):

RNS.log("Generating response to request "+RNS.prettyhexrep(request_id)+" on link
< "+RNS.prettyhexrep(link_id))

texts = ["They looked up", "On each full moon", "Becky was upset", "I’ll stay away.
—from it", "The pet shop stocks everything"]

return texts[random.randint(0, len(texts)-1)]

This initialisation is executed when the users chooses
to run as a server
def server(configpath):

We must first initialise Reticulum

reticulum = RNS.Reticulum(configpath)

Randomly create a new identity for our link example
server_identity = RNS.Identity()

We create a destination that clients can connect to. e
want clients to create links to this destination, so we
need to create a '"single" destination type.
server_destination = RNS.Destination(

server_identity,

RNS.Destination.IN,

RNS.Destination.SINGLE,

(continues on next page)

118 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

APP_NAME,
"requestexample"

We configure a function that will get called every time
a new client creates a link to this destination.
server_destination.set_link_established_callback(client_connected)

We register a request handler for handling incoming
requests over any established links.
server_destination.register_request_handler(

"/random/text",

response_generator = random_text_generator,

allow = RNS.Destination.ALLOW_ALL

Everything's ready!
Let's Wait for client requests or user input
server_loop(server_destination)

def server_loop(destination):
Let the user know that everything is ready
RNS.log(
"Request example "+
RNS.prettyhexrep(destination.hash)+
" running, waiting for a connection."

RNS.log("Hit enter to manually send an announce (Ctrl-C to quit)'")

We enter a loop that runs until the users exits.
If the user hits enter, we will announce our server
destination on the network, which will let clients
know how to create messages directed towards it.
while True:
entered = input()
destination.announce()
RNS.log("Sent announce from "+RNS.prettyhexrep(destination.hash))

When a client establishes a link to our server
destination, this function will be called with
a reference to the link.
def client_connected(link):

global latest_client_link

RNS.log("Client connected")
link.set_link_ closed_callback(client_disconnected)

latest_client_link = link

def client_disconnected(link):
RNS.log("Client disconnected")

(continues on next page)

9.7. Requests & Responses 119

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

HARRHH ARG RRRRARRRHHARRARBRAAG R AAAAHRRRRRR G AR RAARBRAAGHHAS
Client Part ##HHHHAHHHHHHHAAARRAAAAAAAHHHHHHAAARAAAAAA
i

A reference to the server link
server_link = None

This initialisation is executed when the users chooses
to run as a client
def client(destination_hexhash, configpath):
We need a binary representation of the destination
hash that was entered on the command line
try:
dest_len = (RNS.Reticulum.TRUNCATED_HASHLENGTH//8)*2
if len(destination_hexhash) != dest_len:
raise ValueError(
"Destination length is invalid, must be {hex} hexadecimal characters (
—{byte} bytes).".format(hex=dest_len, byte=dest_len//2)
)

destination_hash = bytes. fromhex(destination_hexhash)
except:

RNS.log("Invalid destination entered. Check your input!\n")

sys.exit(0)

We must first initialise Reticulum
reticulum = RNS.Reticulum(configpath)

Check if we know a path to the destination
if not RNS.Transport.has_path(destination_hash):
RNS.log("Destination is not yet known. Requesting path and waiting for announce.
—to arrive...")
RNS.Transport.request_path(destination_hash)
while not RNS.Transport.has_path(destination_hash):
time.sleep(0.1)

Recall the server identity
server_identity = RNS.Identity.recall(destination_hash)

Inform the user that we'll begin connecting
RNS.log("Establishing link with server...")

When the server identity is known, we set
up a destination
server_destination = RNS.Destination(
server_identity,
RNS.Destination.OUT,
RNS.Destination.SINGLE,
APP_NAME,
"requestexample"

(continues on next page)

120 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

And create a link
link = RNS.Link(server_destination)

We'll set up functions to inform the

user when the link is established or closed
link.set_link_established_callback(link_established)
link.set_link_closed_callback(link_closed)

Everything is set up, so let's enter a loop
for the user to interact with the example
client_loop()

def client_loop(Q):
global server_link

Wait for the link to become active
while not server_link:
time.sleep(0.1)

should_quit = False
while not should_quit:
try:
print("> ", end=" ")
text = input()

Check if we should quit the example
if text == "quit" or text == "q" or text == "exit":
should_quit = True

server_link.teardown()

else:
server_link.request(
"/random/text",
data = None,
response_callback = got_response,
failed_callback = request_failed
)

except Exception as e:
RNS.log("Error while sending request over the link: "+str(e))
should_quit = True
server_link. teardown()

def got_response(request_receipt):
request_id = request_receipt.request_id
response — request_receipt.response

RNS.log("Got response for request "+RNS.prettyhexrep(request_id)+": "+str(response))

def request_received(request_receipt):

(continues on next page)

9.7. Requests & Responses 121

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

RNS.log("The request "+RNS.prettyhexrep(request_receipt.request_id)+" was received.
—by the remote peer.")

def request_failed(request_receipt):
RNS.log("The request "+RNS.prettyhexrep(request_receipt.request_id)+" failed.")

This function is called when a link
has been established with the server
def link_established(link):

We store a reference to the link

instance for later use

global server_link

server_link = link

Inform the user that the server is

connected

RNS.log("Link established with server, hit enter to perform a request, or type in \
<"quit\" to quit")

When a link is closed, we'll inform the
user, and exit the program
def link_closed(link):
if link.teardown_reason == RNS.Link.TIMEOUT:
RNS.log("The link timed out, exiting now")
elif link.teardown_reason == RNS.Link.DESTINATION_CLOSED:
RNS.log("The link was closed by the server, exiting now")
else:
RNS.log("Link closed, exiting now")

time.sleep(1.5)
sys.exit(0)

HARBHH A A HHARAR AR A A AR ARRRAR AR R AR ARAR R A A AR ARRAARA A
Program Startup ###HAAH#HHHFAHHRARARBHHHAARARARBRRHHH
HAR R R R A AR ARRRAR AR AR AR ARRRAR AR AR ARRRAAAR R AR AARARRA AR A AR

This part of the program runs at startup,
and parses input of from the user, and then
starts up the desired program mode.
if _name__ == "__main__":
try:
parser = argparse.ArgumentParser(description="Simple request/response example")

parser.add_argument (
n_gh
"--server",
action="store_true",
help="wait for incoming requests from clients"

(continues on next page)

122 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

parser.add_argument (
"--config",
action="store",
default=None,
help="path to alternative Reticulum config directory",

type=str
)
parser.add_argument (
"destination",
nargs="7",

default=None,
help="hexadecimal hash of the server destination",
type=str

args = parser.parse_args()

if args.config:

configarg = args.config
else:

configarg = None

if args.server:
server(configarg)
else:
if (args.destination == None):
print("")
parser.print_help()
print("")
else:
client(args.destination, configarg)

except KeyboardInterrupt:
print("")
sys.exit(0)

This example can also be found at https://github.com/markqvist/Reticulum/blob/master/Examples/Request.py.

9.8 Channel

The Channel example explores using a Channel to send structured data between peers of a Link.

HARH AR HRHARH AR RH AR A AR RAARARAARA AR RHARA AR AR A RA AR RAARAA
This RNS example demonstrates how to set up a link to
a destination, and pass structured messages over it
using a channel.
HARH AR HRHARH AR RH AR AR A RA AR AR ARH AR AR AR A AR AR ARA AR AR AR A

import os
import sys

import time
(continues on next page)

9.8. Channel 123

https://github.com/markqvist/Reticulum/blob/master/Examples/Request.py

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

import argparse
from datetime import datetime

import RNS
from RNS.vendor import umsgpack

Let's define an app name. We'll use this for all

destinations we create. Since this echo example

is part of a range of example utilities, we'll put

them all within the app namespace "example_utilities"
APP_NAME = "example_utilities"

L
Shared Objects #HAHHHHHHAHHAHHAHHHHHHAHHHHHAAHAHHAHHHH
B

Channel data must be structured in a subclass of
MessageBase. This ensures that the channel will be able
to serialize and deserialize the object and multiplex it
with other objects. Both ends of a link will need the
same object definitions to be able to communicate over
a channel.

Note: The objects we wish to use over the channel must
be registered with the channel, and each link has a
different channel instance. See the client_connected
and link_established functions in this example to see
how message types are registered.

o O W O W R R R R W W

H

Let's make a simple message class called StringMessage
that will convey a string with a timestamp.

%

class StringMessage(RNS.MessageBase):
The MSGTYPE class variable needs to be assigned a
2 byte integer value. This identifier allows the
channel to look up your message's constructor when a
message arrives over the channel.
#
MSGTYPE must be unique across all message types we
register with the channel. MSGTYPEs >= 0xf000 are
reserved for the system.
MSGTYPE = 0x0101

The constructor of our object must be callable with
no arguments. We can have parameters, but they must
have a default assignment.
#
This is needed so the channel can create an empty
version of our message into which the incoming
message can be unpacked.
def __init__(self, data=None):

self.data = data

(continues on next page)

124 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

self.timestamp = datetime.now()

Finally, our message needs to implement functions
the channel can call to pack and unpack our message
to/from the raw packet payload. We'll use the
umsgpack package bundled with RNS. We could also use
the struct package bundled with Python if we wanted
more control over the structure of the packed bytes.

Also note that packed message objects must fit
entirely in one packet. The number of bytes
available for message payloads can be queried from
the channel using the Channel.MDU property. The
channel MDU is slightly less than the link MDU due
to encoding the message header.

HOoR OO W O W W R R R W W

The pack function encodes the message contents into
a byte stream.
def pack(self) -> bytes:

return umsgpack.packb((self.data, self.timestamp))

And the unpack function decodes a byte stream into
the message contents.
def unpack(self, raw):

self.data, self.timestamp = umsgpack.unpackb(raw)

RRR R R R AR RRRARAR AR R RRRRAARRRR AR RRRRAR AR R RRARAARAARRHRH
Server Part ####H#HHAAAHHHHHHHHHRARARHHHHAHHRRARAAHHHH
i

A reference to the latest client link that connected
latest_client_link = None

This initialisation is executed when the users chooses
to run as a server
def server(configpath):

We must first initialise Reticulum

reticulum = RNS.Reticulum(configpath)

Randomly create a new identity for our link example
server_identity = RNS.Identity()

We create a destination that clients can connect to.
want clients to create links to this destination, so
need to create a "single" destination type.
server_destination = RNS.Destination(

server_identity,

RNS.Destination.IN,

RNS.Destination.SINGLE,

(continued from previous page)

APP_NAME,
"channelexample"
(continues on next page)
9.8. Channel 125

Reticulum Network Stack, Release 1.0.4

def

(continued from previous page)

We configure a function that will get called every time
a new client creates a link to this destination.
server_destination.set_link established_callback(client_connected)

Everything's ready!
Let's Wait for client requests or user input
server_loop(server_destination)

server_loop(destination):
Let the user know that everything is ready
RNS.1log(
"Channel example "+
RNS.prettyhexrep(destination.hash)+
" running, waiting for a connection."

RNS.log("Hit enter to manually send an announce (Ctrl-C to quit)'")

We enter a loop that runs until the users exits.
If the user hits enter, we will announce our server
destination on the network, which will let clients
know how to create messages directed towards it.
while True:
entered = input()
destination.announce()
RNS.log("Sent announce from "+RNS.prettyhexrep(destination.hash))

When a client establishes a link to our server
destination, this function will be called with

a
def

def

def

reference to the link.
client_connected(link):
global latest_client_link
latest_client_link = link

RNS.log("Client connected")
link.set_link_closed_callback(client_disconnected)

Register message types and add callback to channel
channel = link.get_channel()

channel .register_message_type(StringMessage)

channel . add_message_handler(server_message_received)

client_disconnected(link):
RNS.log("Client disconnected")

server_message_received(message):

o

A message handler
@param message: An instance of a subclass of MessageBase
@return: True if message was handled

(continues on next page)

126

Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)
global latest_client_link
When a message is received over any active link,
the replies will all be directed to the last client
that connected.

In a message handler, any deserializable message

that arrives over the link's channel will be passed

to all message handlers, unless a preceding handler indicates it

has handled the message.

#

#

if isinstance(message, StringMessage):

RNS.log("Received data on the link: " + message.data + " (message created at

—str(message.timestamp) + ")")

+o

wn

reply_message = StringMessage("I received \""+message.data+"\" over the link")
latest_client_link.get_channel () .send(reply_message)

Incoming messages are sent to each message

handler added to the channel, in the order they
were added.

If any message handler returns True, the message
is considered handled and any subsequent

handlers are skipped.

return True

HARHHHHAAAHRRRRA R AR AAARRRAR A A A AR RRARAR AR ARRRAAAA A
Client Part #HHHHHHHHHHHHHAARRAAAAAHHHHHHHHAAARARAAAA
B

A reference to the server link
server_link = None

This initialisation is executed when the users chooses
to run as a client
def client(destination_hexhash, configpath):
We need a binary representation of the destination
hash that was entered on the command line
try:
dest_len = (RNS.Reticulum.TRUNCATED_HASHLENGTH//8)*2
if len(destination_hexhash) != dest_len:
raise ValueError(
"Destination length is invalid, must be {hex} hexadecimal characters (
—{byte} bytes).".format(hex=dest_len, byte=dest_len//2)
)

destination_hash = bytes. fromhex(destination_hexhash)
except:

RNS.log("Invalid destination entered. Check your input!\n")

sys.exit(0)

(continues on next page)

9.8. Channel 127

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

We must first initialise Reticulum
reticulum = RNS.Reticulum(configpath)

Check if we know a path to the destination
if not RNS.Transport.has_path(destination_hash):
RNS.log("Destination is not yet known. Requesting path and waiting for announce.
—to arrive...")
RNS.Transport.request_path(destination_hash)
while not RNS.Transport.has_path(destination_hash):
time.sleep(0.1)

Recall the server identity
server_identity = RNS.Identity.recall(destination_hash)

Inform the user that we'll begin connecting
RNS.log("Establishing link with server...")

When the server identity is known, we set
up a destination
server_destination = RNS.Destination(
server_identity,
RNS.Destination.OUT,
RNS.Destination.SINGLE,
APP_NAME,
"channelexample"

And create a link
link = RNS.Link(server_destination)

We'll also set up functions to inform the

user when the link is established or closed
link.set_link_established_callback(link_established)
link.set_link_closed_callback(link_closed)

Everything is set up, so let's enter a loop
for the user to interact with the example
client_loop()

def client_loop(Q):
global server_link

Wait for the link to become active
while not server_link:
time.sleep(0.1)

should_quit = False
while not should_quit:
try:
print("> ", end=" ")
text = input()

(continues on next page)

128 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

Check if we should quit the example
if text == "quit" or text == "q" or text == "exit":
should_quit = True

server_link.teardown()

If not, send the entered text over the link
if text != "":
message = StringMessage(text)
packed_size = len(message.pack())
channel = server_link.get_channel ()
if channel.is_ready_to_send():
if packed_size <= channel.mdu:
channel . send (message)

else:

RNS.log(
"Cannot send this packet, the data size of "+
str(packed_size)+" bytes exceeds the link packet MDU of "+
str(channel .MDU)+" bytes",
RNS.LOG_ERROR

)

else:

RNS.log("Channel is not ready to send, please wait for +

"pending messages to complete.", RNS.LOG_ERROR)

except Exception as e:
RNS.log("Error while sending data over the link: "+str(e))
should_quit = True
server_link.teardown()

This function is called when a link
has been established with the server
def link_established(link):

We store a reference to the link

instance for later use

global server_link

server_link = link

Register messages and add handler to channel
channel = link.get_channel()

channel .register_message_type(StringMessage)

channel . add_message_handler(client_message_received)

Inform the user that the server is
connected
RNS.log("Link established with server, enter some text to send, or \"quit\" to quit")

When a link is closed, we'll inform the
user, and exit the program
def link_closed(link):
if link.teardown_reason == RNS.Link.TIMEOUT:
RNS.log("The link timed out, exiting now")

(continues on next page)

9.8. Channel 129

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

elif link.teardown_reason == RNS.Link.DESTINATION_CLOSED:
RNS.log("The link was closed by the server, exiting now")
else:
RNS.log("Link closed, exiting now")

time.sleep(1.5)
sys.exit(0)

When a packet is received over the channel, we
simply print out the data.
def client_message_received(message):
if isinstance(message, StringMessage):
RNS.log("Received data on the link: " + message.data + " (message created at " +.
—.str(message.timestamp) + ")")
print("> ", end=" ")
sys.stdout. flush()

HARBHH A AR HARAR AR A A AR ARRRAR AR A AR ARAR R A A AR ARRA A
Program Startup ###HAAH#HHHFAHHRARARBHHHAARARARRRRHHH
HAR R R R A AR ARRRAR AR AR AR ARRRAR AR AR ARRRAA ARG AR AR ARRAAA AR R AR

This part of the program runs at startup,
and parses input of from the user, and then
starts up the desired program mode.
if _name__ == "__main__":
try:
parser = argparse.ArgumentParser(description="Simple channel example")

parser.add_argument (
n_gh
"--server",
action="store_true",
help="wait for incoming link requests from clients"

)

parser.add_argument (
"--config",
action="store",
default=None,
help="path to alternative Reticulum config directory",

type=str
)
parser.add_argument (
"destination",
nargs="7",

default=None,
help="hexadecimal hash of the server destination",
type=str

(continues on next page)

130 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

args = parser.parse_args()

if args.config:

configarg = args.config
else:

configarg = None

if args.server:
server(configarg)
else:
if (args.destination == None):
print("")
parser.print_help()
print(""™)
else:
client(args.destination, configarg)

except KeyboardInterrupt:
print("")
sys.exit(0)

This example can also be found at https://github.com/markqvist/Reticulum/blob/master/Examples/Channel.py.

9.9 Buffer

The Buffer example explores using buffered readers and writers to send binary data between peers of a Link.

HARH AR HRHARH AR RHARA AR RAARARAARH AR RHARA AR AR AR AR RAARAA
This RNS example demonstrates how to set up a link to
a destination, and pass binary data over it using a
channel buffer.
HARH AR A AR ARH AR RHARA AR A RA AR AR ARH AR AR A RH AR AR AR AR AR AR A
from __future__ import annotations

import os

import sys

import time

import argparse

from datetime import datetime

import RNS
from RNS.vendor import umsgpack

Let's define an app name. We'll use this for all

destinations we create. Since this echo example

is part of a range of example utilities, we'll put

them all within the app namespace "example_utilities"
APP_NAME = "example_utilities"

HAR R R R AR AARRRAR AR AR AR ARARAR AR AR AR RRAA ARG AR AARRRAA AR A AAHT
Server Part #HHHHHAHHHHHHHHHARAHHHHHAHHHHHHHHAAARHHHAA
RRR R R R AR AR RRARR R AR RRRRRRAARRRRRARRRARAR AR R RRARRARARRRHRH

(continues on next page)

9.9. Buffer 131

https://github.com/markqvist/Reticulum/blob/master/Examples/Channel.py

Reticulum Network Stack, Release 1.0.4

A

(continued from previous page)

reference to the latest client link that connected

latest_client_link = None

A

reference to the latest buffer object

latest_buffer = None

This initialisation is executed when the users chooses
to run as a server

def

def

server(configpath):
We must first initialise Reticulum
reticulum = RNS.Reticulum(configpath)

Randomly create a new identity for our example
server_identity = RNS.Identity()

We create a destination that clients can connect to. We
want clients to create links to this destination, so we
need to create a "single" destination type.
server_destination = RNS.Destination(

server_identity,

RNS.Destination. IN,

RNS.Destination.SINGLE,

APP_NAME,

"bufferexample"

We configure a function that will get called every time
a new client creates a link to this destination.
server_destination.set_link_established_callback(client_connected)

Everything's ready!
Let's Wait for client requests or user input
server_loop(server_destination)

server_loop(destination):
Let the user know that everything is ready
RNS.log(
"Link buffer example "+
RNS.prettyhexrep(destination.hash)+
" running, waiting for a connection."

RNS.log("Hit enter to manually send an announce (Ctrl-C to quit)")

We enter a loop that runs until the users exits.
If the user hits enter, we will announce our server
destination on the network, which will let clients
know how to create messages directed towards it.
while True:

entered = input()

destination.announce()

(continues on next page)

132

Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

RNS.log("Sent announce from "+RNS.prettyhexrep(destination.hash))

When a client establishes a link to our server
destination, this function will be called with
a reference to the link.
def client_connected(link):
global latest_client_link, latest_buffer
latest_client_link = link

RNS.log("Client connected")
link.set_link_closed_callback(client_disconnected)

If a new connection is received, the old reader
needs to be disconnected.
if latest_buffer:

latest_buffer.close()

Create buffer objects.

The stream_id parameter to these functions is
a bit like a file descriptor, except that it
is unique to the *receiver¥*.

In this example, both the reader and the writer
use stream_id = 0, but there are actually two
separate unidirectional streams flowing in
opposite directions.

FHOoFH R R W W W R R

channel = link.get_channel()
latest_buffer = RNS.Buffer.create_bidirectional_buffer(0, 0, channel, server_buffer_
—ready)

def client_disconnected(link):
RNS.log("Client disconnected")

def server_buffer_ready(ready_bytes: int):

i

Callback from buffer when buffer has data available

:param ready_bytes: The number of bytes ready to read

e

global latest_buffer

data = latest_buffer.read(ready_bytes)
data = data.decode('utf-8")

RNS.log("Received data over the buffer: " + data)
reply_message = "I received \""+data+"\" over the buffer"
reply_message = reply_message.encode("'utf-8")
latest_buffer.write(reply_message)
latest_buffer.flush()

(continues on next page)

9.9. Buffer 133

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

HAR R R R AR ARRRAR AR AR ARRRAR R AR AR AR RRAA ARG AR A ARRARA AR A AR
Client Part ######HHARHHHAARAHHARAAHAAAAAARRAAAARAAAH
RAR R R R RARRRARR R AR R RARRRRAARRRRRRRRRARAARRRRRARRARARRRHRH

A reference to the server link
server_link = None

A reference to the buffer object, needed to share the
object from the link connected callback to the client
loop.

buffer = None

This initialisation is executed when the users chooses
to run as a client
def client(destination_hexhash, configpath):
We need a binary representation of the destination
hash that was entered on the command line
try:
dest_len = (RNS.Reticulum.TRUNCATED_HASHLENGTH//8)*2
if len(destination_hexhash) != dest_len:
raise ValueError(
"Destination length is invalid, must be {hex} hexadecimal characters (
—{byte} bytes).".format(hex=dest_len, byte=dest_len//2)
)

destination_hash = bytes.fromhex(destination_hexhash)
except:

RNS.log("Invalid destination entered. Check your input!\n")

sys.exit(0)

We must first initialise Reticulum
reticulum = RNS.Reticulum(configpath)

Check if we know a path to the destination
if not RNS.Transport.has_path(destination_hash):
RNS.log("Destination is not yet known. Requesting path and waiting for announce.
—to arrive...")
RNS.Transport.request_path(destination_hash)
while not RNS.Transport.has_path(destination_hash):
time.sleep(0.1)

Recall the server identity
server_identity = RNS.Identity.recall(destination_hash)

Inform the user that we'll begin connecting
RNS.log("Establishing link with server...")

When the server identity is known, we set

(continues on next page)

134 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

def

(continued from previous page)

up a destination
server_destination = RNS.Destination(
server_identity,
RNS.Destination.OUT,
RNS.Destination.SINGLE,
APP_NAME,
"bufferexample"

)

And create a link
link = RNS.Link(server_destination)

We'll also set up functions to inform the

user when the link is established or closed
link.set_link_established_callback(link_established)
link.set_link closed_callback(link_closed)

Everything is set up, so let's enter a loop
for the user to interact with the example
client_loop()

client_loop():
global server_link

Wait for the link to become active
while not server_link:
time.sleep(0.1)

should_quit = False
while not should_quit:
try:
print("> ", end=" ")
text = input()

Check if we should quit the example

if text == "quit" or text == "q" or text == "exit":
should_quit = True
server_link. teardown()

else:
Otherwise, encode the text and write it to the buffer.
text = text.encode("utf-8")
buffer.write(text)
Flush the buffer to force the data to be sent.

buffer.flush(Q

except Exception as e:
RNS.log("Error while sending data over the link buffer: "+str(e))
should_quit = True
server_link.teardown()

This function is called when a link

(continues on next page)

9.9.

Buffer 135

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

has been established with the server
def link_established(link):
We store a reference to the link
instance for later use
global server_link, buffer
server_link = link

Create buffer, see server_client_connected() for

more detail about setting up the buffer.

channel = link.get_channel()

buffer = RNS.Buffer.create_bidirectional_buffer(®, 0, channel, client_buffer_ready)

Inform the user that the server is
connected
RNS.log("Link established with server, enter some text to send, or \"quit\" to quit")

When a 1link is closed, we'll inform the
user, and exit the program
def link_closed(link):
if link.teardown_reason == RNS.Link.TIMEOUT:
RNS.1log("The link timed out, exiting now")
elif link.teardown_reason == RNS.Link.DESTINATION_CLOSED:
RNS.log("The link was closed by the server, exiting now")
else:
RNS.log("Link closed, exiting now")

time.sleep(1.5)
sys.exit(0)

When the buffer has new data, read it and write it to the terminal.
def client_buffer_ready(ready_bytes: int):
global buffer
data = buffer.read(ready_bytes)
RNS.log("Received data over the link buffer: " + data.decode("utf-8"))
print("> ", end=" ")
sys.stdout. flush()

i
Program Startup ##AAAAH#HHHHHHHRARARHHHHAARARARBRH AT
HARBHH AR AAA R AR ARARAR AR AR AR AAAR AR AR ARARAR AR AT

This part of the program runs at startup,
and parses input of from the user, and then
starts up the desired program mode.
if __name__ == "__main__":
try:
parser = argparse.ArgumentParser(description="Simple buffer example')

parser.add_argument (
n_gh
"--server",
(continues on next page)

136 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

action="store_true",
help="wait for incoming link requests from clients"

)

parser.add_argument (
"--config",
action="store",
default=None,
help="path to alternative Reticulum config directory",

type=str
)
parser.add_argument (
"destination",
nargs="7",

default=None,
help="hexadecimal hash of the server destination",
type=str

)

args = parser.parse_args()

if args.config:

configarg = args.config
else:

configarg = None

if args.server:
server(configarg)
else:
if (args.destination == None):
print("")
parser.print_help()
print("")
else:
client(args.destination, configarg)

except KeyboardInterrupt:
print("")
sys.exit(0)

This example can also be found at https://github.com/markqvist/Reticulum/blob/master/Examples/Buffer.py.

9.10 Filetransfer

The Filetransfer example implements a basic file-server program that allow clients to connect and download files. The
program uses the Resource interface to efficiently pass files of any size over a Reticulum Link.

B

This RNS example demonstrates a simple filetransfer
server and client program. The server will serve a
directory of files, and the clients can 1list and

(continues on next page)

9.10. Filetransfer 137

https://github.com/markqvist/Reticulum/blob/master/Examples/Buffer.py

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

download files from the server.

Please note that using RNS Resources for large file
transfers is not recommended, since compression,
encryption and hashmap sequencing can take a long time
on systems with slow CPUs, which will probably result
in the client timing out before the resource sender
can complete preparing the resource.

If you need to transfer large files, use the Bundle
class instead, which will automatically slice the data
into chunks suitable for packing as a Resource.

HARH AR RHARH AR A RA AR A AR A RA AR AR ARH AR RR AR AR RA AR AR A RA AR A

R R R R S S R R TR R S
FHOoFH O W W W W R R R W W%

import os

import sys

import time

import threading

import argparse

import RNS

import RNS.vendor.umsgpack as umsgpack

Let's define an app name. We'll use this for all

destinations we create. Since this echo example

is part of a range of example utilities, we'll put

them all within the app namespace "example_utilities"
APP_NAME = "example_utilities"

We'll also define a default timeout, in seconds
APP_TIMEOUT = 45.0

B
Server Part #H##HHHHHHHHHHHHHHHHHHAHHHHHHHHHHHHHHHHAAA
RRR R R AR RRRRAR AR RRRRRARRR AR RRRRARAR AR R RRRRRRRARRRRAH

serve_path = None

This initialisation is executed when the users chooses
to run as a server
def server(configpath, path):

We must first initialise Reticulum

reticulum = RNS.Reticulum(configpath)

Randomly create a new identity for our file server
server_identity = RNS.Identity()

global serve_path
serve_path = path

We create a destination that clients can connect to. WWe
want clients to create links to this destination, so we
need to create a "single" destination type.

(continues on next page)

138 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

server_destination = RNS.Destination(
server_identity,
RNS.Destination.IN,
RNS.Destination.SINGLE,
APP_NAME,
"filetransfer",
"server"

)

We configure a function that will get called every time
a new client creates a link to this destination.
server_destination.set_link_established_callback(client_connected)

Everything's ready!
Let's Wait for client requests or user input
announcelLoop (server_destination)

def announceloop(destination):
Let the user know that everything is ready
RNS.log("File server "+RNS.prettyhexrep(destination.hash)+" running")
RNS.log("Hit enter to manually send an announce (Ctrl-C to quit)'")

We enter a loop that runs until the users exits.
If the user hits enter, we will announce our server
destination on the network, which will let clients
know how to create messages directed towards it.
while True:
entered = input()
destination.announce()
RNS.log("Sent announce from "+RNS.prettyhexrep(destination.hash))

Here's a convenience function for listing all files
in our served directory
def list_files():
We add all entries from the directory that are
actual files, and does not start with "."
global serve_path
return [file for file in os.listdir(serve_path) if os.path.isfile(os.path.join(serve_
—path, file)) and file[:1] != "."]

When a client establishes a link to our server
destination, this function will be called with
a reference to the link. We then send the client
a list of files hosted on the server.
def client_connected(link):

Check if the served directory still exists

if os.path.isdir(serve_path):

RNS.log("Client connected, sending file list...")

link.set_link_closed_callback(client_disconnected)

We pack a list of files for sending in a packet

(continues on next page)

9.10. Filetransfer 139

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

data = umsgpack.packb(list_files())

Check the size of the packed data
if len(data) <= RNS.Link.MDU:
If it fits in one packet, we will just
send it as a single packet over the link.
list_packet = RNS.Packet(link, data)
list_receipt = list_packet.send()
list_receipt.set_timeout (APP_TIMEOUT)
list_receipt.set_delivery_callback(list_delivered)
list_receipt.set_timeout_callback(list_timeout)
else:
RNS.log("Too many files in served directory!", RNS.LOG_ERROR)
RNS.log("You should implement a function to split the filelist over multiple.
—packets.", RNS.LOG_ERROR)
RNS.log("Hint: The client already supports it :)", RNS.LOG_ERROR)

After this, we're just going to keep the link
open until the client requests a file. We'll
configure a function that get's called when
the client sends a packet with a file request.
link.set_packet_callback(client_request)
else:
RNS.log("Client connected, but served path no longer exists!", RNS.LOG_ERROR)
link. teardown()

def client_disconnected(link):
RNS.log("Client disconnected")

def client_request(message, packet):
global serve_path

try:

filename = message.decode("utf-8")
except Exception as e:

filename = None

if filename in list_files():
try:
If we have the requested file, we'll
read it and pack it as a resource
RNS.log("Client requested \""+filename+"\"")
file = open(os.path.join(serve_path, filename), "rb")

file_resource = RNS.Resource(
file,
packet.link,
callback=resource_sending_concluded

)

file_resource.filename = filename
except Exception as e:

(continues on next page)

140 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)
If somethign went wrong, we close
the link
RNS.log("Error while reading file \""+filename+"\"", RNS.LOG_ERROR)
packet.link.teardown()
raise e
else:

If we don't have it, we close the link

RNS.log("Client requested an unknown file")

packet.link.teardown()

This function is called on the server when a
resource transfer concludes.
def resource_sending_concluded(resource):
if hasattr(resource, "filename'):
name = resource.filename
else:
name = "resource"

if resource.status == RNS.Resource.COMPLETE:
RNS.log("Done sending \""+name+"\" to client")

elif resource.status == RNS.Resource.FAILED:
RNS.log("Sending \""+name+"\" to client failed")

def list_delivered(receipt):
RNS.log("The file list was received by the client")

def list_timeout(receipt):
RNS.log("Sending list to client timed out, closing this link")
link = receipt.destination
link. teardown()

HAR R R R AR RRRAR AR AR A RRARARRR AR AR RRAAAR AR ARARAARRR AR
Client Part ######HHARHHHAARAHHARAAHAAAAAARRAAAARAAAH
RRR BB RRRRRR AR RRRRRARRRRRRRRRARAR AR R RRRRRRRARRRRRS

We store a global list of files available on the server
server_files = [1

A reference to the server link
server_link = None

And a reference to the current download
current_download None
current_filename = None

Variables to store download statistics
download_started =
download_finished =
download_time =
transfer_size =
file_size =

(= I — R — R —]

(continues on next page)

9.10. Filetransfer 141

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

This initialisation is executed when the users chooses
to run as a client
def client(destination_hexhash, configpath):
We need a binary representation of the destination
hash that was entered on the command line
try:
dest_len = (RNS.Reticulum.TRUNCATED_HASHLENGTH//8)*2
if len(destination_hexhash) != dest_len:
raise ValueError/(
"Destination length is invalid, must be {hex} hexadecimal characters (
—{byte} bytes).".format(hex=dest_len, byte=dest_len//2)
)

destination_hash = bytes.fromhex(destination_hexhash)
except:

RNS.log("Invalid destination entered. Check your input!\n")

sys.exit(0)

We must first initialise Reticulum
reticulum = RNS.Reticulum(configpath)

Check if we know a path to the destination
if not RNS.Transport.has_path(destination_hash):
RNS.log("Destination is not yet known. Requesting path and waiting for announce.
—to arrive...")
RNS.Transport.request_path(destination_hash)
while not RNS.Transport.has_path(destination_hash):
time.sleep(0.1)

Recall the server identity
server_identity = RNS.Identity.recall(destination_hash)

Inform the user that we'll begin connecting
RNS.log("Establishing link with server...")

When the server identity is known, we set
up a destination
server_destination = RNS.Destination(
server_identity,
RNS.Destination.OUT,
RNS.Destination.SINGLE,
APP_NAME,
"filetransfer",
"server"

We also want to automatically prove incoming packets
server_destination.set_proof_strategy(RNS.Destination.PROVE_ALL)

And create a link

(continues on next page)

142 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

link = RNS.Link(server_destination)

We expect any normal data packets on the link
to contain a list of served files, so we set
a callback accordingly
link.set_packet_callback(filelist_received)

We'll also set up functions to inform the

user when the link is established or closed
link.set_link_established_callback(link_established)
link.set_link_closed_callback(link_closed)

And set the link to automatically begin

downloading advertised resources
link.set_resource_strategy(RNS.Link.ACCEPT_ALL)
link.set_resource_started_callback(download_began)
link.set_resource_concluded_callback(download_concluded)

menu ()

Requests the specified file from the server
def download(filename):
global server_link, menu_mode, current_filename, transfer_size, download_started
current_filename = filename
download_started = 0
transfer_size 0

We just create a packet containing the

requested filename, and send it down the

link. We also specify we don't need a

packet receipt.

request_packet = RNS.Packet(server_link, filename.encode("utf-8"), create_
—.receipt=False)

request_packet.send()

print("")
print (("Requested \""+filename+"\" from server, waiting for download to begin..."))
menu_mode = "download_started"

This function runs a simple menu for the user
to select which files to download, or quit
menu_mode = None
def menuQ):

global server_files, server_link

Wait until we have a filelist

while len(server_files) ==

time.sleep(0.1)
RNS.log("Ready!"
time.sleep(0.5)

global menu_mode
menu_mode = "main"

(continues on next page)

9.10. Filetransfer 143

Reticulum Network Stack, Release 1.0.4

(continued from previous page)
should_quit = False
while (not should_quit):
print_menu()

while not menu_mode == "main":
Wait
time.sleep(0.25)

user_input = input()

if user_input == "g" or user_input == "quit" or user_input == "exit":
should_quit = True
print("")

else:

if user_input in server_files:
download(user_input)
else:
try:
if 0 <= int(user_input) < len(server_files):
download(server_files[int(user_input)])
except:
pass

if should_quit:
server_link.teardown()

Prints out menus or screens for the
various states of the client program.
It's simple and quite uninteresting.
I won't go into detail here. Just
strings basically.
def print_menu():
global menu_mode, download_time, download_started, download_finished, transfer_size,..
—file_size

if menu_mode == "main":
clear_screen()
print_filelist(Q)
print("")
print("Select a file to download by entering name or number, or g to quit')
print(("> "), end=" ")

elif menu_mode == "download_started":
download_began = time.time()
while menu_mode == "download_started":

time.sleep(0.1)

if time.time() > download_began+APP_TIMEOUT:
print("The download timed out")
time.sleep(1)
server_link. teardown()

if menu_mode == "downloading":
print("Download started")
print(" n)

(continues on next page)

144 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

while menu_mode == "downloading":
global current_download
percent = round(current_download.get_progress() * 100.0, 1)
print(("\rProgress: "+str(percent)+" % "), end=' ')
sys.stdout. flush()
time.sleep(0.1)

if menu_mode == "save_error":
print (("\rProgress: 100.0 %"), end=' ')
sys.stdout. flush()
print("")
print("Could not write downloaded file to disk")
current_download.status = RNS.Resource.FAILED

menu_mode = "download_concluded"

if menu_mode == "download_concluded":
if current_download.status == RNS.Resource.COMPLETE:
print (("\rProgress: 100.0 %"), end=' ')
sys.stdout.flush()

Print statistics

hours, rem = divmod(download_time, 3600)

minutes, seconds = divmod(rem, 60)

timestring = "{:0>2}:{:0>2}:{:05.2f}".format(int (hours),int(minutes),seconds)

print(""™)

print("")

print("--- Statistics ----- i)

print("\tTime taken : "+timestring)

print("\tFile size : "+size_str(file_size))

print("\tData transferred : "+size_str(transfer_size))

print("\tEffective rate : "+size_str(file_size/download_time, suffix='b')+
<"/s™)

print("\tTransfer rate : "+size_str(transfer_size/download_time, suffix='b
< ")+"/s™)

print("")

print("The download completed! Press enter to return to the menu.")

print("")

input()

else:

print("")

print("The download failed! Press enter to return to the menu.")

input()

current_download = None
menu_mode = "main"
print_menu()

This function prints out a list of files
on the connected server.
def print_filelist(Q):

global server_files

(continues on next page)

9.10. Filetransfer 145

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

print("Files on server:")
for index,file in enumerate(server_files):
print ("\t("+str(index)+")\t"+file)

def filelist_received(filelist_data, packet):
global server_files, menu_mode
try:
Unpack the list and extend our
local list of available files
filelist = umsgpack.unpackb(filelist_data)
for file in filelist:
if not file in server_files:
server_files.append(file)

If the menu is already visible,
we'll update it with what was
just received
if menu_mode == "main":
print_menu()
except:
RNS.log("Invalid file list data received, closing link")
packet.link.teardown()

This function is called when a link
has been established with the server
def link_established(link):

We store a reference to the link

instance for later use

global server_link

server_link = link

Inform the user that the server is

connected

RNS.log("Link established with server")
RNS.log("Waiting for filelist...")

And set up a small job to check for

a potential timeout in receiving the

file list

thread = threading.Thread(target=filelist_timeout_job, daemon=True)
thread.start()

This job just sleeps for the specified
time, and then checks if the file list
was received. If not, the program will
exit.
def filelist_timeout_job():

time.sleep (APP_TIMEOUT)

global server_files
if len(server_files) == 0:
RNS.log("Timed out waiting for filelist, exiting")

(continues on next page)

146 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

sys.exit(0)

When a link is closed, we'll inform the
user, and exit the program
def link_closed(link):
if link.teardown_reason == RNS.Link.TIMEOUT:
RNS.log("The link timed out, exiting now")
elif link.teardown_reason == RNS.Link.DESTINATION_CLOSED:
RNS.log("The link was closed by the server, exiting now")
else:
RNS.log("Link closed, exiting now")

time.sleep(1.5)
sys.exit(0)

When RNS detects that the download has

started, we'll update our menu state

so the user can be shown a progress of

the download.

def download_began(resource):
global menu_mode, current_download, download_started, transfer_size, file_size
current_download = resource

if download_started == 0:
download_started = time.time()

transfer_size += resource.size
file_size = resource.total_size

menu_mode = "downloading"

When the download concludes, successfully
or not, we'll update our menu state and
inform the user about how it all went.
def download_concluded(resource):
global menu_mode, current_filename, download_started, download_finished, download_
—time
download_finished = time.time()
download_time = download_finished - download_started

saved_filename = current_filename

if resource.status == RNS.Resource.COMPLETE:
counter = 0
while os.path.isfile(saved_filename):
counter += 1
saved_filename = current_filename+"."+str(counter)

try:
file = open(saved_filename, "wb")
file.write(resource.data.read())

(continues on next page)

9.10. Filetransfer

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

file.close()

menu_mode = "download_concluded"
except:
menu_mode = "save_error"
else:
menu_mode = "download_concluded"

A convenience function for printing a human-

readable file size

def size_str(num, suffix='B'):
units = ["",'Ki','Mi","'Gi",'Ti",'Pi',"Ei","'Zi"]
last_unit = 'Yi'

if suffix == 'b':

num *= 8
units = [ll’lKl’lMl’lGl’ITI’IPI,IEI’IZIJ
last_unit = 'Y'

for unit in units:
if abs(num) < 1024.0:
return "%3.2f %s%s" % (num, unit, suffix)
num /= 1024.0
return "%.2f %s%s" % (num, last_unit, suffix)

A convenience function for clearing the screen
def clear_screen():
os.system('cls' if os.name=='nt' else 'clear')

HARHHHHHHHHRRRAA R AR AR ARRRAR A A AR ARRARAR A AARRRARA A A
Program Startup ###HAAH#HHHFHHHRARARBHHHAARARARBRR AT
B

This part of the program runs at startup,
and parses input of from the user, and then
starts up the desired program mode.
if _name__ == "__main__":
try:
parser = argparse.ArgumentParser (
description="Simple file transfer server and client utility"

)

parser.add_argument (
" mn
-S ,
"--serve",
action="store",
metavar="dir",

help="serve a directory of files to clients"

parser.add_argument (
"--config",
action="store",

(continues on next page)

148 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

default=None,
help="path to alternative Reticulum config directory",

type=str
)
parser.add_argument (
"destination",
nargs="7",

default=None,
help="hexadecimal hash of the server destination",
type=str

)

args = parser.parse_args()

if args.config:

configarg = args.config
else:

configarg = None

if args.serve:
if os.path.isdir(args.serve):
server(configarg, args.serve)
else:
RNS.log("The specified directory does not exist")
else:
if (args.destination == None):
print("")
parser.print_help()
print("")
else:
client(args.destination, configarg)

except KeyboardInterrupt:
print("")
sys.exit(0)

This example can also be found at https://github.com/markqvist/Reticulum/blob/master/Examples/Filetransfer.py.

9.11 Custom Interfaces

The Examplelnterface demonstrates creating custom interfaces for Reticulum. Any number of custom interfaces can
be loaded and utilised by Reticulum, and will be fully on-par with natively included interfaces, including all supported
interface modes and common configuration options.

This example illustrates creating a custom interface
definition, that can be loaded and used by Reticulum at
runtime. Any number of custom interfaces can be created
and loaded. To use the interface place it in the folder
~/.reticulum/interfaces, and add an interface entry to
your Reticulum configuration file similar to this:

H R R W W

(continues on next page)

9.11. Custom Interfaces 149

https://github.com/markqvist/Reticulum/blob/master/Examples/Filetransfer.py

Reticulum Network Stack, Release 1.0.4

#
#
#
#
#
#
#
#
#

[[Example Custom Interface]]

type = ExampleInterface
enabled = no

mode = gateway

port = /dev/ttyUSBO
speed = 115200
databits = 8

parity = none

stopbits = 1

from time import sleep
import sys

import threading
import time

This HDLC helper class is used by the interface
to delimit and packetize data over the physical
medium - in this case a serial connection.
class HDLCQ):

This example interface packetizes data using
simplified HDLC framing, similar to PPP
FLAG = Ox7E

ESC 0x7D

ESC_MASK = 0x20

@staticmethod
def escape(data):
data

data = data.replace(bytes([HDLC.FLAG]), bytes([HDLC.ESC,

—MASK1))

return data

Let's define our custom interface class. It must
be a sub-class of the RNS "Interface" class.
class ExampleInterface(Interface):

All interface classes must define a default
IFAC size, used in IFAC setup when the user
has not specified a custom IFAC size. This
option is specified in bytes.
DEFAULT_IFAC_SIZE = 8

The following properties are local to this
particular interface implementation.

owner = None
port = None
speed = None
databits = None
parity = None
stopbits = None
serial = None

All Reticulum interfaces must have an __init__

(continued from previous page)

data.replace(bytes([HDLC.ESC]), bytes([HDLC.ESC, HDLC.ESCAHDLC.ESC_MASK]))

HDLC.FLAG*HDLC.ESC_

(continues on next page)

150

Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

method that takes 2 positional arguments:

The owner RNS Transport instance, and a dict
of configuration values.

def __init__(self, owner, configuration):

The following lines demonstrate handling
potential dependencies required for the
interface to function correctly.
import importlib
if importlib.util.find_spec('serial') != None:
import serial
else:
RNS.log("Using this interface requires a serial communication module to be.
—installed.", RNS.LOG_CRITICAL)
RNS.log("You can install one with the command: python3 -m pip install..
—pyserial", RNS.LOG_CRITICAL)
RNS.panic()

We start out by initialising the super-class
super().__init__Q

To make sure the configuration data is in the

correct format, we parse it through the following
method on the generic Interface class. This step
1s required to ensure compatibility on all the

platforms that Reticulum supports.

ifconf = Interface.get_config_obj(configuration)

Read the interface name from the configuration
and set it on our interface instance.

name = ifconf["name"]

self.name = name

We read configuration parameters from the supplied
configuration data, and provide default values in
case any are missing.

port = ifconf["port"] if "port" in ifconf else None

speed = int(ifconf["speed"]) if "speed" in ifconf else 9600
databits = int(ifconf["databits"]) if "databits" in ifconf else 8
parity = ifconf["parity"] if "parity" in ifconf else "N"
stopbits = int(ifconf["stopbits"]) if "stopbits" in ifconf else 1

In case no port is specified, we abort setup by
raising an exception.
if port == None:
raise ValueError(f"No port specified for {self}")

All interfaces must supply a hardware MTU value
to the RNS Transport instance. This value should
be the maximum data packet payload size that the
underlying medium is capable of handling in all
cases without any segmentation.

(continues on next page)

9.11. Custom Interfaces 151

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

self .HW_MTU = 564

We initially set the "online" property to false,
since the interface has not actually been fully
initialised and connected yet.

self.online = False

In this case, we can also set the indicated bit-
rate of the interface to the serial port speed.
self.bitrate = speed

Configure internal properties on the interface
according to the supplied configuration.
self.pyserial = serial

self.serial = None

self.owner = owner

self.port = port

self.speed = speed
self.databits = databits
self.parity = serial.PARITY_NONE

self.stopbits = stopbits
self.timeout 100

if parity.lower() == "e" or parity.lower() == "even'":
self.parity = serial.PARITY_EVEN

if parity.lower() == "0o" or parity.lower() == "odd":
self.parity = serial.PARITY_ODD

Since all required parameters are now configured,

we will try opening the serial port.

try:
self.open_port()

except Exception as e:
RNS.log("Could not open serial port for interface "+str(self), RNS.LOG_ERROR)
raise e

If opening the port succeeded, run any post-open
configuration required.
if self.serial.is_open:
self.configure_device()
else:
raise IOError("Could not open serial port")

Open the serial port with supplied configuration
parameters and store a reference to the open port.
def open_port(self):
RNS.log("Opening serial port "+self.port+"...", RNS.LOG_VERBOSE)
self.serial = self.pyserial.Serial(
port = self.port,
baudrate = self.speed,
bytesize = self.databits,

(continues on next page)

152 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

parity = self.parity,
stopbits = self.stopbits,
xonxoff = False,

rtscts = False,

timeout = 0,
inter_byte_timeout = None,
write_timeout = None,
dsrdtr = False,

)

The only thing required after opening the port
is to wait a small amount of time for the
hardware to initialise and then start a thread
that reads any incoming data from the device.
def configure_device(self):
sleep(0.5)
thread = threading.Thread(target=self.read_loop)
thread.daemon = True
thread.start()
self.online = True
RNS.log("Serial port "+self.port+" is now open", RNS.LOG_VERBOSE)

This method will be called from our read-loop
whenever a full packet has been received over
the underlying medium.
def process_incoming(self, data):
Update our received bytes counter
self.rxb += len(data)

And send the data packet to the Transport
instance for processing.
self.owner.inbound(data, self)

The running Reticulum Transport instance will
call this method on the interface whenever the
interface must transmit a packet.
def process_outgoing(self,data):
if self.online:

First, escape and packetize the data

according to HDLC framing.

data = bytes([HDLC.FLAG])+HDLC.escape(data)+bytes([HDLC.FLAG])

Then write the framed data to the port
written = self.serial.write(data)

Update the transmitted bytes counter
and ensure that all data was written
self.txb += len(data)
if written != len(data):
raise IOError("Serial interface only wrote "+str(written)+" bytes of
~"+str(len(data)))

(continues on next page)

9.11. Custom Interfaces

153

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

This read loop runs in a thread and continously
receives bytes from the underlying serial port.
When a full packet has been received, it will
be sent to the process_incoming methed, which
will in turn pass it to the Transport instance.
def read_loop(self):
try:

in_frame = False

escape = False

data_buffer = b""

last_read_ms = int(time.time()*1000)

while self.serial.is_open:
if self.serial.in_waiting:
byte = ord(self.serial.read(1))
last_read_ms = int(time.time()*1000)

if (in_frame and byte == HDLC.FLAG):
in_frame = False
self.process_incoming(data_buffer)
elif (byte == HDLC.FLAG):
in_frame = True
data_buffer = b""
elif (in_frame and len(data_buffer) < self.HW_MTU):
if (byte == HDLC.ESC):
escape = True
else:
if (escape):
if (byte == HDLC.FLAG * HDLC.ESC_MASK):
byte = HDLC.FLAG
if (byte == HDLC.ESC * HDLC.ESC_MASK):
byte = HDLC.ESC
escape = False
data_buffer = data_buffer+bytes([byte])

else:
time_since_last = int(time.time()*1000) - last_read_ms
if len(data_buffer) > 0 and time_since_last > self.timeout:
data_buffer = b""
in_frame = False
escape = False
sleep(0.08)

except Exception as e:
self.online = False
RNS.log("A serial port error occurred, the contained exception was: "+str(e),
<, RNS.LOG_ERROR)
RNS.log("The interface "+str(self)+" experienced an unrecoverable error and.
—1s now offline.", RNS.LOG_ERROR)

if RNS.Reticulum.panic_on_interface_error:

(continues on next page)

154 Chapter 9. Code Examples

Reticulum Network Stack, Release 1.0.4

(continued from previous page)

RNS.panic()

RNS.log("Reticulum will attempt to reconnect the interface periodically.",.
—RNS.LOG_ERROR)

self.online = False
self.serial.close()
self.reconnect_port()

This method handles serial port disconnects.
def reconnect_port(self):
while not self.online:
try:
time.sleep(5)
RNS.log("Attempting to reconnect serial port "+str(self.port)+" for
<"+str(self)+"...", RNS.LOG_VERBOSE)
self.open_port()
if self.serial.is_open:
self.configure_device()
except Exception as e:
RNS.log("Error while reconnecting port, the contained exception was:
—"+str(e), RNS.LOG_ERROR)

RNS.log("Reconnected serial port for "+str(self))

Signal to Reticulum that this interface should
not perform any ingress limiting.
def should_ingress_limit(self):

return False

We must provide a string representation of this
interface, that is used whenever the interface
is printed in logs or external programs.
def __str__(self):

return "ExampleInterface["+self.name+"]"

Finally, register the defined interface class as the
target class for Reticulum to use as an interface
interface_class = ExampleInterface

This example can also be found at https://github.com/markqvist/Reticulum/blob/master/Examples/Examplelnterface.
py-

9.11. Custom Interfaces 155

https://github.com/markqvist/Reticulum/blob/master/Examples/ExampleInterface.py
https://github.com/markqvist/Reticulum/blob/master/Examples/ExampleInterface.py

Reticulum Network Stack, Release 1.0.4

156 Chapter 9. Code Examples

CHAPTER
TEN

API REFERENCE

Communication over Reticulum networks is achieved by using a simple set of classes exposed by the RNS API. This
chapter lists and explains all classes exposed by the Reticulum Network Stack API, along with their method signatures
and usage. It can be used as a reference while writing applications that utilise Reticulum, or it can be read in entirity
to gain an understanding of the complete functionality of RNS from a developers perspective.

10.1 Reticulum

class RNS.Reticulum(configdir=None, loglevel=None, logdest=None, verbosity=None,
require_shared_instance=False, shared_instance_type=None)

This class is used to initialise access to Reticulum within a program. You must create exactly one instance of
this class before carrying out any other RNS operations, such as creating destinations or sending traffic. Ev-
ery independently executed program must create their own instance of the Reticulum class, but Reticulum will
automatically handle inter-program communication on the same system, and expose all connected programs to
external interfaces as well.

As soon as an instance of this class is created, Reticulum will start opening and configuring any hardware devices
specified in the supplied configuration.

Currently the first running instance must be kept running while other local instances are connected, as the first
created instance will act as a master instance that directly communicates with external hardware such as modems,
TNCs and radios. If a master instance is asked to exit, it will not exit until all client processes have terminated
(unless killed forcibly).

If you are running Reticulum on a system with several different programs that use RNS starting and terminating
at different times, it will be advantageous to run a master RNS instance as a daemon for other programs to use
on demand.

MTU = 500
The MTU that Reticulum adheres to, and will expect other peers to adhere to. By default, the MTU is
500 bytes. In custom RNS network implementations, it is possible to change this value, but doing so will
completely break compatibility with all other RNS networks. An identical MTU is a prerequisite for peers
to communicate in the same network.

Unless you really know what you are doing, the MTU should be left at the default value.

LINK_MTU_DISCOVERY = True

Whether automatic link MTU discovery is enabled by default in this release. Link MTU discovery signif-
icantly increases throughput over fast links, but requires all intermediary hops to also support it. Support
for this feature was added in RNS version 0.9.0. This option will become enabled by default in the near
future. Please update your RNS instances.

157

Reticulum Network Stack, Release 1.0.4

ANNOUNCE_CAP = 2

The maximum percentage of interface bandwidth that, at any given time, may be used to propagate an-
nounces. If an announce was scheduled for broadcasting on an interface, but doing so would exceed the
allowed bandwidth allocation, the announce will be queued for transmission when there is bandwidth avail-
able.

Reticulum will always prioritise propagating announces with fewer hops, ensuring that distant, large net-
works with many peers on fast links don’t overwhelm the capacity of smaller networks on slower mediums.
If an announce remains queued for an extended amount of time, it will eventually be dropped.

This value will be applied by default to all created interfaces, but it can be configured individually on a
per-interface basis. In general, the global default setting should not be changed, and any alterations should
be made on a per-interface basis instead.

MINIMUM_BITRATE = 5

Minimum bitrate required across a medium for Reticulum to be able to successfully establish links. Cur-
rently 5 bits per second.

static get_instance()

Return the currently running Reticulum instance

static should_use_implicit_proof()

Returns whether proofs sent are explicit or implicit.

Returns
True if the current running configuration specifies to use implicit proofs. False if not.

static transport_enabled()
Returns whether Transport is enabled for the running instance.

When Transport is enabled, Reticulum will route traffic for other peers, respond to path requests and pass
announces over the network.

Returns
True if Transport is enabled, False if not.

static link_mtu_discovery()
Returns whether link MTU discovery is enabled for the running instance.

When link MTU discovery is enabled, Reticulum will automatically upgrade link MTUs to the highest
supported value, increasing transfer speed and efficiency.

Returns
True if link MTU discovery is enabled, False if not.

static remote_management_enabled()

Returns whether remote management is enabled for the running instance.
When remote management is enabled, authenticated peers can remotely query and manage this instance.

Returns
True if remote management is enabled, False if not.

10.2 Identity

class RNS.Identity(create_keys=True)

This class is used to manage identities in Reticulum. It provides methods for encryption, decryption, signatures
and verification, and is the basis for all encrypted communication over Reticulum networks.

158 Chapter 10. API Reference

Reticulum Network Stack, Release 1.0.4

Parameters
create_keys — Specifies whether new encryption and signing keys should be generated.
CURVE = 'Curve25519'
The curve used for Elliptic Curve DH key exchanges

KEYSIZE = 512
X.25519 key size in bits. A complete key is the concatenation of a 256 bit encryption key, and a 256 bit
signing key.

RATCHETSIZE = 256
X.25519 ratchet key size in bits.

RATCHET_EXPIRY = 2592000
The expiry time for received ratchets in seconds, defaults to 30 days. Reticulum will always use the most
recently announced ratchet, and remember it for up to RATCHET_EXPIRY since receiving it, after which it
will be discarded. If a newer ratchet is announced in the meantime, it will be replace the already known
ratchet.

TRUNCATED_HASHLENGTH = 128
Constant specifying the truncated hash length (in bits) used by Reticulum for addressable hashes and other
purposes. Non-configurable.

static recall(target_hash, from_identity_hash=False)

Recall identity for a destination or identity hash. By default, this function will return the identity associated
with a given destination hash. As an example, if you know the 1xmf.delivery destination hash of an
endpoint, this function will return the associated underlying identity. You can also search for an identity
from a known identity hash, by setting the from_identity_hash argument.

Parameters
¢ target_hash — Destination or identity hash as bytes.

e from_identity_hash — Whether to search based on identity hash instead of destination
hash as bool.

Returns
An RNS.Identity instance that can be used to create an outgoing RNS. Destination, or None if
the destination is unknown.
static recall_app_data(destination_hash)
Recall last heard app_data for a destination hash.

Parameters
destination_hash — Destination hash as bytes.

Returns
Bytes containing app_data, or None if the destination is unknown.

static full_hash(data)
Get a SHA-256 hash of passed data.

Parameters
data — Data to be hashed as byfes.

Returns
SHA-256 hash as bytes.

10.2. Identity 159

Reticulum Network Stack, Release 1.0.4

static truncated_hash(data)
Get a truncated SHA-256 hash of passed data.

Parameters
data — Data to be hashed as byres.

Returns
Truncated SHA-256 hash as bytes.
static get_random_hash()
Get a random SHA-256 hash.

Parameters
data — Data to be hashed as byfes.

Returns
Truncated SHA-256 hash of random data as bytes.
static current_ratchet_id(destination_hash)
Get the ID of the currently used ratchet key for a given destination hash

Parameters
destination_hash — A destination hash as bytes.

Returns
A ratchet ID as bytes or None.
static from_bytes(prv_bytes)
Create a new RNS.Identity instance from bytes of private key. Can be used to load previously created and
saved identities into Reticulum.

Parameters
prv_bytes — The bytes of private a saved private key. HAZARD! Never use this to generate
a new key by feeding random data in prv_bytes.

Returns
A RNS.Identity instance, or None if the bytes data was invalid.
static from_file(path)
Create a new RNS.Identity instance from a file. Can be used to load previously created and saved identities
into Reticulum.

Parameters
path — The full path to the saved RNS.Identity data

Returns
A RNS.Identity instance, or None if the loaded data was invalid.

to_file(path)

Saves the identity to a file. This will write the private key to disk, and anyone with access to this file will
be able to decrypt all communication for the identity. Be very careful with this method.

Parameters
path — The full path specifying where to save the identity.

Returns
True if the file was saved, otherwise False.

get_private_key()

Returns
The private key as bytes

160 Chapter 10. API Reference

Reticulum Network Stack, Release 1.0.4

get_public_key(Q)

Returns
The public key as bytes

load_private_key (prv_bytes)

Load a private key into the instance.

Parameters
prv_bytes — The private key as bytes.

Returns
True if the key was loaded, otherwise False.

load_public_key (pub_bytes)

Load a public key into the instance.

Parameters
pub_bytes — The public key as bytes.

Returns
True if the key was loaded, otherwise False.

encrypt (plaintext, ratchet=None)
Encrypts information for the identity.

Parameters
plaintext — The plaintext to be encrypted as bytes.

Returns
Ciphertext token as bytes.

Raises
KeyETrror if the instance does not hold a public key.

decrypt (ciphertext_token, ratchets=None, enforce_ratchets=False, ratchet_id_receiver=None)

Decrypts information for the identity.

Parameters
ciphertext — The ciphertext to be decrypted as byfes.

Returns
Plaintext as bytes, or None if decryption fails.

Raises
KeyError if the instance does not hold a private key.

sign(message)

Signs information by the identity.

Parameters
message — The message to be signed as bytes.

Returns
Signature as bytes.

Raises
KeyETrror if the instance does not hold a private key.

validate (signature, message)
Validates the signature of a signed message.

Parameters

10.2. Identity 161

Reticulum Network Stack, Release 1.0.4

» signature — The signature to be validated as bytes.
* message — The message to be validated as bytes.

Returns
True if the signature is valid, otherwise False.

Raises
KeyETrror if the instance does not hold a public key.

10.3 Destination

class RNS.Destination(identity, direction, type, app_name, *aspects)

A class used to describe endpoints in a Reticulum Network. Destination instances are used both to create outgoing
and incoming endpoints. The destination type will decide if encryption, and what type, is used in communication
with the endpoint. A destination can also announce its presence on the network, which will distribute necessary
keys for encrypted communication with it.

Parameters

e identity — An instance of RNS.Identity. Can hold only public keys for an outgoing desti-
nation, or holding private keys for an ingoing.

e direction - RNS.Destination.IN or RNS.Destination.OUT.

e type — RNS.Destination.SINGLE, RNS.Destination.GROUP or RNS.Destination.
PLAIN.

* app_name — A string specifying the app name.
» *aspects — Any non-zero number of string arguments.

RATCHET_COUNT = 512

The default number of generated ratchet keys a destination will retain, if it has ratchets enabled.

RATCHET_INTERVAL = 1800

The minimum interval between rotating ratchet keys, in seconds.

static expand_name (identity, app_name, *aspects)

Returns
A string containing the full human-readable name of the destination, for an app_name and a
number of aspects.

static app_and_aspects_from_name (fiull_name)

Returns
A tuple containing the app name and a list of aspects, for a full-name string.

static hash_from_name_and_identity (full_name, identity)

Returns
A destination name in adressable hash form, for a full name string and Identity instance.

static hash(identity, app_name, *aspects)

Returns
A destination name in adressable hash form, for an app_name and a number of aspects.

162 Chapter 10. API Reference

Reticulum Network Stack, Release 1.0.4

announce (app_data=None, path_response=False, attached_interface=None, tag=None, send=True)
Creates an announce packet for this destination and broadcasts it on all relevant interfaces. Application
specific data can be added to the announce.
Parameters
» app_data — bytes containing the app_data.
* path_response — Internal flag used by RNS.Transport. Ignore.

accepts_links (accepts=None)
Set or query whether the destination accepts incoming link requests.
Parameters
accepts — If True or False, this method sets whether the destination accepts incoming

link requests. If not provided or None, the method returns whether the destination currently
accepts link requests.

Returns
True or False depending on whether the destination accepts incoming link requests, if the
accepts parameter is not provided or None.
set_link_established_callback(callback)
Registers a function to be called when a link has been established to this destination.
Parameters
callback — A function or method with the signature callback(link) to be called when a new
link is established with this destination.
set_packet_callback(callback)
Registers a function to be called when a packet has been received by this destination.
Parameters
callback - A function or method with the signature callback(data, packet) to be called when
this destination receives a packet.
set_proof_requested_callback(callback)
Registers a function to be called when a proof has been requested for a packet sent to this destination.

Allows control over when and if proofs should be returned for received packets.

Parameters
callback — A function or method to with the signature callback(packet) be called when a
packet that requests a proof is received. The callback must return one of True or False. If the
callback returns True, a proof will be sent. If it returns False, a proof will not be sent.

set_proof_strategy(proof strategy)

Sets the destinations proof strategy.

Parameters
proof_strategy — One of RNS.Destination.PROVE_NONE, RNS.Destination.
PROVE_ALL or RNS.Destination.PROVE_APP. If RNS.Destination.PROVE_APP is set,
the proof_requested_callback will be called to determine whether a proof should be sent or
not.

register_request_handler (path, response_generator=None, allow=ALLOW_NONE, allowed_list=None,
auto_compress=True)

Registers a request handler.
Parameters

¢ path — The path for the request handler to be registered.

10.3. Destination 163

Reticulum Network Stack, Release 1.0.4

* response_generator - A function or method with the signature re-
sponse_generator(path, data, request_id, link_id, remote_identity, requested_at) to
be called. Whatever this funcion returns will be sent as a response to the requester. If the
function returns None, no response will be sent.

¢ allow — One of RNS.Destination.ALLOW_NONE, RNS.Destination.ALLOW_ALL or
RNS.Destination.ALLOW_LIST. If RNS.Destination.ALLOW_LIST is set, the request
handler will only respond to requests for identified peers in the supplied list.

* allowed_list — A list of bytes-like RNS.Identity hashes.

* auto_compress — If True or False, determines whether automatic compression of re-
sponses should be carried out. If set to an integer value, responses will only be auto-
compressed if under this size in bytes. If omitted, the default compression settings will be
followed.

Raises
ValueError if any of the supplied arguments are invalid.
deregister_request_handler (path)
Deregisters a request handler.

Parameters
path — The path for the request handler to be deregistered.

Returns
True if the handler was deregistered, otherwise False.
enable_ratchets (ratchets_path)
Enables ratchets on the destination. When ratchets are enabled, Reticulum will automatically rotate the

keys used to encrypt packets to this destination, and include the latest ratchet key in announces.

Enabling ratchets on a destination will provide forward secrecy for packets sent to that destination, even
when sent outside a Link. The normal Reticulum Link establishment procedure already performs its own
ephemeral key exchange for each link establishment, which means that ratchets are not necessary to provide
forward secrecy for links.

Enabling ratchets will have a small impact on announce size, adding 32 bytes to every sent announce.

Parameters
ratchets_path — The path to a file to store ratchet data in.

Returns
True if the operation succeeded, otherwise False.

enforce_ratchets()

When ratchet enforcement is enabled, this destination will never accept packets that use its base Identity

key for encryption, but only accept packets encrypted with one of the retained ratchet keys.
set_retained_ratchets (retained_ratchets)

Sets the number of previously generated ratchet keys this destination will retain, and try to use when de-

crypting incoming packets. Defaults to Destination.RATCHET_COUNT.

Parameters
retained_ratchets — The number of generated ratchets to retain.

Returns
True if the operation succeeded, False if not.

164

Chapter 10. API Reference

Reticulum Network Stack, Release 1.0.4

set_ratchet_interval (interval)
Sets the minimum interval in seconds between ratchet key rotation. Defaults to Destination.
RATCHET_INTERVAL.

Parameters
interval — The minimum interval in seconds.

Returns
True if the operation succeeded, False if not.
create_keys()
For a RNS.Destination.GROUP type destination, creates a new symmetric key.
Raises
TypeError if called on an incompatible type of destination.
get_private_key()
For a RNS.Destination.GROUP type destination, returns the symmetric private key.
Raises
TypeError if called on an incompatible type of destination.
load_private_key (key)
For a RNS.Destination.GROUP type destination, loads a symmetric private key.

Parameters
key — A bytes-like containing the symmetric key.

Raises
TypeError if called on an incompatible type of destination.
encrypt (plaintext)
Encrypts information for RNS.Destination.SINGLE or RNS.Destination.GROUP type destination.

Parameters
plaintext — A bytes-like containing the plaintext to be encrypted.

Raises
ValueError if destination does not hold a necessary key for encryption.
decrypt (ciphertext)
Decrypts information for RNS.Destination.SINGLE or RNS.Destination.GROUP type destination.

Parameters
ciphertext — Bytes containing the ciphertext to be decrypted.

Raises
ValueError if destination does not hold a necessary key for decryption.
sign(message)
Signs information for RNS.Destination. SINGLE type destination.

Parameters
message — Bytes containing the message to be signed.

Returns
A bytes-like containing the message signature, or None if the destination could not sign the
message.

10.3. Destination 165

Reticulum Network Stack, Release 1.0.4

set_default_app_data(app_data=None)
Sets the default app_data for the destination. If set, the default app_data will be included in every announce
sent by the destination, unless other app_data is specified in the announce method.

Parameters
app_data — A bytes-like containing the default app_data, or a callable returning a bytes-like
containing the app_data.
clear_default_app_data()

Clears default app_data previously set for the destination.

10.4 Packet

class RNS.Packet (destination, data, create_receipt=True)

The Packet class is used to create packet instances that can be sent over a Reticulum network. Packets will auto-
matically be encrypted if they are addressed to a RNS.Destination.SINGLE destination, RNS.Destination.
GROUP destination or a RNS.Link.

For RNS.Destination.GROUP destinations, Reticulum will use the pre-shared key configured for the destina-
tion. All packets to group destinations are encrypted with the same AES-256 key.

For RNS.Destination.SINGLE destinations, Reticulum will use a newly derived ephemeral AES-256 key for
every packet.

For RNS.Link destinations, Reticulum will use per-link ephemeral keys, and offers Forward Secrecy.
Parameters
* destination — A RNS.Destination instance to which the packet will be sent.
» data — The data payload to be included in the packet as bytes.

* create_receipt — Specifies whether a RNS. PacketReceipt should be created when instan-
tiating the packet.

ENCRYPTED_MDU = 383

The maximum size of the payload data in a single encrypted packet
PLAIN_MDU = 464

The maximum size of the payload data in a single unencrypted packet
send()

Sends the packet.

Returns
A RNS.PacketReceipt instance if create_receipt was set to True when the packet was instan-
tiated, if not returns None. If the packet could not be sent False is returned.
resend()
Re-sends the packet.
Returns

A RNS.PacketReceipt instance if create_receipt was set to True when the packet was instan-
tiated, if not returns None. If the packet could not be sent False is returned.

get_rssi(Q)

Returns
The physical layer Received Signal Strength Indication if available, otherwise None.

166

Chapter 10. API Reference

Reticulum Network Stack, Release 1.0.4

get_snr()
Returns
The physical layer Signal-to-Noise Ratio if available, otherwise None.

get_q0

Returns
The physical layer Link Quality if available, otherwise None.

10.5 Packet Receipt

class RNS.PacketReceipt

The PacketReceipt class is used to receive notifications about RNS.Packet instances sent over the network. In-
stances of this class are never created manually, but always returned from the send() method of a RNS. Packet
instance.

get_status()

Returns
The status of the associated RNS.Packet instance. Can be one of RNS.PacketReceipt.
SENT, RNS.PacketReceipt.DELIVERED, RNS.PacketReceipt.FAILED or RNS.
PacketReceipt.CULLED.

get_rtt()

Returns
The round-trip-time in seconds

set_timeout (timeout)

Sets a timeout in seconds

Parameters
timeout — The timeout in seconds.

set_delivery_callback(callback)

Sets a function that gets called if a successfull delivery has been proven.

Parameters
callback — A callable with the signature callback(packet_receipt)

set_timeout_callback(callback)

Sets a function that gets called if the delivery times out.

Parameters
callback — A callable with the signature callback(packet_receipt)

10.6 Link

class RNS.Link(destination, established_callback=None, closed_callback=None)

This class is used to establish and manage links to other peers. When a link instance is created, Reticulum will
attempt to establish verified and encrypted connectivity with the specified destination.

Parameters

* destination — A RNS.Destination instance which to establish a link to.

10.5. Packet Receipt 167

Reticulum Network Stack, Release 1.0.4

» established_callback — An optional function or method with the signature call-
back(link) to be called when the link has been established.

» closed_callback — An optional function or method with the signature callback(link) to be
called when the link is closed.

CURVE = 'Curve25519'

The curve used for Elliptic Curve DH key exchanges
ESTABLISHMENT_TIMEOUT_PER_HOP = 6

Timeout for link establishment in seconds per hop to destination.
KEEPALIVE_TIMEOUT_FACTOR = 4

RTT timeout factor used in link timeout calculation.
STALE_GRACE = 5

Grace period in seconds used in link timeout calculation.
KEEPALIVE = 360

Default interval for sending keep-alive packets on established links in seconds.

STALE_TIME = 720

If no traffic or keep-alive packets are received within this period, the link will be marked as stale, and a
final keep-alive packet will be sent. If after this no traffic or keep-alive packets are received within RTT *
KEEPALIVE_TIMEOUT_FACTOR + STALE_GRACE, the link is considered timed out, and will be torn down.

identify (identity)
Identifies the initiator of the link to the remote peer. This can only happen once the link has been established,

and is carried out over the encrypted link. The identity is only revealed to the remote peer, and initiator
anonymity is thus preserved. This method can be used for authentication.

Parameters
identity — An RNS.Identity instance to identify as.

request (path, data=None, response_callback=None, failed_callback=None, progress_callback=None,
timeout=None)

Sends a request to the remote peer.
Parameters
¢ path — The request path.

» response_callback — An optional function or method with the signature re-
sponse_callback(request_receipt) to be called when a response is received. See the Request
Example for more info.

e failed_callback - An optional function or method with the signature
failed_callback(request_receipt) to be called when a request fails. See the Request
Example for more info.

e progress_callback - An optional function or method with the signature
progress_callback(request_receipt) to be called when progress is made receiving
the response. Progress can be accessed as a float between 0.0 and 1.0 by the re-
quest_receipt.progress property.

¢ timeout — An optional timeout in seconds for the request. If None is supplied it will be
calculated based on link RTT.

Returns
A RNS.RequestReceipt instance if the request was sent, or False if it was not.

168 Chapter 10. API Reference

Reticulum Network Stack, Release 1.0.4

track_phy_stats(track)

You can enable physical layer statistics on a per-link basis. If this is enabled, and the link is running over
an interface that supports reporting physical layer statistics, you will be able to retrieve stats such as RSSI,
SNR and physical Link Quality for the link.

Parameters
track — Whether or not to keep track of physical layer statistics. Value must be True or
False.

get_rssi(Q)

Returns
The physical layer Received Signal Strength Indication if available, otherwise None. Physical
layer statistics must be enabled on the link for this method to return a value.

get_snr()

Returns
The physical layer Signal-to-Noise Ratio if available, otherwise None. Physical layer statistics
must be enabled on the link for this method to return a value.

get_qQ)

Returns
The physical layer Link Quality if available, otherwise None. Physical layer statistics must be
enabled on the link for this method to return a value.

get_establishment_rate()

Returns
The data transfer rate at which the link establishment procedure ocurred, in bits per second.

get_mtu()

Returns
The MTU of an established link.

get_mdu()

Returns
The packet MDU of an established link.

get_expected_rate()

Returns
The packet expected in-flight data rate of an established link.

get_mode()

Returns
The mode of an established link.

get_age()

Returns
The time in seconds since this link was established.

no_inbound_for ()

Returns
The time in seconds since last inbound packet on the link. This includes keepalive packets.

10.6. Link 169

Reticulum Network Stack, Release 1.0.4

no_outbound_for ()

Returns
The time in seconds since last outbound packet on the link. This includes keepalive packets.

no_data_for()

Returns
The time in seconds since payload data traversed the link. This excludes keepalive packets.

inactive_for()

Returns
The time in seconds since activity on the link. This includes keepalive packets.

get_remote_identity()

Returns
The identity of the remote peer, if it is known. Calling this method will not query the remote
initiator to reveal its identity. Returns None if the link initiator has not already independently
called the identify(identity) method.
teardown()
Closes the link and purges encryption keys. New keys will be used if a new link to the same destination is
established.
get_channel O
Get the Channel for this link.
Returns
Channel object
set_link_closed_callback(callback)
Registers a function to be called when a link has been torn down.
Parameters
callback — A function or method with the signature callback(link) to be called.
set_packet_callback(callback)
Registers a function to be called when a packet has been received over this link.
Parameters
callback — A function or method with the signature callback(message, packet) to be called.
set_resource_callback(callback)
Registers a function to be called when a resource has been advertised over this link. If the function returns
True the resource will be accepted. If it returns False it will be ignored.

Parameters
callback — A function or method with the signature callback(resource) to be called.
Please note that only the basic information of the resource is available at this time, such as
get_transfer_size(), get_data_size(), get_parts() and is_compressed().

set_resource_started_callback(callback)

Registers a function to be called when a resource has begun transferring over this link.

Parameters
callback — A function or method with the signature callback(resource) to be called.

170 Chapter 10. API Reference

Reticulum Network Stack, Release 1.0.4

set_resource_concluded_callback(callback)

Registers a function to be called when a resource has concluded transferring over this link.

Parameters
callback — A function or method with the signature callback(resource) to be called.

set_remote_identified_callback(callback)

Registers a function to be called when an initiating peer has identified over this link.

Parameters
callback — A function or method with the signature callback(link, identity) to be called.

set_resource_strategy (resource_strategy)

Sets the resource strategy for the link.

Parameters
resource_strategy — One of RNS.Link.ACCEPT_NONE, RNS.Link.ACCEPT_ALL or
RNS.Link.ACCEPT_APP. If RNS.Link.ACCEPT_APP is set, the resource_callback will be
called to determine whether the resource should be accepted or not.

Raises
TypeError if the resource strategy is unsupported.

10.7 Request Receipt

class RNS.RequestReceipt

An instance of this class is returned by the request method of RNS.Link instances. It should never be instanti-
ated manually. It provides methods to check status, response time and response data when the request concludes.

get_request_id()
Returns

The request ID as bytes.

get_status()

Returns
The current status of the request, one of RNS.RequestReceipt.FAILED, RNS.
RequestReceipt.SENT, RNS.RequestReceipt.DELIVERED, RNS.RequestReceipt.
READY.

get_progress()

Returns
The progress of a response being received as a float between 0.0 and 1.0.

get_response()

Returns
The response as bytes if it is ready, otherwise None.

get_response_time()

Returns
The response time of the request in seconds.

10.7. Request Receipt 171

Reticulum Network Stack, Release 1.0.4

concluded()

Returns

True if the associated request has concluded (successfully or with a failure), otherwise False.

10.8 Resource

class RNS.Resource(data, link, advertise=True, auto_compress=True, callback=None, progress_callback=None,

The Resource

timeout=None)

class allows transferring arbitrary amounts of data over a link. It will automatically handle se-

quencing, compression, coordination and checksumming.

Parameters

advertise()

Advertise the resource. If the other end of the link accepts the resource advertisement it will begin trans-

ferring.

cancel O

data — The data to be transferred. Can be bytes or an open file handle. See the Filetransfer
Example for details.

link — The RNS.Link instance on which to transfer the data.

advertise — Optional. Whether to automatically advertise the resource. Can be True or
False.

auto_compress — Optional. Whether to auto-compress the resource. Can be True or False.

callback — An optional callable with the signature callback(resource). Will be called when
the resource transfer concludes.

progress_callback — An optional callable with the signature callback(resource). Will be
called whenever the resource transfer progress is updated.

Cancels transferring the resource.

get_progress()

Returns

The current progress of the resource transfer as a float between 0.0 and 1.0.

get_transfer_size()

Returns

The number of bytes needed to transfer the resource.

get_data_size()

Returns

get_parts()

The total data size of the resource.

Returns

The number of parts the resource will be transferred in.

get_segments()

Returns

The number of segments the resource is divided into.

172

Chapter 10. API Reference

Reticulum Network Stack, Release 1.0.4

get_hash(Q)

Returns
The hash of the resource.

is_compressed()

Returns
Whether the resource is compressed.

10.9 Channel

class RNS.Channel.Channel
Provides reliable delivery of messages over a link.

Channel differs from Request and Resource in some important ways:

Continuous
Messages can be sent or received as long as the Link is open.

Bi-directional
Messages can be sent in either direction on the Link; neither end is the client or server.

Size-constrained
Messages must be encoded into a single packet.

Channel is similar to Packet, except that it provides reliable delivery (automatic retries) as well as a structure
for exchanging several types of messages over the Link.

Channel is not instantiated directly, but rather obtained from a Link with get_channel ().

register_message_type (message_class: Type[MessageBase])

Register a message class for reception over a Channel.
Message classes must extend MessageBase.

Parameters
message_class — Class to register

add_message_handler (callback: MessageCallbackType)
Add a handler for incoming messages. A handler has the following signature:

(message: MessageBase) -> bool

Handlers are processed in the order they are added. If any handler returns True, processing of the message
stops; handlers after the returning handler will not be called.

Parameters
callback — Function to call

remove_message_handler (callback: MessageCallbackType)
Remove a handler added with add_message_handler.

Parameters
callback — handler to remove

is_ready_to_send() — bool
Check if Channel is ready to send.

Returns
True if ready

10.9. Channel 173

Reticulum Network Stack, Release 1.0.4

send (message: MessageBase) — Envelope

Send a message. If a message send is attempted and Channel is not ready, an exception is thrown.

Parameters
message — an instance of a MessageBase subclass

property mdu

Maximum Data Unit: the number of bytes available for a message to consume in a single send. This value
is adjusted from the Link MDU to accommodate message header information.

Returns
number of bytes available

10.10 MessageBase

class RNS.MessageBase

Base type for any messages sent or received on a Channel. Subclasses must define the two abstract methods as
well as the MSGTYPE class variable.

MSGTYPE = None

Defines a unique identifier for a message class.
* Must be unique within all classes registered with a Channel
* Must be less than 0x£000. Values greater than or equal to 0x£000 are reserved.

abstractmethod pack() — bytes

Create and return the binary representation of the message

Returns
binary representation of message

abstractmethod unpack(raw: bytes)

Populate message from binary representation

Parameters
raw — binary representation

10.11 Buffer

class RNS.Buffer

Static functions for creating buffered streams that send and receive over a Channel.

These functions use BufferedReader, BufferedWriter, and BufferedRWPair to add buffering to
RawChannelReader and RawChannelWriter.

static create_reader (stream_id: int, channel: Channel, ready_callback: Callable[[int], None] | None =
None) — BufferedReader

Create a buffered reader that reads binary data sent over a Channel, with an optional callback when new
data is available.

Callback signature: (ready_bytes: int) -> None

For more information on the reader-specific functions of this object, see the Python documentation for
BufferedReader

Parameters

174 Chapter 10. API Reference

Reticulum Network Stack, Release 1.0.4

e stream_id — the local stream id to receive from
¢ channel — the channel to receive on
¢ ready_callback - function to call when new data is available

Returns
a BufferedReader object

static create_writer(stream_id: int, channel: Channel) — BufferedWriter
Create a buffered writer that writes binary data over a Channel.

For more information on the writer-specific functions of this object, see the Python documentation for
BufferedWriter

Parameters
e stream_id — the remote stream id to send to
¢ channel — the channel to send on

Returns
a BufferedWriter object

static create_bidirectional_buffer (receive_stream_id: int, send_stream_id: int, channel: Channel,
ready_callback: Callable[[int], None] | None = None) —
BufferedRWPair

Create a buffered reader/writer pair that reads and writes binary data over a Channel, with an optional
callback when new data is available.

Callback signature: (ready_bytes: int) -> None

For more information on the reader-specific functions of this object, see the Python documentation for
BufferedRWPair

Parameters
e receive_stream_id — the local stream id to receive at
¢ send_stream_id - the remote stream id to send to
¢ channel - the channel to send and receive on
e ready_callback - function to call when new data is available

Returns
a BufferedRWPair object

10.12 RawChannelReader

class RNS.RawChannelReader (stream_id: int, channel: Channel)

An implementation of RawlOBase that receives binary stream data sent over a Channel.

This class generally need not be instantiated directly. Use RNS.Buffer.create_reader(), RNS.
Buffer.create_writer(), and RNS.Buffer.create_bidirectional_buffer () functions to
create buffered streams with optional callbacks.

For additional information on the API of this object, see the Python documentation for RawIOBase.

__init__ (stream_id: int, channel: Channel)

Create a raw channel reader.

Parameters

10.12. RawChannelReader 175

Reticulum Network Stack, Release 1.0.4

e stream_id - local stream id to receive at
¢ channel - Channel object to receive from

add_ready_callback(ch: Callable[[int], None])

Add a function to be called when new data is available. The function should have the signature
(ready_bytes: int) -> None

Parameters
cb — function to call

remove_ready_callback(ch: Callable[[int], None])
Remove a function added with RNS. RawChannelReader.add_ready_callback()

Parameters
cb — function to remove

10.13 RawChannelWriter

class RNS.RawChannelWriter (stream_id: int, channel: Channel)

An implementation of RawlOBase that receives binary stream data sent over a channel.

This class generally need not be instantiated directly. Use RNS.Buffer.create_reader(), RNS.
Buffer.create_writer(), and RNS.Buffer.create_bidirectional_buffer() functions to
create buffered streams with optional callbacks.

For additional information on the API of this object, see the Python documentation for RawIOBase.

__init__(stream_id: int, channel: Channel)

Create a raw channel writer.
Parameters
¢ stream_id — remote stream id to sent do

¢ channel — Channel object to send on

10.14 Transport

class RNS.Transport
Through static methods of this class you can interact with the Transport system of Reticulum.
PATHFINDER_M = 128
Maximum amount of hops that Reticulum will transport a packet.

static register_announce_handler (handler)
Registers an announce handler.

Parameters
handler - Must be an object with an aspect filter attribute and a re-
ceived_announce(destination_hash, announced_identity, app_data) or re-
ceived_announce(destination_hash, announced_identity, app_data, announce_packet_hash)
or received_announce(destination_hash, announced_identity, app_data, an-
nounce_packet_hash, is_path_response) callable. Can optionally have a re-

ceive_path_responses attribute set to True, to also receive all path responses, in addition to
live announces. See the Announce Example for more info.

176 Chapter 10. API Reference

Reticulum Network Stack, Release 1.0.4

static deregister_announce_handler (handler)

Deregisters an announce handler.

Parameters
handler — The announce handler to be deregistered.

static has_path(destination_hash)

Parameters
destination_hash — A destination hash as bytes.

Returns
True if a path to the destination is known, otherwise False.

static hops_to(destination_hash)

Parameters
destination_hash — A destination hash as bytes.

Returns
The number of hops to the specified destination, or RNS.Transport.PATHFINDER_N if the
number of hops is unknown.

static next_hop (destination_hash)

Parameters
destination_hash — A destination hash as bytes.

Returns
The destination hash as byfes for the next hop to the specified destination, or Norne if the next
hop is unknown.

static next_hop_interface(destination_hash)

Parameters
destination_hash — A destination hash as bytes.

Returns
The interface for the next hop to the specified destination, or None if the interface is unknown.

static request_path(destination_hash, on_interface=None, tag=None, recursive=False)

Requests a path to the destination from the network. If another reachable peer on the network knows a path,
it will announce it.

Parameters
¢ destination_hash — A destination hash as bytes.

» on_interface - If specified, the path request will only be sent on this interface. In normal
use, Reticulum handles this automatically, and this parameter should not be used.

10.14. Transport 177

Reticulum Network Stack, Release 1.0.4

178 Chapter 10. API Reference

Symbols

__init__(Q) (RNS.RawChannelReader method), 175
__init__(Q (RNS.RawChannelWriter method), 176

A

accepts_links() (RNS.Destination method), 163

add_message_handler () (RNS.Channel.Channel
method), 173

add_ready_callback() (RNS.RawChannelReader
method), 176

advertise() (RNS.Resource method), 172

announce () (RNS.Destination method), 162

ANNOUNCE_CAP (RNS.Reticulum attribute), 157

app_and_aspects_£from_name () (RNS.Destination
static method), 162

B

Buffer (class in RNS), 174

C

cancel () (RNS.Resource method), 172

Channel (class in RNS.Channel), 173

clear_default_app_data()
method), 166

concluded () (RNS.RequestReceipt method), 171

create_bidirectional_buffer() (RNS.Buffer static
method), 175

create_keys() (RNS.Destination method), 165

create_reader () (RNS.Buffer static method), 174

create_writer() (RNS.Buffer static method), 175

current_ratchet_id() (RNS.Identity static method),
160

CURVE (RNS.Identity attribute), 159

CURVE (RNS.Link attribute), 168

D

decrypt () (RNS.Destination method), 165
decrypt () (RNS.Identity method), 161

(RNS.Destination

deregister_announce_handler() (RNS.Transport
static method), 176
deregister_request_handler() (RNS.Destination

method), 164

INDEX

Destination (class in RNS), 162

E

enable_ratchets () (RNS.Destination method), 164

encrypt () (RNS.Destination method), 165

encrypt () (RNS.Identity method), 161

ENCRYPTED_MDU (RNS. Packet attribute), 166

enforce_ratchets() (RNS.Destination method), 164

ESTABLISHMENT_TIMEOUT_PER_HOP (RNS.Link at-
tribute), 168

expand_name () (RNS.Destination static method), 162

F

from_bytes() (RNS.Identity static method), 160
from_£file() (RNS.Identity static method), 160
full_hash() (RNS.Identity static method), 159

G

get_age() (RNS.Link method), 169
get_channel () (RNS.Link method), 170
get_data_size() (RNS.Resource method), 172
get_establishment_rate() (RNS.Link method), 169
get_expected_rate() (RNS.Link method), 169
get_hash() (RNS.Resource method), 172
get_instance() (RNS.Reticulum static method), 158
get_mdu() (RNS.Link method), 169
get_mode () (RNS.Link method), 169
get_mtu() (RNS.Link method), 169
get_parts() (RNS.Resource method), 172
get_private_key () (RNS.Destination method), 165
get_private_key () (RNS.Identity method), 160
get_progress() (RNS.RequestReceipt method), 171
get_progress() (RNS.Resource method), 172
get_public_key() (RNS.Identity method), 160
get_q() (RNS.Link method), 169
get_q(Q) (RNS.Packet method), 167
get_random_hash() (RNS.Identity static method), 160
get_remote_identity() (RNS.Link method), 170
get_request_id() (RNS.RequestReceipt method), 171
get_response() (RNS.RequestReceipt method), 171
get_response_time() (RNS.RequestReceipt method),
171

179

Reticulum Network Stack, Release 1.0.4

get_rssi() (RNS.Link method), 169

get_rssi() (RNS.Packet method), 166

get_rtt() (RNS.PacketReceipt method), 167
get_segments() (RNS.Resource method), 172
get_snr() (RNS.Link method), 169

get_snr() (RNS.Packet method), 166
get_status() (RNS.PacketReceipt method), 167
get_status() (RNS.RequestReceipt method), 171
get_transfer_size() (RNS.Resource method), 172

H

has_path() (RNS.Transport static method), 177

hash() (RNS.Destination static method), 162

hash_from_name_and_identity() (RNS.Destination
static method), 162

hops_to() (RNS.Transport static method), 177

identify () (RNS.Link method), 168

Identity (class in RNS), 158

inactive_for () (RNS.Link method), 170

is_compressed() (RNS.Resource method), 173

is_ready_to_send() (RNS.Channel.Channel method),
173

K

KEEPALIVE (RNS.Link attribute), 168
KEEPALIVE_TIMEOUT_FACTOR (RNS.Link attribute), 168
KEYSIZE (RNS.Identity attribute), 159

L

Link (class in RNS), 167

LINK_MTU_DISCOVERY (RNS.Reticulum attribute), 157

link_mtu_discovery() (RNS.Reticulum static
method), 158

load_private_key () (RNS.Destination method), 165

load_private_key () (RNS.Identity method), 161

load_public_key() (RNS.Identity method), 161

M

mdu (RNS. Channel. Channel property), 174
MessageBase (class in RNS), 174
MINIMUM_BITRATE (RNS.Reticulum attribute), 158
MSGTYPE (RNS.MessageBase attribute), 174

MTU (RNS.Reticulum attribute), 157

N

next_hop() (RNS.Transport static method), 177

next_hop_interface() (RNS.Transport static method),
177

no_data_for () (RNS.Link method), 170

no_inbound_for () (RNS.Link method), 169

no_outbound_for () (RNS.Link method), 169

P

pack() (RNS.MessageBase method), 174
Packet (class in RNS), 166

PacketReceipt (class in RNS), 167
PATHFINDER_M (RNS.Transport attribute), 176
PLAIN_MDU (RNS.Packet attribute), 166

R

RATCHET_COUNT (RNS.Destination attribute), 162
RATCHET_EXPIRY (RNS.Identity attribute), 159
RATCHET_INTERVAL (RNS.Destination attribute), 162
RATCHETSIZE (RNS.Identity attribute), 159
RawChannelReader (class in RNS), 175
RawChannelWriter (class in RNS), 176
recall () (RNS.Identity static method), 159
recall_app_data() (RNS.Identity static method), 159
register_announce_handler() (RNS.Transport static
method), 176
register_message_type()
method), 173

(RNS.Channel.Channel

register_request_handler() (RNS.Destination
method), 163
remote_management_enabled() (RNS.Reticulum

static method), 158

remove_message_handler() (RNS.Channel.Channel
method), 173

remove_ready_callback() (RNS.RawChannelReader
method), 176

request() (RNS.Link method), 168

request_path() (RNS.Transport static method), 177

RequestReceipt (class in RNS), 171

resend() (RNS.Packet method), 166

Resource (class in RNS), 172

Reticulum (class in RNS), 157

S

send() (RNS.Channel. Channel method), 173

send () (RNS.Packet method), 166

set_default_app_data() (RNS.Destination method),
165

set_delivery_callback()
method), 167

set_link_closed_callback() (RNS.Link method),
170

set_link_established_callback()
(RNS.Destination method), 163

set_packet_callback() (RNS.Destination method),
163

set_packet_callback() (RNS.Link method), 170

set_proof_requested_callback() (RNS.Destination
method), 163

set_proof_strategy() (RNS.Destination method),
163

(RNS.PacketReceipt

180

Index

Reticulum Network Stack, Release 1.0.4

set_ratchet_interval () (RNS.Destination method),
164

set_remote_identified_callback() (RNS.Link
method), 171

set_resource_callback() (RNS.Link method), 170

set_resource_concluded_callback() (RNS.Link
method), 170

set_resource_started_callback() (RNS.Link
method), 170

set_resource_strategy() (RNS.Link method), 171

set_retained_ratchets() (RNS.Destination method),

164
set_timeout () (RNS.PacketReceipt method), 167
set_timeout_callback() (RNS.PacketReceipt
method), 167
should_use_implicit_proof() (RNS.Reticulum

static method), 158
sign() (RNS.Destination method), 165
sign() (RNS.Identity method), 161
STALE_GRACE (RNS.Link attribute), 168
STALE_TIME (RNS.Link attribute), 168

T

teardown() (RNS.Link method), 170

to_file() (RNS.Identity method), 160

track_phy_stats() (RNS.Link method), 168

Transport (class in RNS), 176

transport_enabled() (RNS.Reticulum static method),
158

truncated_hash() (RNS.Identity static method), 159

TRUNCATED_HASHLENGTH (RNS.Identity attribute), 159

U

unpack () (RNS.MessageBase method), 174

\Y

validate() (RNS.Identity method), 161

Index

181

	What is Reticulum?
	Current Status
	What does Reticulum Offer?
	Where can Reticulum be Used?
	Interface Types and Devices
	Caveat Emptor

	Getting Started Fast
	Standalone Reticulum Installation
	Resolving Dependency & Installation Issues

	Try Using a Reticulum-based Program
	Remote Shell
	Nomad Network
	Sideband
	MeshChat

	Using the Included Utilities
	Creating a Network With Reticulum
	Connecting Reticulum Instances Over the Internet
	Connect to the Public Testnet
	Hosting Public Entrypoints
	Adding Radio Interfaces
	Creating and Using Custom Interfaces
	Develop a Program with Reticulum
	Participate in Reticulum Development
	Platform-Specific Install Notes
	Android
	ARM64
	Debian Bookworm
	MacOS
	OpenWRT
	Raspberry Pi
	RISC-V
	Ubuntu Lunar
	Windows

	Pure-Python Reticulum

	Using Reticulum on Your System
	Configuration & Data
	Included Utility Programs
	The rnsd Utility
	The rnstatus Utility
	The rnid Utility
	The rnpath Utility
	The rnprobe Utility
	The rncp Utility
	The rnx Utility
	The rnodeconf Utility

	Remote Management
	Improving System Configuration
	Fixed Serial Port Names
	Reticulum as a System Service
	Systemwide Service
	Userspace Service

	Understanding Reticulum
	Motivation
	Goals
	Introduction & Basic Functionality
	Destinations
	Destination Naming

	Public Key Announcements
	Identities
	Getting Further

	Reticulum Transport
	Node Types
	The Announce Mechanism in Detail
	Reaching the Destination
	Link Establishment in Detail

	Resources

	Reference Setup
	Protocol Specifics
	Packet Prioritisation
	Interface Access Codes
	Wire Format
	Announce Propagation Rules
	Cryptographic Primitives

	Communications Hardware
	Combining Hardware Types
	RNode
	Creating RNodes
	Supported Boards and Devices
	LilyGO T-Beam Supreme
	LilyGO T-Beam
	LilyGO T3S3
	RAK4631-based Boards
	OpenCom XL
	Unsigned RNode v2.x
	LilyGO LoRa32 v2.1
	LilyGO LoRa32 v2.0
	LilyGO LoRa32 v1.0
	LilyGO T-Deck
	LilyGO T-Echo
	Heltec T114
	Heltec LoRa32 v4.0
	Heltec LoRa32 v3.0
	Heltec LoRa32 v2.0

	Installation
	Usage with Reticulum

	WiFi-based Hardware
	Ethernet-based Hardware
	Serial Lines & Devices
	Packet Radio Modems

	Configuring Interfaces
	Custom Interfaces
	Auto Interface
	Backbone Interface
	Listeners
	Connecting Remotes

	TCP Server Interface
	TCP Client Interface
	UDP Interface
	I2P Interface
	RNode LoRa Interface
	RNode Multi Interface
	Serial Interface
	Pipe Interface
	KISS Interface
	AX.25 KISS Interface
	Common Interface Options
	Interface Modes
	Announce Rate Control
	New Destination Rate Limiting

	Building Networks
	Concepts & Overview
	Example Scenarios
	Interconnected LoRa Sites
	Bridging Over the Internet
	Growth and Convergence

	Support Reticulum
	Donations
	Provide Feedback
	Contribute Code

	Code Examples
	Minimal
	Announce
	Broadcast
	Echo
	Link
	Identification
	Requests & Responses
	Channel
	Buffer
	Filetransfer
	Custom Interfaces

	API Reference
	Reticulum
	Identity
	Destination
	Packet
	Packet Receipt
	Link
	Request Receipt
	Resource
	Channel
	MessageBase
	Buffer
	RawChannelReader
	RawChannelWriter
	Transport

	Index

