Update README.md

This commit is contained in:
Mia von Steinkirch 2019-10-14 22:33:10 -07:00 committed by GitHub
parent 13969f573e
commit fa70c9523d
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -183,3 +183,91 @@ https://www.ted.com/talks/jerry_chow_the_future_of_supercomputers_a_quantum_chip
9. What's the smallest thing in the universe? 9. What's the smallest thing in the universe?
https://www.ted.com/talks/jonathan_butterworth_what_s_the_smallest_thing_in_the_universe#t-305865 https://www.ted.com/talks/jonathan_butterworth_what_s_the_smallest_thing_in_the_universe#t-305865
----
## Reviews
* [Quantum Machine Learning: What Quantum Computing Means to Data Mining](https://www.researchgate.net/publication/264825604_Quantum_Machine_Learning_What_Quantum_Computing_Means_to_Data_Mining) (2014)
* [Quantum Machine Learning](https://arxiv.org/abs/1611.09347v2) (2016)
* [A Survey of Quantum Learning Theory](https://arxiv.org/abs/1701.06806) (2017)
* [Quantum Machine Learning: a classical perspective](https://arxiv.org/abs/1707.08561) (2017)
* [Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers](https://arxiv.org/abs/1708.09757) (2017)
* [Quantum machine learning for data scientists](https://arxiv.org/abs/1804.10068) (2018)
* [Supervised Learning with Quantum Computers](https://www.springer.com/gp/book/9783319964232) (2018)
----
## Discrete-variables quantum computing
### Theory
* [Quantum Statistical Inference](https://arxiv.org/abs/1812.04877) (2018)
* [Quantum hardness of learning shallow classical circuits](https://arxiv.org/abs/1903.02840) (2019)
### Variational circuits
* [Quantum Boltzmann Machine](https://arxiv.org/abs/1601.02036) (2016)
* [Quantum Perceptron Model](https://arxiv.org/abs/1602.04799) (2016)
* [Quantum autoencoders via quantum adders with genetic algorithms](https://arxiv.org/abs/1709.07409) (2017)
* [A Quantum Hopfield Neural Network](https://arxiv.org/abs/1710.03599) (2017)
* [Automated optimization of large quantum circuits with continuous parameters](https://arxiv.org/abs/1710.07345) (2017)
* [Quantum Neuron: an elementary building block for machine learning on quantum computers](https://arxiv.org/abs/1711.11240) (2017)
* [A quantum algorithm to train neural networks using low-depth circuits](https://arxiv.org/abs/1712.05304) (2017)
* [A generative modeling approach for benchmarking and training shallow quantum circuits](https://arxiv.org/abs/1801.07686) (2018)
* [Universal quantum perceptron as efficient unitary approximators](https://arxiv.org/abs/1801.00934) (2018)
* [Quantum Variational Autoencoder](https://arxiv.org/abs/1802.05779) (2018)
* [Classification with Quantum Neural Networks on Near Term Processors](https://arxiv.org/abs/1802.06002) (2018)
* [Barren plateaus in quantum neural network training landscapes](https://arxiv.org/abs/1803.11173) (2018)
* [Quantum generative adversarial learning](https://arxiv.org/abs/1804.09139) (2018)
* [Quantum generative adversarial networks](https://arxiv.org/abs/1804.08641) (2018)
* [Circuit-centric quantum classifiers](https://arxiv.org/abs/1804.00633) (2018)
* [Universal discriminative quantum neural networks](https://arxiv.org/abs/1805.08654) (2018)
* [A Universal Training Algorithm for Quantum Deep Learning](https://arxiv.org/abs/1806.09729) (2018)
* [Bayesian Deep Learning on a Quantum Computer](https://arxiv.org/abs/1806.11463) (2018)
* [Quantum generative adversarial learning in a superconducting quantum circuit](https://arxiv.org/abs/1808.02893) (2018)
* [The Expressive Power of Parameterized Quantum Circuits](https://arxiv.org/abs/1810.11922) (2018)
* [Quantum Convolutional Neural Networks](https://arxiv.org/abs/1810.03787) (2018)
* [An Artificial Neuron Implemented on an Actual Quantum Processor](https://arxiv.org/pdf/1811.02266.pdf) (2018)
* [Graph Cut Segmentation Methods Revisited with a Quantum Algorithm](https://arxiv.org/abs/1812.03050) (2018)
* [Efficient Learning for Deep Quantum Neural Networks](https://arxiv.org/abs/1902.10445) (2019)
* [Parameterized quantum circuits as machine learning models](https://arxiv.org/abs/1906.07682) (2019)
* [Machine Learning Phase Transitions with a Quantum Processor](https://arxiv.org/abs/1906.10155) (2019)
### Tensor Networks
* [Towards Quantum Machine Learning with Tensor Networks](https://arxiv.org/abs/1803.11537) (2018)
* [Hierarchical quantum classifiers](https://arxiv.org/abs/1804.03680v1) (2018)
### Reinforcement learning
* [Quantum reinforcement learning](https://arxiv.org/abs/0810.3828) (2008)
* [Reinforcement Learning Using Quantum Boltzmann Machines](https://arxiv.org/abs/1612.05695) (2016)
* [Generalized Quantum Reinforcement Learning with Quantum Technologies](https://arxiv.org/abs/1709.07848) (2017)
### Optimization
* [Quantum gradient descent and Newtons method for constrained polynomial optimization](https://arxiv.org/abs/1612.01789) (2016)
* [Quantum algorithms and lower bounds for convex optimization](https://arxiv.org/pdf/1809.01731.pdf) (2018)
### Kernel methods and SVM
* [Supervised learning with quantum enhanced feature spaces](https://arxiv.org/abs/1804.11326) (2018)
* [Quantum Sparse Support Vector Machines](https://arxiv.org/abs/1902.01879) (2019)
* [Sublinear quantum algorithms for training linear and kernel-based classifiers](https://arxiv.org/pdf/1904.02276.pdf) (2019)
---
## Continuous-variables quantum computing
### Variational circuits
* [Continuous-variable quantum neural networks](https://arxiv.org/abs/1806.06871) (2018)
* [Machine learning method for state preparation and gate synthesis on photonic quantum computers](https://arxiv.org/abs/1807.10781) (2018)
* [Near-deterministic production of universal quantum photonic gates enhanced by machine learning](https://arxiv.org/abs/1809.04680) (2018)
### Kernel methods and SVM
* [Quantum machine learning in feature Hilbert spaces](https://arxiv.org/1803.07128) (2018)