From 39b05b8c992fe10749eb30fa40b99ed6882684c6 Mon Sep 17 00:00:00 2001
From: autistic-symposium-helper
<138340846+autistic-symposium-helper@users.noreply.github.com>
Date: Sun, 10 Nov 2024 13:48:06 +0700
Subject: [PATCH] add many resources on quantum machine learning - back from
the commit history in this repo (from 2019), not sure why they were removed
---
quantum_machine_learning/README.md | 118 ++++++++++++++++++++++++++++-
1 file changed, 117 insertions(+), 1 deletion(-)
diff --git a/quantum_machine_learning/README.md b/quantum_machine_learning/README.md
index b8e3ae2..85465d8 100644
--- a/quantum_machine_learning/README.md
+++ b/quantum_machine_learning/README.md
@@ -2,5 +2,121 @@
-* **[opportunities and challenges for quantum-assisted ml in nisq](https://iopscience.iop.org/article/10.1088/2058-9565/aab859)**
+### general reviews
+
+
+* **[opportunities and challenges for quantum-assisted ml in nisq](https://iopscience.iop.org/article/10.1088/2058-9565/aab859) (2018)**
+* **[quantum machine learning: what quantum computing means to data mining](https://www.researchgate.net/publication/264825604_Quantum_Machine_Learning_What_Quantum_Computing_Means_to_Data_Mining) (2014)**
+* **[quantum machine learning](https://arxiv.org/abs/1611.09347v2) (2016)**
+* **[a survey of quantum learning theory](https://arxiv.org/abs/1701.06806) (2017)**
+* **[quantum machine learning: a classical perspective](https://arxiv.org/abs/1707.08561) (2017)**
+* **[opportunities and challenges for quantum-assisted machine learning in near-term quantum computers](https://arxiv.org/abs/1708.09757) (2017)**
+* **[quantum machine learning for data scientists](https://arxiv.org/abs/1804.10068) (2018)**
+* **[supervised learning with quantum computers](https://www.springer.com/gp/book/9783319964232) (2018)**
+
+
+
+----
+
+### discrete-variables quantum computing
+
+
+
+#### theory
+
+
+
+* **[quantum statistical inference](https://arxiv.org/abs/1812.04877) (2018)**
+* **[quantum hardness of learning shallow classical circuits](https://arxiv.org/abs/1903.02840) (2019)**
+
+
+
+#### variational circuits
+
+
+
+* **[quantum boltzmann machine](https://arxiv.org/abs/1601.02036) (2016)**
+* **[quantum perceptron model](https://arxiv.org/abs/1602.04799) (2016)**
+* **[quantum autoencoders via quantum adders with genetic algorithms](https://arxiv.org/abs/1709.07409) (2017)**
+* **[a quantum hopfield neural network](https://arxiv.org/abs/1710.03599) (2017)**
+* **[automated optimization of large quantum circuits with continuous parameters](https://arxiv.org/abs/1710.07345) (2017)**
+* **[quantum neuron: an elementary building block for machine learning on quantum computers](https://arxiv.org/abs/1711.11240) (2017)**
+* **[a quantum algorithm to train neural networks using low-depth circuits](https://arxiv.org/abs/1712.05304) (2017)**
+* **[a generative modeling approach for benchmarking and training shallow quantum circuits](https://arxiv.org/abs/1801.07686) (2018)**
+* **[universal quantum perceptron as efficient unitary approximators](https://arxiv.org/abs/1801.00934) (2018)**
+* **[quantum variational autoencoder](https://arxiv.org/abs/1802.05779) (2018)**
+* **[classification with quantum neural networks on near term processors](https://arxiv.org/abs/1802.06002) (2018)**
+* **[barren plateaus in quantum neural network training landscapes](https://arxiv.org/abs/1803.11173) (2018)**
+* **[quantum generative adversarial learning](https://arxiv.org/abs/1804.09139) (2018)**
+* **[quantum generative adversarial networks](https://arxiv.org/abs/1804.08641) (2018)**
+* **[circuit-centric quantum classifiers](https://arxiv.org/abs/1804.00633) (2018)**
+* **[universal discriminative quantum neural networks](https://arxiv.org/abs/1805.08654) (2018)**
+* **[a universal training algorithm for quantum deep learning](https://arxiv.org/abs/1806.09729) (2018)**
+* **[bayesian deep learning on a quantum computer](https://arxiv.org/abs/1806.11463) (2018)**
+* **[quantum generative adversarial learning in a superconducting quantum circuit](https://arxiv.org/abs/1808.02893) (2018)**
+* **[the expressive power of parameterized quantum circuits](https://arxiv.org/abs/1810.11922) (2018)**
+* **[quantum convolutional neural networks](https://arxiv.org/abs/1810.03787) (2018)**
+* **[an artificial neuron implemented on an actual quantum processor](https://arxiv.org/pdf/1811.02266.pdf) (2018)**
+* **[graph cut segmentation methods revisited with a quantum algorithm](https://arxiv.org/abs/1812.03050) (2018)**
+* **[efficient learning for deep quantum neural networks](https://arxiv.org/abs/1902.10445) (2019)**
+* **[parameterized quantum circuits as machine learning models](https://arxiv.org/abs/1906.07682) (2019)**
+* **[machine learning phase transitions with a quantum processor](https://arxiv.org/abs/1906.10155) (2019)**
+
+
+
+#### tensor networks
+
+
+
+* **[towards quantum machine learning with tensor networks](https://arxiv.org/abs/1803.11537) (2018)**
+* **[hierarchical quantum classifiers](https://arxiv.org/abs/1804.03680v1) (2018)**
+
+
+
+#### reinforcement learning
+
+
+
+* **[quantum reinforcement learning](https://arxiv.org/abs/0810.3828) (2008)**
+* **[reinforcement learning using quantum boltzmann machines](https://arxiv.org/abs/1612.05695) (2016)**
+* **[generalized quantum reinforcement learning with quantum technologies](https://arxiv.org/abs/1709.07848) (2017)**
+
+
+
+#### optimization
+
+
+
+* **[quantum gradient descent and newton’s method for constrained polynomial optimization](https://arxiv.org/abs/1612.01789) (2016)**
+* **[quantum algorithms and lower bounds for convex optimization](https://arxiv.org/pdf/1809.01731.pdf) (2018)**
+
+
+
+#### kernel methods and svm
+
+
+
+* **[supervised learning with quantum enhanced feature spaces](https://arxiv.org/abs/1804.11326) (2018)**
+* **[quantum sparse support vector machines](https://arxiv.org/abs/1902.01879) (2019)**
+* **[sublinear quantum algorithms for training linear and kernel-based classifiers](https://arxiv.org/pdf/1904.02276.pdf) (2019)**
+
+
+
+---
+
+### continuous-variables quantum computing
+
+
+
+#### variational circuits
+
+* **[continuous-variable quantum neural networks](https://arxiv.org/abs/1806.06871) (2018)**
+* **[machine learning method for state preparation and gate synthesis on photonic quantum computers](https://arxiv.org/abs/1807.10781) (2018)**
+* **[near-deterministic production of universal quantum photonic gates enhanced by machine learning](https://arxiv.org/abs/1809.04680) (2018)**
+
+
+
+#### kernel methods and svm
+
+* **[quantum machine learning in feature hilbert spaces](https://arxiv.org/1803.07128) (2018)**