
Abusing File Processing in Malware Detectors for Fun and Profit

Suman Jana and Vitaly Shmatikov

The University of Texas at Austin

Abstract—We systematically describe two classes of evasion
exploits against automated malware detectors. Chameleon at-
tacks confuse the detectors’ file-type inference heuristics, while
werewolf attacks exploit discrepancies in format-specific file
parsing between the detectors and actual operating systems
and applications. These attacks do not rely on obfuscation,
metamorphism, binary packing, or any other changes to
malicious code. Because they enable even the simplest, easily
detectable viruses to evade detection, we argue that file pro-
cessing has become the weakest link of malware defense. Using
a combination of manual analysis and black-box differential
fuzzing, we discovered 45 new evasion exploits and tested them
against 36 popular antivirus scanners, all of which proved
vulnerable to various chameleon and werewolf attacks.

I. INTRODUCTION

Modern malware detectors employ a variety of detection

techniques: scanning for instances of known viruses, binary

reverse-engineering, behavioral analysis, and many others.

Before any of these techniques can be applied to a suspicious

file, however, the detector must (1) determine the type of the

file, and (2) depending on the type, analyze the file’s meta-

data and parse the file—for example, extract the contents

of an archive, find macros embedded in a document, or

construct a contiguous view of executable code.

The importance of file processing grows as automated

malware defense moves away from the host, with antivirus

(AV) scanners and intrusion prevention systems installed at

enterprise gateways and email servers, increasing popularity

of cloud-based malware detection services, etc. Network-

and cloud-based deployments protect multiple hosts, provide

early detection capabilities and better visibility into network-

wide trends, and make maintenance easier. To be effective,

however, remotely deployed detectors must be able to predict

how each file will be processed at its destination by the

operating system and applications.

In this paper, we argue that the “semantic gap” between

how malware detectors handle files and how the same

files are processed on the endhosts is the Achilles heel of

malware defense. We use the term detector generically for

signature-based scanners, behavioral analyzers, or any other

tool that parses and analyzes suspicious files on its own,

independently of the destination endhost. The vulnerabilities

we describe are unrelated to obfuscation, mutation, or any

other way of hiding malicious functionality. They enable

even exact, unmodified instances of malware—primitive and

(otherwise) trivially detectable, as well as arbitrarily sophis-

ticated—to evade detection simply because the detector fails

to correctly process the infected file.

We introduce two new classes of evasion exploits against

malware detectors. The first is chameleon attacks, which

target the discrepancies between the heuristics used by

detectors to determine the type of the file and those used by

the endhosts. Contrary to a common misconception, neither

is based solely on the file extension, thus our attacks are

more complex than simply renaming the extension (this trick

does not work against modern detectors), nor can they be

solved by forcing a particular extension onto a file.

The second class is werewolf attacks, which exploit the

discrepancies in the parsing of executables and application-

specific formats between malware detectors and actual ap-

plications and operating systems.

We evaluated 36 popular AV scanners using a combination

of manual analysis and differential black-box fuzzing, and

discovered 45 different exploits. All tested scanners proved

vulnerable to both chameleon and werewolf attacks. We

stress that the problem is not specific to AV scanners and

does not depend on known weaknesses of signature-based

scanning such as the inability to handle metamorphic muta-

tions. The actual viruses used in our testing are extremely

simple. They do not employ self-encryption, polymorphism,

or obfuscation, yet chameleon and werewolf attacks enable

them to pass undetected through scanners whose virus

databases contain their exact code. Because file processing

must take place before actual malware detection, more

elaborate detectors are vulnerable, too, as long as their file-

processing logic differs, however slightly, from the OS and

applications on any of the protected endhosts.

The problem is deeper than the anecdotally known in-

ability of AV software to properly process archive formats.

Many modern file formats are effectively archives in dis-

guise: for example, MS Office documents contain executable

macros, Compiled HTML Help (CHM) contains HTML

files, etc. We discovered chameleon and werewolf attacks

against all file formats we tested, from relatively simple

archives to executable images and complex MS Office docu-

ment formats. Evasion techniques based on code obfuscation

are widely known and many defenses have been proposed. In

contrast, our attacks involve changes only to the meta-data

of infected files and are thus different, significantly simpler,

and complementary to obfuscation-based evasion.

While each individual vulnerability may be easy to fix, file

processing in malware detectors suffers from thousands of

semantic discrepancies. It is very difficult to “write a better

parser” that precisely replicates the file-parsing semantics of

actual applications and operating systems: (1) many formats

are underspecified, thus different applications process the

same file in different and even contradictory ways, all of

which must be replicated by the detector; (2) replicating

the behavior of a given parser is hard—for example, after

many years of testing, there are still hundreds of file-parsing

discrepancies between OpenOffice and MS Office [23, 24]

and between the “functionally equivalent” implementations

of Unix utilities [7]; (3) the detector must be bug-compatible

with all applications; (4) because applications are designed

to handle even malformed files, their parsing algorithms

are much looser than the format specification, change

from version to version, and have idiosyncratic, difficult-

to-replicate, mutually incompatible semantics for processing

non-compliant files, all of which must be replicated by the

detector; (5) even seemingly “safe” discrepancies—such as

attempting to analyze files with invalid checksums when

scanning an archive for malware—enable evasion.

Responsible disclosure. All attacks described in this paper

have been reported to the public through the Common

Vulnerabilities and Exposures (CVE) database.1 In the rest

of this paper, we refer to them by their candidate CVE

numbers (see Tables I and II). These numbers were current

at the time of writing, but may change in the future.

II. RELATED WORK

We introduce chameleon and werewolf attacks as a

generic, pervasive problem in all automated malware de-

tectors and demonstrate 45 distinct attacks on 36 different

detectors, exploiting semantic gaps in their processing of

many archive and non-archive formats. With a couple of

exceptions (e.g., a RAR archive masquerading as a Windows

executable, previously mentioned in [2]), the attacks in this

paper are reported and described for the first time.

There is prior evidence of malformed archive files evading

AV software [2, 3, 10, 18, 38, 39]. These anecdotes are

limited to archive formats only and do not describe concrete

attacks. Alvarez and Zoller briefly mention that modern AV

scanners need to parse a variety of formats [2] and point out

the importance of correct file parsing for preventing denial

of service [1]. Concrete werewolf attacks on the detectors’

parsing logic for non-archive formats such as executables

and Office documents have been reported in neither research

literature, nor folklore. These attacks have especially serious

repercussions because they are not prevented even by host-

based on-access scanning (see Section IX-A).

Buffer overflow and other attacks on AV software, unre-

lated to file processing, are mentioned in [36, 37].

Chameleon attacks. Chameleon attacks on file-type in-

ference heuristics are superficially similar to attacks on

1http://cve.mitre.org/

content-sniffing heuristics in Web browsers [19, 25, 30].

Barth et al. proposed prefix-disjoint content signatures as

a browser-based defense against content-sniffing attacks [4].

The premise of this defense is that no file that matches the

first few bytes of some format should be parsed as HTML

regardless of its subsequent content.

Prefix-disjoint signatures do not provide a robust defense

against chameleon attacks on malware detectors. Detectors

handle many more file formats than Web browsers and,

crucially, these formats cannot be characterized solely by

their initial bytes (e.g., valid TAR archives can have arbitrary

content in their first 254 bytes, possibly including signatures

for other file types). Therefore, they cannot be described

completely by any set of prefix-disjoint signatures.

Other semantic-gap attacks. Chameleon and werewolf

attacks are an instance of a general class of “semantic-gap”

attacks which exploit different views of the same object

by the security monitor and the actual system. The gap

described in this paper—the monitor’s (mis)understanding

of the type and structure of suspicious files—received much

less attention than other evasion vectors against AV scanners

and intrusion detection systems [16, 27, 31] and may very

well be the weakest link of malware defense.

Other, complementary evasion techniques exploit net-

working protocols (e.g., split malware into multiple packets),

obfuscate malware using mutation or packing [20], or, in

the case of malicious JavaScript, obfuscate it in HTML,

Flash, and PDF content. For example, Porst showed how

to obfuscate scripts so that they are not recognized by AV

scanners but parsed correctly by the Adobe reader [26].

HTML parsing is notoriously tricky [28], and cross-site

scripting can exploit HTML-parsing discrepancies between

browsers and sanitization routines [5, 35]. In contrast, we

show how the most primitive viruses, which are present in

standard virus databases and do not use any obfuscation, can

evade detection by exploiting discrepancies in the processing

of even basic file formats such as TAR and PE.

An entirely different kind of semantic gap is exploited by

“split-personality” malware, whose behavior varies between

monitored and unmonitored environments [8]. Such malware

contains code that tries to detect virtualization, emulation,

and/or instrumentation libraries. In contrast, our attacks are

completely passive, require no active code whatsoever, and

target a different feature of malware detection systems.

Semantic-gap attacks on system-call interposition exploit

the gap between the monitor’s and the OS’s views of system-

call arguments [12, 34]. These attacks typically involve

concurrency and are fundamentally different from the attacks

described in this paper.

Program differencing. Brumley et al. proposed to auto-

matically detect discrepancies between different implemen-

tations of the same protocol specification by converting

execution traces into symbolic formulas and comparing

Table I
TESTED AV SCANNERS.

AV number Name AV number Name AV number Name

1 ClamAV 0.96.4 2 Rising 22.83.00.03 3 CAT-QuickHeal 11.00

4 GData 21 5 Symantec 20101.3.0.103 6 Command 5.2.11.5

7 Ikarus T3.1.1.97.0 8 Emsisoft 5.1.0.1 9 PCTools 7.0.3.5

10 F-Prot 4.6.2.117 11 VirusBuster 13.6.151.0 12 Fortinent 4.2.254.0

13 Antiy-AVL 2.0.3.7 14 K7AntiVirus 9.77.3565 15 TrendMicro-HouseCall 9.120.0.1004

16 Kaspersky 7.0.0.125 17 Jiangmin 13.0.900 18 Microsoft 1.6402

19 Sophos 4.61.0 20 NOD32 5795 21 AntiVir 7.11.1.163

22 Norman 6.06.12 23 McAfee 5.400.0.1158 24 Panda 10.0.2.7

25 McAfee-GW-Edition 2010.1C 26 TrendMicro 9.120.0.1004 27 Comodo 7424

28 BitDefender 7.2 29 eSafe 7.0.17.0 30 F-Secure 9.0.16160.0

31 nProtect 2011-01-17.01 32 AhnLab-V3 2011.01.18.00 33 AVG 10.0.0.1190

34 Avast 4.8.1351.0 35 Avast5 5.0.677.0 36 VBA32 3.12.14.2

Table II
AFFECTED AV SCANNERS FOR EACH REPORTED ATTACK.

CVE Vulnerable scanners CVE Vulnerable scanners CVE Vulnerable scanners

2012-1419 1, 3 2012-1420 2, 3, 6, 10, 12, 14, 16, 18, 20,

22, 24

2012-1421 2, 3, 5, 22

2012-1422 2, 3, 20, 22 2012-1423 2, 6, 7, 8, 9, 10, 11, 12, 14,

20, 22

2012-1424 3, 9, 13, 17, 19, 22

2012-1425 3, 5, 7, 8, 9, 13, 15, 16, 17,

20, 21, 22, 23, 25, 26

2012-1426 2, 3, 6, 10, 14, 22 2012-1427 3, 19, 22

2012-1428 3, 19, 22 2012-1429 7, 8, 23, 25, 27, 28, 29, 30, 31 2012-1430 2, 19, 23, 25, 27, 28, 29, 30,

31

2012-1431 2, 6, 10, 19, 25, 27, 28, 29,

30, 31

2012-1432 7, 8, 24, 29 2012-1433 7, 8, 24, 29, 32

2012-1434 7, 8, 24, 32 2012-1435 7, 8, 24, 29, 32 2012-1436 7, 8, 24, 29, 32

2012-1437 27 2012-1438 19, 27 2012-1439 2, 24, 29

2012-1440 22, 24, 29 2012-1441 29 2012-1442 2, 3, 13, 16, 19, 23, 24, 25,

29, 30

2012-1443 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 19, 20, 21,

22, 23, 24, 25, 26, 27, 28, 29,

30, 32, 33, 34, 35, 36

2012-1444 24, 29 2012-1445 2, 24, 29

2012-1446 2, 3, 5, 9, 13, 16, 19, 22, 23,

24, 25, 29

2012-1447 24, 29 2012-1448 3, 7, 8, 26

2012-1449 2, 20 2012-1450 7, 8, 19 2012-1451 7, 8

2012-1452 3, 7, 8 2012-1453 2, 7, 8, 13, 15, 16, 18, 19, 23,

24, 25, 26

2012-1454 2, 23, 24, 25, 29

2012-1455 2, 20 2012-1456 2, 3, 5, 7, 8, 10, 12, 15, 16,

17, 19, 20, 22, 23, 24, 25, 26,

27, 29, 33

2012-1457 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

13, 14, 15, 16, 17, 18, 20, 21,

22, 23, 25, 26, 28, 29, 33, 34,

35, 36

2012-1458 1, 19 2012-1459 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27,

28, 30, 31, 32, 33, 34, 35, 36

2012-1460 3, 6, 10, 13, 14, 17, 29, 36

2012-1461 2, 5, 6, 7, 8, 12, 14, 15, 16,

17, 19, 20, 22, 23, 25, 26, 28,

30, 33, 36

2012-1462 3, 5, 7, 8, 12, 16, 17, 19, 22,

29, 32, 33

2012-1463 3, 6, 10, 22, 23, 24, 27, 28,

29, 30, 31, 32

them using SMT solvers [6]. Unfortunately, this approach

does not appear to be feasible for automatically discovering

chameleon and werewolf attacks. The programs tested by

Brumley et al. implement simple protocols like HTTP and

their parsing code is very shallow, i.e., it lies close to

the program’s entry point. By contrast, malware scanners

and applications do much more than parsing: scanners load

virus signatures, match them against the file, etc., while

applications perform a wide variety of operations before

and after parsing. Binary differencing must be applied to the

parsing code only, because the non-parsing functionalities of

malware detectors and applications are completely different.

This requires extracting the parsing code from the closed-

source binaries of both detectors and applications, which

is extremely difficult. Furthermore, both parsers must have

the same interface, otherwise their final output states cannot

be easily compared. Brumley et al. provide no method

for automatically recognizing, extracting, normalizing, and

comparing individual pieces of functionality hidden deep

inside the binary.

Furthermore, this technique generates formulas from one

execution path at a time and is less likely find bugs in

rare paths. By contrast, most of the attacks reported in

this paper—for example, the attack which concatenates

two separate streams of gzipped data to create a single

file—exploit bugs in unusual paths through the parsing code.

BEK is a new language and system for writing and

analyzing string-manipulating sanitizers for Web applica-

tions [15]. BEK can compare two sanitizers for equivalence

and produce a counter-example on which their outputs differ.

The BEK language is specifically tailored for expressing

string manipulation operations and is closely related to

regular expressions. It is ill-suited for expressing file-parsing

logic. For example, it cannot validate data-length fields in

file headers and similar content-dependent format fields.

Development of program analysis techniques for auto-

mated discovery of chameleon and werewolf attacks is an

interesting topic for future research.

III. ATTACKING FILE PROCESSING

Figure 1 shows the main components of the file-

processing logic of antivirus scanners. The basic pattern

applies to other automated2 malware detectors, both be-

havioral and signature-based, as long as they process files

independently of the endhost’s OS and applications.

parsing
FilePreprocessing

 +
Normalization

Select parts
to scan

Find relevant signatures

Input file

matchingSignature

File−type inference

Figure 1. File processing in antivirus scanners.

The first step is file-type inference. The scanner must

infer the file type in order to (1) parse the file correctly and

(2) scan it for the correct subset of virus signatures.

The second step is file parsing. Files in some formats

must be preprocessed before scanning (for example, the con-

tents of an archive must be extracted). Documents in formats

like HTML contain many irrelevant characters (for example,

whitespace) and must be normalized. In most file formats,

whether executable or application-specific, blocks of data

are interspersed with meta-data. For higher performance,

malware scanners parse the meta-data in order to identify

and scan only the potentially “interesting” parts of the file.

For example, a scanner may parse an MS Word document

to find embedded macros and other executable objects and

scan them for macro viruses. To detect viruses in Linux

ELF executables, which can contain multiple sections, the

scanner must construct a contiguous view of the executable

code. This requires parsing the meta-data (ELF header) to

find the offsets and sizes of code sections.

Chameleon and werewolf attacks. We will refer to at-

tacks that exploit discrepancies in file-type inference as

2Human operators may be able to manually prevent incorrect parsing and
file-type inference, but widespread deployment of human-assisted detectors
is not feasible for obvious scalability reasons.

chameleon attacks because attack files appear as one type

to the detector and as a different type to the actual OS or ap-

plication. We will refer to attacks that exploit discrepancies

in parsing as werewolf attacks because attack files appear

to have different structure depending on whether they are

parsed by the detector or the application.

Chameleon and werewolf attacks only change the meta-

data of the file; the contents, including the malicious pay-

load, are not modified (in contrast to code obfuscation and

polymorphism). These attacks (1) start with a file that is

recognized as malicious by the detector, (2) turn it into a

file that is not recognized as malicious, yet (3) the modified

file is correctly processed by the destination application or,

in the case of executables, loaded by the OS. If the same

file can be processed by multiple applications or versions of

the same application, we consider an attack successful if at

least one of them processes the modified file correctly.

Fingerprinting malware detectors and learning their

logic. Because file-type inference heuristics and file-parsing

logic vary from detector to detector, attacks are detector-

specific and it helps to know which detector is protecting

the target. This knowledge is often public—for example,

Yahoo Mail scans all messages with Symantec’s Norton

antivirus—but even in blind testing against Gmail’s unknown

scanner, two chameleon and one werewolf attacks (CVE-

2012-1438, 2012-1443, and 2012-1457) evaded detection.

Unknown detectors can be identified by tell-tale signs

in bounced messages [22], or by using chameleon and

werewolf attacks themselves. As Table II shows, different

attacks work against different detectors. By trying several

attacks and seeing which of them evade detection, the

attacker can infer the make and model of the detector.

The logic of open-source detectors like ClamAV can be

learned by analyzing their code, but the vast majority of

detectors are closed-source and their logic must be learned

by fuzzing and/or binary analysis. Secrecy of the file-

processing logic is a weak defense, however: we report

dozens of vulnerabilities in commercial scanners for which

we do not have the source code, many of them discovered

automatically by our black-box differential fuzzer.

IV. GENERATING ATTACKS

To test our attacks, we used VirusTotal [32], a free

Web service that checks any file against multiple antivirus

scanners (43 at the time of our testing). Several scanners

were not available at various times due to crashes, thus for

consistency we present the results for the 36 scanners that

were continuously available.

VirusTotal executes the command-line versions of all

AV scanners with maximum protection and all detection

methods enabled. We argue that this faithfully models the

level of defense provided by network-based detectors. By

design, they do not observe the actual processing of files

on the host and thus advanced detection techniques—for

Table III
TESTED APPLICATIONS.

File type Target application(s)

CAB Cabextract 1.2

CHM Microsoft HTML Help 1.x

ELF Linux kernel (2.6.32) ELF loader

GZIP Gzip 1.3.12, File Roller 2.30.1.1

DOC MS Office 2007, OpenOffice 3.2

PE Windows Vista SP2 PE loader, Wine 1.2.2 PE loader

RAR RAR 3.90 beta 2

TAR GNU tar 1.22, File Roller 2.30.1.1

7Z 7-Zip 9.04 beta

example, monitoring the program’s execution for signs of

malicious behavior—require the detector to accurately rec-

ognize the file type, parse the file, and replicate the host’s

execution environment. In Section IX, we explain why this

is challenging to do correctly.

Attacks were also confirmed by testing against the host-

based versions of AV software, where available.

We used five toy viruses from VX Heavens [33] in our

tests: EICAR, Linux Bliss and Cassini, Windows Cecile, and

MS Word ABC. If an exact, unobfuscated instance of such

a basic virus evades detection, more sophisticated malware

won’t be detected, either. We count an attack as successful

if the detector (1) recognizes the infection in the original

file, but (2) no longer recognizes it in the modified file.

Target applications used in our testing are summarized

in Table III. They were executed on laptops running Linux

Ubuntu 10.04 and Windows Vista SP 2.

Black-box differential fuzzing. To find werewolf attacks

automatically, we built a differential fuzzing framework that

finds discrepancies between the parsing logic of applications

and malware detectors. Because the source code of detectors

is rarely available, our framework is black-box. It is imple-

mented in Python and runs on both Linux and Windows.

The basic framework is format-independent, but format-

specific components are added as plugins. Each plugin

provides a parser, an output validator, and a fuzzer. The

parser breaks up the format-specific header into an array

of (name, offset, length) tuples, where name is the unique

name of a header field, offset is its location in the file, and

length is its size. The fuzzer modifies the content of the fields

using a format-specific algorithm. The validator checks if the

application still processes the modified file correctly.

Our framework takes as input two seed files in the

same format. One file is parsed correctly by the destination

application, the other is an infected file recognized by the

detector. The framework uses the format-specific fuzzer to

automatically generate modifications to the first file and the

output validator to check if the application still accepts the

file. If a modification is validated, the framework applies it

to the second, infected file and tests whether the detector

still recognizes the infection. This approach is better than

directly modifying the infected file and accessing it on

an endhost because (1) the host must be isolated (e.g.,

virtualized) in each test to prevent an actual infection,

imposing a significant performance overhead on the testing

framework, and (2) determining if the modified infected file

is accepted by the destination application is difficult because

applications are opaque and have complex side effects.

A modification is thus applied to the infected file only

if the application’s parser tolerates it. If the file is no

longer recognized as malicious, a discrepancy between the

application’s and the detector’s parsers has been found and

an actual attack can be generated and verified by accessing

the modified infected file on a secure, isolated host. We

consider an infection verified if the intact malware code is

extracted from the archive and/or loaded as an executable.

As a proof of concept, we implemented sample plugins for

MS Cabinet (CAB), Windows executable (PE), and Linux

executable (ELF) files. The fuzzer in these plugins tries a

simple modification to the file’s header, one field at a time:

it increments the content of each field (or the first byte if the

field spans multiple bytes) by 1; if this results in an overflow,

it decrements the content by 1. Output validators execute

destination applications on modified seed files and check the

return codes and the application’s output for correctness.

Once integrated with VirusTotal, our fuzzing framework

found dozens of parsing bugs in 21 different detectors

(Table XII). All result in actual werewolf attacks.

Of course, our simple framework cannot find all parsing

discrepancies. Some parsing bugs are hidden in rarely ex-

ecuted paths which can only be reached through specially

crafted inputs, requiring manual guidance to the fuzzer. For

example, attacks involving a concatenation of two gzipped

streams or a header with an incorrect checksum whose

length is modified to point into the following header (see

Section VI) are difficult to discover by automated fuzzing.

Another limitation is that our fuzzer does not fully “under-

stand” the dependencies between different fields of format-

specific headers and cannot automatically generate valid files

if several fields must be changed consistently. For example,

if file length is included in a header field, the file must be

truncated or augmented whenever this field is modified.

V. CHAMELEON ATTACKS

Chameleon attacks involve specially crafted files that

appear as one type to the file-type inference heuristics used

by the malware detector but as a different type to the OS or

application on the endhost.

The simplest chameleon attack is to hide the infected

file in an archive of a type not recognized by the detector,

causing it to apply generic malware signatures without

extracting the contents. Even this primitive attack is sur-

prisingly effective, as shown by Table IV.

In the rest of this section, we focus on more interesting

chameleon attacks that involve a file of one type masquerad-

ing as a file of a different type. Masquerade attacks cause

Table IV
SUPPORT FOR 11 ARCHIVE FORMATS: 7ZIP, 7ZIP-SFX, PACK, ISO, RAR, RAR(SFX), TAR.LZOP, TAR.LZMA, TAR.RZ, TAR.XZ, AR

Scanner Unsupported

formats

Scanner Unsupported

formats

Scanner Unsupported

formats

ClamAV 0.96.4 8 Rising 22.83.00.03 9 CAT-QuickHeal 11.00 9

GData 21 7 Symantec 20101.3.0.103 10 Command 5.2.11.5 8

Ikarus T3.1.1.97.0 9 Emsisoft 5.1.0.1 8 PCTools 7.0.3.5 10

F-Prot 4.6.2.117 9 VirusBuster 13.6.151.0 10 Fortinent 4.2.254.0 9

Antiy-AVL 2.0.3.7 8 K7AntiVirus 9.77.3565 9 TrendMicro-HouseCall 9.120.0.1004 10

Kaspersky 7.0.0.125 5 Jiangmin 13.0.900 9 Microsoft 1.6402 6

Sophos 4.61.0 8 NOD32 5795 7 AntiVir 7.11.1.163 7

Norman 6.06.12 9 McAfee 5.400.0.1158 10 Panda 10.0.2.7 8

McAfee-GW-Edition 2010.1C 10 TrendMicro 9.120.0.1004 10 Comodo 7424 11

BitDefender 7.2 9 eSafe 7.0.17.0 8 F-Secure 9.0.16160.0 8

nProtect 2011-01-17.01 10 AhnLab-V3 2011.01.18.00 10 AVG 10.0.0.1190 9

Avast 4.8.1351.0 7 Avast5 5.0.677.0 7 VBA32 3.12.14.2 9

harm in several ways. First, for efficiency, detectors usually

apply only a subset of analysis techniques and/or malware

signatures to any given file type. If the detector is confused

about the type, it may apply a wrong analysis. Second, many

file types require preprocessing (e.g., unpacking) before they

can be analyzed. A confused detector may apply a wrong

preprocessing or no preprocessing at all.

File-type inference heuristics. File-type inference in mal-

ware scanners is not based on the file extension. Even if

the endhost runs Windows, which by default relies on the

extension to determine the file’s type, users may override the

defaults and use any program to open any file. Therefore,

all tested scanners ignore the extension and attempt to

determine the actual type of the file. The simple attack

of renaming the extension thus does not work, but neither

does the simple defense of having the scanner rewrite the

extension to match the file’s actual type (see Section VII).

To illustrate file-type inference heuristics, we use Cla-

mAV v0.95.2, a popular open-source scanner [9]. The basic

principles apply to other detectors, too, as evidenced by the

success of chameleon attacks against all of them. For most

file types, ClamAV uses fixed-offset byte-string signatures,

but for certain types such as HTML or self-extracting ZIP

archives, ClamAV also uses regular-expression signatures,

described later in this section. Fixed-offset signatures are

tuples of the form (offset, magic-content, length) where offset

denotes the offset from the beginning of the file which is

to be checked for this particular file type, magic-content is

the sequence of bytes starting from offset that any file of

this type should have, and length is the length (in bytes)

of that sequence. Some of ClamAV’s file-type signatures

are shown in Table XIII in the appendix. For example,

ClamAV’s signature for ELF executables is (0, 7f454c46,

4), thus any file which has 7f454c46 as its first four bytes

will be considered as an ELF file by ClamAV.

Algorithm 1 shows a simplified version of ClamAV’s

algorithm for inferring the file type. The order of signatures

in the list matters: once ClamAV finds a match, it does

not check the list any further. In particular, if a fixed-offset

Algorithm 1 Simplified pseudocode of ClamAV’s file-type

inference algorithm.

Read first 1024 bytes of input file into buf

for each fixed-offset file-type signature s in the specified

order do

if !memcmp(buf+s.offset, s.magic-content, s.length) then

if s is a file type to ignore then

return ignore

else

return s.filetype

end if

end if

end for

Check buf for regex file-type signatures using Aho-

Corasick algorithm

if buf matches a regex signature r then

return r.filetype

else

return unknown file type

end if

signature is matched, all regex signatures are ignored. This

is exploited by one of our attacks.

From version 0.96 onward, ClamAV also supports LLVM

bytecode signatures, typically used to detect polymorphic

malware in a file-format-aware manner. These signatures are

only checked for specific file types, e.g., a signature regis-

tering PDF HOOK DECLARE will only get checked

if the inferred file type is PDF. Therefore, these signatures

are extremely susceptible to chameleon attacks.

Requirements for file-type masquerade. Let A be the file’s

actual type and let B be the fake type that the attacker wants

the detector to infer. For the masquerade to be successful,

three conditions must hold for the file-type signatures SA

(for type A) and SB (for type B):

1) SA and SB do not conflict, i.e., there are no i, j

such that 0 ≤ i < SA.length, 0 ≤ j <

SB.length, SA.offset + i = SB.offset + j, and

Table V
VULNERABLE FILE-TYPE PAIRS IN CLAMAV

Real type Fake type Real type Fake type

POSIX TAR mirc.ini ELF POSIX TAR

PNG POSIX TAR ELF JPEG

GIF JPEG ELF SIS

BMP JPEG MPEG POSIX TAR

MP3 POSIX TAR JPEG POSIX TAR

PNG JPEG BMP JPEG

SA.magic-content[i] 6= SB.magic-content[j].
2) The detector matches SB before SA.

3) Destination OS or application correctly processes files

of type A containing both SA and SB .

The first condition ensures that the same file may contain

both SA and SB , the second that the detector infers type B

for the file before it has a chance to infer type A. In our

testing, we discovered 12 file-type pairs that satisfy all three

conditions for ClamAV (Table V).

Masquerade alone is not enough. Even if the detector

infers the wrong file type, it may still detect the infection

by scanning the file as a “blob” or if the signatures asso-

ciated with the inferred type contain the virus. That said,

masquerade is a good start for exploring chameleon attacks.

Table VI
CHAMELEON ATTACKS WITH EICAR-INFECTED TAR FILES.

Actual file type Fake file type No. of vulnerable AVs CVE

POSIX TAR mirc.ini 2 2012-1419

POSIX TAR ELF 11 2012-1420

POSIX TAR CAB 4 2012-1421

POSIX TAR CHM 4 2012-1422

POSIX TAR PE 11 2012-1423

POSIX TAR SIS 6 2012-1424

POSIX TAR PKZIP 16 2012-1425

POSIX TAR BZip2 6 2012-1426

POSIX TAR WinZip 3 2012-1427

POSIX TAR JPEG 3 2012-1428

Table VII
CHAMELEON ATTACKS WITH BLISS-INFECTED ELF FILES.

Actual file type Fake file type No. of vulnerable AVs CVE

ELF POSIX TAR 9 2012-1429

ELF SIS 9 2012-1430

ELF JPEG 10 2012-1431

Table VIII
CHAMELEON ATTACKS WITH CECILE-INFECTED PE FILES.

Actual file type Fake file type No. of vulnerable AVs CVE

PE Winzip 4 2012-1432

PE JPEG 5 2012-1433

PE SIS 4 2012-1434

PE PKLITE 5 2012-1435

PE LZH 5 2012-1436

Results for chameleon attacks. Our description of file-

type inference logic focuses on ClamAV because its open-

source code makes it easy to explain the heuristics. File-type

Table IX
CHAMELEON ATTACKS FOR ABC-INFECTED MS OFFICE 97 DOC FILES.

Actual file type Fake file type No. of vulnerable AVs CVE

MS Office PKSFX 1 2012-1437

MS Office POSIX TAR 2 2012-1438

inference based on magic strings is by no means unique

to ClamAV, however. All tested scanners proved vulnerable

to masquerade-based chameleon attacks. The results are

summarized in Table X; the masquerade pairs for each attack

and scanner are shown in Tables VI, VII, VIII, and IX.

In all attacks, to masquerade as a particular type we used

ClamAV’s magic string if supported by ClamAV, otherwise

a string from Table XIV in the appendix.

Sample attack: making a TAR archive look like mirc.ini

We describe a sample exploit against ClamAV in which a

POSIX TAR file masquerades as a ‘mirc.ini’ file. Their file-

type signatures are disjoint and the signature of ‘mirc.ini’ is

matched before the signature of TAR. It remains to ensure

that adding the ‘mirc.ini’ signature to a TAR file does not

affect the processing of the archive by the tar program.

Table XIII says that the signature of ‘mirc.ini’ begins at

offset 0 and ends at offset 9. Thus the 0 − 9 bytes of the

input TAR file must be changed to ‘5b616c69617365735d’.

Because the initial 100 bytes contain the name of the first

file, the first 9 bytes of this name will change as a side

effect. This does not affect the archive’s contents and any

virus infecting any file in the archive will be free to spread.

We converted this masquerade exploit into a working

chameleon attack using the test EICAR virus [11], which

is detected by all antivirus scanners, including ClamAV. If

the first 9 bytes of a TAR archive containing ‘eicar.com’

are directly changed to ‘5b616c69617365735d’ (‘[aliases]’

in ASCII), the tar application considers the archive cor-

rupted because the names of all member files are part of a

checksum-protected header block. To avoid this issue, it is

sufficient to rename ‘eicar.com’ to ‘[aliases].com’ and put

it inside the TAR archive. ClamAV does not recognize the

file as an archive and scans it as a “blob,” looking for the

EICAR signature only at offset 0 and failing to detect it in

the middle of the file. Another approach is to use a TAR

manipulation library to change the checksum, but this is not

necessary here because the fake file-type signature ‘[aliases]’

only contains ASCII characters.

Sample attack: user-repaired archive. The application on

the endhost is often capable of repairing the modified file

(this is common in archiving programs). In some cases, it

may prompt the user whether she wants to repair the file.

Most users answer ‘Yes’ to these questions.

Given a RAR archive with an EICAR-infected file, we

changed the first two bytes to “MZ,” which is the magic

identifier for Windows executables. None of the tested

scanners detected the infection in the modified archive, yet

Table X
SUCCESSFUL CHAMELEON ATTACKS.

Format type File format No. of attacks CVE

non-archive

ELF 3 2012-1429, 2012-1430, 2012-1431

PE 5 2012-1432, 2012-1433, 2012-1434, 2012-1435, 2012-1436

MS Office 97 2 2012-1437, 2012-1438

archive

TAR 10 2012-1419, 2012-1420, 2012-1421, 2012-1422, 2012-1423, 2012-1424,

2012-1425, 2012-1426, 2012-1427, 2012-1428

RAR 1 2012-1443

the RAR program on the endhost repaired it and correctly

extracted the infected file. This is especially surprising

because this particular attack is anecdotally known [2].

Sample attack: exploiting regex-based file-type inference.

To recognize certain formats, ClamAV uses regular expres-

sions to match magic strings that can occur anywhere in

a file, in addition to looking for magic strings at fixed

offsets. We describe two sample attacks on this combination

of fixed-offset and regex-based inference (tested against

ClamAV only and thus not counted in Table X).

ZIP archives may start with arbitrary bytes. To recog-

nize ZIP files, ClamAV uses both a fixed-offset signature

‘504b0304’ at offset 0 and a regex signature ‘504b0304’

which can appear at any offset within the input file. Once

a format has been recognized according to the fixed-offset

signature, ClamAV does not do any further inference—even

if there are regex matches inside the file. To exploit this, we

created a ZIP file containing a Cassini-infected executable

and prepended the string ‘504b0304’ to it. ClamAV matched

the fixed-offset signature at offset 0 but failed to notice

the regex signature at offset 4, was thus unable to extract

the contents correctly, and declared the archive clean. The

destination application (unzip) ignored the initial bytes and

extracted the infected file.

The second attack exploits the fact that ClamAV ig-

nores files of certain types (e.g., MPEG video and Ogg

Vorbis audio) because they are not affected by any major

viruses. We created a CAB archive containing a Cassini-

infected file and prepended the string ‘000001b3’ to it,

which is the fixed-offset MPEG signature. ClamAV’s file-

type database contains a regex signature for CAB for-

mat—‘4d534346’ anywhere in the file, which matches CAB

files even with garbage prepended—but ClamAV does not

apply regex signatures once the fixed-offset signature has

been matched. Therefore, ClamAV infers MPEG type for the

file and does not scan it, while the destination application

(cabextract) correctly extracts the infected file.

VI. WEREWOLF ATTACKS

Werewolf attacks tamper with the file’s meta-data, causing

the detector to parse it incorrectly and/or incompletely.

In contrast, the OS or application on the endhost usually

“understands” the format much deeper (see Section VIII-A)

and processes the file correctly.

Table XI shows that every scanner we tested is vulner-

able to multiple file-parsing attacks. Table XII summarizes

the header-parsing discrepancies found by our differential

fuzzing framework. All of them result in successful were-

wolf attacks; the rest were found by manual analysis.

Below, we explain some of the attacks, using ClamAV as

an example of an open-source detector and McAfee as an

example of a closed-source detector.

Table XI
SUCCESSFUL WEREWOLF ATTACKS.

Format type File format No. of vulnerable AVs CVE

non-archive
ELF 12 2012-1463

CHM 2 2012-1458

archive

ZIP 20 2012-1456

TAR 29 2012-1457

TAR 35 2012-1459

TGZ 8 2012-1460

TGZ 20 2012-1461

ZIP 12 2012-1462

Table XII
HEADER-PARSING ERRORS (ALL RESULT IN WEREWOLF ATTACKS).

Format type Format Header fields No. of

vuln. AVs

CVE

non-archive

ELF

padding 4 2012-1439

identsize 5 2012-1440

class 11 2012-1442

abiversion 4 2012-1444

abi 4 2012-1445

encoding 14 2012-1446

e version 4 2012-1447

ei version 6 2012-1454

PE
e minalloc + 13 others 2 2012-1441

e ip and e res 1 2012-1441

archive CAB

cbCabinet 5 2012-1448

vMajor 2 2012-1449

reserved3 3 2012-1450

reserved2 2 2012-1451

reserved1 3 2012-1452

coffFiles 14 2012-1453

vMinor 2 2012-1455

A. Sample werewolf attacks on archive files

Wrong checksum. In a POSIX TAR archive, each member

file has a 512-byte header protected by a simple checksum.

All headers also contain a file length field, which is used by

the extractor to locate the next header in the archive. Most

scanners do not use the checksum field when parsing an

archive. This is reasonable because a virus may lurk even

in an archive whose checksum is wrong, but in this case the

scanners are too smart for their own good.

Our sample attack uses a TAR archive with two files: the

first one is clean, while the second is infected with the test

EICAR virus. The length field in the header of the first,

clean file has been modified to point into the middle of the

header of the second, infected file (see Figure 2). Scanners

that do not verify the checksum field are unable to find the

beginning of the second header. 35 of the 36 tested scanners

fail to detect the infection in the modified archive (the only

exception is eSafe 7.0.17.0).

In contrast, tar on Linux discovers that the checksum

is invalid, prints out a warning, skips the first header, finds

the second, infected file by searching for the magic string

“ustar,” and proceeds to extract it correctly.

chksumlengthchksumlength

chksum
(corrupt)

length chksum
(benign)

length

header 1 header 2

header 1 header 2

file 1 file 2

file 1

crafted TAR archive

regular TAR archive

file 2
(infected)

Figure 2. A crafted TAR archive with the modified length field in the first
header.

Misleading length. If the length field in the header of a file

included into a TAR archive is greater than the archive’s total

length (1, 000, 000+original length in our experiments), 29
out of 36 scanners fail to detect the infection.

One of the vulnerable scanners is McAfee, which has the

default upper limit of 1 MB on memory for loading a file.

Since the size specified in the header is greater than 1 MB,

McAfee declares the file clean. GNU tar prints a warning

but extracts the infected contents correctly.

Multiple streams. GZIP files can contain multiple com-

pressed streams, which are assembled when the contents are

extracted. This feature can be used to craft a .tar.gz file

with the EICAR test virus broken into two parts. 20 out of

36 scanners fail to detect the infection. When the contents

are extracted, the infected file is correctly reassembled.

For example, McAfee simply ignores all bytes after the

first stream of compressed data. Even if another infected file

is appended to a GZIP file containing multiple compressed

streams, McAfee fails to detect the infection.

Random garbage. If a ZIP archive has garbage bytes in the

beginning, the unzip program skips these bytes and still

extracts the contents correctly (we used Zip 3.0 and UnZip

6.00 in Ubuntu 10.04 for this test). 12 out of 36 scanners

fail to detect the infection in a file consisting of 1024 bytes

of random garbage followed by an EICAR-infected ZIP file.

Note that the file still has the proper .zip extension.

Random garbage at the end of a valid GZIP archive

does not affect the gzip program, which simply ignores it

when extracting the contents. Yet, given an EICAR-infected

.tar.gz file with 6 random bytes appended, 8 out of 36
scanners fail to detect the infection.

Ambiguous files conforming to multiple formats. Flex-

ibility of many file formats enables an attacker to create

werewolf files that can be correctly parsed according to more

than one format and produce different results. Given that

zip correctly parses ZIP archives with garbage prepended,

while tar correctly parses TAR archives with garbage

appended, we created a werewolf file consisting of a TAR

archive followed by a virus-infected ZIP archive. This file

can be processed either by tar, or by zip and different

contents will be extracted depending on which program is

used. 20 out of 36 scanners fail to detect the infection.

Other werewolf files that can be parsed according to

multiple formats are CAB-TAR, ELF-ZIP, and PE-CAB.

Some of these pairs include non-archive formats!

B. Sample werewolf attacks on non-archive files

Werewolf attacks are also effective against executables,

Office documents, and CHM files. Many modern file formats

are similar to archives because they can can contain em-

bedded objects of different types. This makes parsing much

harder and opens the door to werewolf attacks.

Fake endianness. In most ELF files, the 5th byte of the

header indicates endianness: 01 for little-endian, 02 for big-

endian. Linux kernel, however, does not check this field

before loading an ELF file. If the 5th byte of a Bliss-infected,

little-endian ELF file is changed to 02, 12 out of 36 scanners

fail to detect the infection.

Empty VBA project names. MS Word files may contain

embedded objects such as executable macros, images, etc.

Because viruses can exploit the auto-execution feature, de-

tectors try to recognize and scan macros in the document.

In this example, we focus on how ClamAV does this.

In MS documents, macros are generally stored inside

VBA (Visual Basic for Application) projects. A group of

VBA projects is identified by a two-byte signature, “cc61”;

each project in a group has an unique unicode name. Cla-

mAV first iterates through the VBA project names treating

the data as little-endian and checks if the resulting names

are valid (have positive length and begin with “*\g”, “*\h”,

“*\”, or “*\d”). If an invalid name is found, ClamAV stops.

ClamAV stores the number of valid project names it found in

the first pass and repeats the same process, but now assuming

that the data are big-endian. Finally, ClamAV compares the

number of strings found during the two passes. If the first

number is greater than the second, ClamAV treats the file as

little-endian, otherwise, as big-endian.

We created an ABC-infected Word file in which the first

VBA project name is empty but the other names are intact.

When parsing project names, ClamAV calculated the valid

name count to be 0 in both little-endian and big-endian

cases and failed to detect the infection. On the other hand,

destination applications (MS Office 2007 and OpenOffice)

open the document correctly and execute the infected macros

even though the first project name is empty.

Incorrect compression reset interval. A Windows Com-

piled HTML Help (CHM) file is a set of HTML files, scripts,

and images compressed using the LZX algorithm. For faster

random accesses, the algorithm is reset at intervals instead

of compressing the entire file as a single stream. The length

of each interval is specified in the LZXC header.

If the header is modified so that the reset interval is lower

than in the original file, the target application (in this case,

Windows CHM viewer hh.exe) correctly decompresses

the content located before the tampered header. On the

other hand, several detectors (including ClamAV) attempt

to decompress the entire CHM file before scanning it for

malware. When they fail to decompress the contents located

after the tampered header, they declare the file to be clean.

Bypassing section-specific signatures. ClamAV uses

section-specific hash signatures when scanning Windows

executables. They contain the offset and the length of a

section of the file and the value of its MD5 hash. 85% of

signatures in ClamAV’s current database are of this type.

If ClamAV’s parser mistakenly believes that the executable

is corrupt or contains some unsupported features, ClamAV

skips the section-specific hash signatures, enabling evasion.

VII. DEFENSES AGAINST CHAMELEON ATTACKS

Simplistic solutions such as changing the order in which

magic strings are matched may address the specific vul-

nerabilities we found but will undoubtedly introduce new

ones. One generic defense against all chameleon attacks is

to recognize files that match multiple types and process

them for all matching types. This may open the door to

denial of service if the attacker floods the detector with

files containing a large number of magic strings. To prevent

this, the detector should reject files with an abnormally high

number of possible types, but this only works for fixed-offset

magic strings. Checking whether the file matches more than

a certain number of regular expressions can still impose an

unacceptable overhead on the detector.

Another approach is normalization: the detector can mod-

ify the file to ensure that the endhost’s interpretation of

its type matches the detector’s. In Windows, file extension

determines by default which program is used to open it.

In Linux, desktop managers such as KDE and GNOME use

extensions as the first heuristic and fall back on magic strings

if the file has an unknown extension or no extension at all.

Unfortunately, rewriting the extension is not a failproof

defense against chameleon attacks because it does not guar-

antee that the endhost’s behavior matches the detector’s

expectations. First, users may override the default settings

in both Windows and Linux and choose any program to

open any file. Second, for endhosts running Linux, the

detector must be aware of the list of known extensions: if the

normalized extension is not on the list, chameleon attacks

may still succeed even with the default settings.

VIII. NETWORK-BASED DEFENSES AGAINST

WEREWOLF ATTACKS

No matter what technique a network-based detector is

using—scanning for virus signatures, emulated execution,

behavioral analysis, etc.—it must first recognize the type

of the file and parse it correctly. Even behavioral detection

does not help if the detector is unable to find executable

code in a maliciously crafted file and thus cannot execute it.

Because network-based detectors do not observe the actual

processing and/or execution of the file on the endhost, they

must guess how the endhost may process the file. If a

network-based detector is protecting multiple endhosts, it

must guess correctly for all of them. In the rest of this

section, we argue that this is extremely error-prone.

A. “Write a better parser”

The obvious defense against werewolf attacks is to ensure

that the malware detector parses each file exactly the same

way as the file’s destination application or OS, thus elim-

inating the “semantic gap.” Note, however, that detectors

deployed on mail servers, network gateways, as a cloud-

based service, etc. aim to benefit from economies of scale

and typically protect many hosts with a diverse set of

applications installed on them.

To prevent werewolf attacks, the malware detector must

parse each file in multiple ways, one for every possible

destination application and OS. The detector must (1) know

all applications that may possibly be used on any of the

endhosts to access the file, (2) know every application’s

parsing logic, (3) precisely replicate this logic within the

detector for all possible inputs, including damaged and non-

compliant files, (4) replicate every known and unknown bug

in every application’s parsing algorithm, and (5) be promptly

updated with a new algorithm whenever an application is

installed or updated on any endhost.

Format-compliant parsing is not enough. Format specifi-

cations prescribe how to parse correctly formatted files. In

practice, however, many files do not fully conform to the

specification, thus (1) applications are designed to handle

even non-compliant files, and (2) blocking “malformed” files

is likely to render the detector unusable because of false pos-

itives. Many formats do not define what it means for a file to

be “well-formed,” causing files created by legitimate appli-

cations to appear malformed. For example, up to 68% of PE

executable images in the wild have structural anomalies and

do not conform to the PE format specification [29]. Formats

like PDF have no universally recognized notion of validity

and even conformance benchmarks accept malformed and

corrupt files [14]. Furthermore, every application parses non-

compliant files in its own idiosyncratic way, resulting in

different outputs for the same input (see Fig. 3).

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

A3

A1

A2

produces valid output
i−th application

Ai: inputs from which

format−compliant inputs

Figure 3. Parsing discrepancies.

Let I be the set of all possible file inputs, O the set of

possible outputs, and Sf : IS → OS the specification for

format f , where IS ⊂ I and OS ⊂ O. An ideal program

Pideal would only produce an output for compliant inputs:

Pideal(x) =

{

Sf (x) if x ∈ IS
Error if x ∈ I − IS

In practice, however, applications have to deal with non-

compliant inputs that lie in I − IS . Any real program Preal

has its idiosyncratic way Sd of parsing non-compliant files:

Preal(x) =







Sf (x) if x ∈ IS
Sd(x) if x ∈ Id where Sd : Id → OS

Error if x ∈ I − (IS ∪ Id)

Suppose there are n programs P1, P2, . . . , Pn for process-

ing format f . The detector AV does not know which of them

will be used on the endhost and must produce:

AV (x) =















Sf (x) if x ∈ IS
Sd1

(x) . . . ∪ Sdn
(x) if x ∈ Id1

. . . ∪ Idn

Error if x ∈ I − (IS ∪ Id1

. . . ∪ Idn
)

Building such a parser is very difficult. For example,

specifications of archive formats usually do not say what to

do when some member files are damaged or malformed (e.g.,

have invalid checksums). Some applications extract only the

valid files, others generate an error, yet others attempt to

repair the damage or simply ignore the invalid checksums.

Critically, many applications produce usable outputs even

for the input files that are invalid according to the format

specification.

Detectors do not parse in the same way as applications.

First, the parsing functionality of applications is much richer

than that of malware detectors. Detectors only implement

the bare minimum needed to analyze a file for malware.

In the above example, many detectors ignore checksums in

archives because their goal is to find hidden malware code,

not verify file integrity. At first glance, a parser that ignores

checksums seems safe because, in theory, it should accept

strictly more inputs than a parser that verifies checksums. As

we show in Section VI, this is not true! Ignoring checksums

introduces subtle parsing discrepancies between the parser

and the application and enables werewolf attacks.

Second, applications often have bugs in their file-parsing

code. The detector must replicate every known and unknown

parsing bug in every application that could be used on any

endhost to handle the file.

Third, many format specifications are incomplete and/or

nondeterministic. As a consequence, different applications

make different choices and parse even the same compliant

file in different ways. For example, parsing of PDF files is

notoriously loose [14, 26].

Fourth, specifications of proprietary file formats are often

closed-source and change with every release of the applica-

tion, making it infeasible for the implementors of malware

detectors to keep up.

It is hard to replicate the application’s parsing logic.

Even with access to the application’s parser, it is difficult to

write another parser that exactly replicates its behavior on

all possible inputs. For example, after 12 years of bug-fixing

there are still many file-parsing discrepancies between the

“functionally equivalent” busybox and coreutil versions of

Unix utilities [7]. 238 out of 743 compatibility bugs between

OpenOffice and MS Office are caused by file processing [24]

and even after a significant reverse-engineering effort, faith-

ful replication of parsing remains a challenge [23].

In general, complete replication of the input-output behav-

ior is infeasible for most non-trivial systems. Non-parsing

examples include differences between OS implementations

of the same network protocol stack (exploited by Nmap) and

differences between monitored and unmonitored execution

environments (exploited by split-personality malware [8]).

Same file can be parsed according to different, contra-

dictory formats. Many file formats are flexible enough that

an attacker can craft a single file which is valid according to

multiple file formats and can be correctly parsed in multiple

ways. For example, as mentioned in Section VI, a werewolf

file consisting of a valid TAR archive followed by a valid

ZIP archive can be processed either by tar, or by zip and

will produce different results depending on which program

is used. Similar attacks are possible for other format pairs,

such as ELF and ZIP or PE and CAB.

The detector must determine all possible formats with

which the file may be compatible, and, for each format, parse

the file in all possible ways supported by all applications

dealing with this format. Even if this were feasible, it is

likely to impose an unacceptable performance overhead.

Detector must keep an up-to-date list of all applications

on all protected endhosts. Even if the detector were capable

of accurately replicating hundreds of different file-parsing

algorithms, it must know which algorithms to apply. To do

this, the detector must know which applications may handle

the file of any of the protected endhosts at any given time,

and its parsing logic must be promptly updated whenever a

new version of any application is installed on any endhost.

In many cases—for instance, when the detector is running

on a mail server—the complete set of protected applications

may not even be known.

For example, one of our werewolf attacks involves a TAR

archive with a single file and a malformed header specifying

a significantly larger length than the actual size of the file.

We tested three different Linux applications: GNU tar 1.22,

7-Zip 9.04 beta, and File Roller 2.30.1.1. 7-Zip was not able

to extract the contents. GNU tar extracted the contents with

an “unexpected EOF” warning. Surprisingly, File Roller,

which is a GUI front-end for GNU tar, failed to extract

the contents. Further examination revealed that even though

GNU tar extracts correctly, it returns 2 instead of the usual

0 because it reached the end of file much earlier than it

was expecting based on the length field of the header. This

causes File Roller to produce an error message.

File parsing is version-dependent even in the same appli-

cation. For example, GNU tar up to version 1.16 supported

ustar type N header logical records, but later versions of

GNU tar no longer do.

It is hard to update parsing code. Adding or modifying a

file parser is not nearly as simple as adding a new virus sig-

nature. All signatures share a common format, thus a generic

signature-matching engine is usually capable of handling

both old and new signatures. Adding new signatures does not

require any changes to the signature format or the scanning

code. Parsers, on the other hand, must be implemented by

hand and manually updated after any change in the parsing

logic of any of the protected applications.

Normalization is no easier than parsing. Normaliza-

tion—rewriting a non-compliant file so that it complies with

the format specification—may help in defeating werewolf

attacks. Unfortunately, it requires parsing the file first and

thus faces all the problems outlined above.

For example, consider normalizing an archive to remove

invalid files. The detector must parse the archive to find

individual files and determine their validity according to the

specification of each file’s format. This is extremely error-

prone. Suppose that per specification, the 5th byte of the file

contains the format version number. Now the detector must

keep track of valid version numbers for each format, and so

on. The notion of validity varies dramatically from file to

file, with different parts of the header and content used for

this purpose in different formats. This makes normalization

infeasible for all but the simplest formats.

B. Do not parse files in the detector

An alternative to parsing is to submit each file to a

virtual environment that lets it be parsed by the actual

application or loaded by the guest OS, then tries to detect

malware from outside the OS (e.g., using virtual-machine

introspection [13]). This approach defeats chameleon and

werewolf attacks only if all of the following hold: (1) the

guest OS and applications are exact replicas of the protected

endhost; (2) if there are multiple endhost configurations

(e.g., if different hosts may use different applications or

versions of the same application to access a given file),

every configuration is replicated exactly; (3) the analysis

environment exactly replicates human behavior, including

user responses to “repair corrupted file?” messages; and

(4) the environment is not vulnerable to split-personality

evasion [8]. Production deployment of network- or cloud-

based malware detectors that satisfy all of these requirements

is a hard problem beyond the scope of this paper.

C. Defend in depth

Many attacks are detector-specific, thus applying mul-

tiple detectors to the same file—as advocated by Clou-

dAV [21]—may provide better protection, at a significant

performance cost. Some of our attacks, however, evaded all

36 tested AV scanners. Furthermore, several non-interfering

attacks can be combined in a single file, enabling it to evade

multiple detectors.

IX. HOST-BASED DEFENSES AGAINST WEREWOLF

ATTACKS

One of the main purposes of network-based deployment

of malware detectors is to reduce the need for host-based

detection. Nevertheless, we discuss host-based defenses for

completeness. Host-based techniques—such as continuously

scanning the memory for signs of malicious behavior—are

effective because the detector operates during or after the file

has been processed and thus does not need to independently

replicate the results of file processing. Therefore, host-based

detectors are better equipped to deal with chameleon and

werewolf attacks. In practice, however, many are vulnerable

to the same attacks as their network-based versions.

A. On-access scanning

A typical on-access scanner intercepts file-open, file-close,

and file-execute system calls and scans their targets for

infection. On-access scanners are effective against werewolf

attacks on archive formats only because they do not need

to parse archives. After the user has extracted the contents,

she will try to open and/or execute them. At this point, the

scanner intercepts the open/execute system call and detects

the virus before any harm is done. This is a special case

where the results of parsing (i.e., the extracted files) are

stored in the file system and thus accessible to the scanner.

Unfortunately, as we show in this paper, werewolf attacks

affect not only archive formats, but also ELF, PE, and

MS Office (among others). For these formats, existing on-

access scanners do not have access to the internal data

representation after the OS or application has parsed the

file and must rely on their own parsing, opening the door

to werewolf attacks. For example, on-access scanning in

ClamAV uses a Linux kernel module called Dazuko that

scans the target files of open, close, and exec system calls. In

our experiments, ClamAV successfully detected an infected

file unpacked from a malformed archive into the monitored

directory, but failed to detect an infected Word file with an

empty VBA project name (see Section VI-B) even when

opened by OpenOffice from the same directory.

B. Tight integration with applications

When running on the host, a malware detector can benefit

from tighter integration with the file-processing logic of the

OS and applications. One plausible approach is for the OS

and application implementors to refactor their code so that

the detector can be invoked in the middle of file processing

and given access to the results of parsing. Unfortunately, this

approach is insecure against malware that exploits vulnera-

bilities in the parsing code itself. For example, a detector that

waits until the JPEG library has parsed a JPEG file before

checking that the file is safe cannot protect the library from

malicious JPEGs that use bugs to take it over, defeating the

purpose of malware detection. Furthermore, tight integration

between applications and external functionality which is

not integral to the their operation adds complexity and is

contrary to the principles of modular system design.

Figure 4. Application refactoring to mitigate werewolf and chameleon
attacks on host- and cloud-based malware scanners.

Privilege separation can help solve this “chicken and egg”

dilemma if the application is refactored so that the parsing

code runs at lower privilege than the rest of the application.

The parser can invoke a host- or even cloud-based malware

detector and send the results of parsing for scanning, as

shown in Fig. 4. After the detector declares them clean, they

are passed on to the rest of the application. This architecture

avoids the need to replicate application-specific parsing in

the detector. Even if malware exploits a vulnerability in the

parser, it will only gain the ability to perform low-privilege

operations that the parser is allowed to perform.

Implementing this architecture requires that the antivirus

vendors support a standardized interface through which ap-

plications can submit parsed data for analysis. Some existing

archiving applications such as WinRAR and WinZip support

invocation of command-line antivirus scanners, but this func-

tionality is not yet available in non-archiving applications.

Another approach is for the application and the detector

to use the same parsing code, e.g., by employing the same

parsing library. For instance, multiple-streams and random-

garbage attacks do not work against ClamAV because

ClamAV uses the libz library for parsing GZIP files.

The origins of libz are similar to gzip, thus ClamAV

effectively uses the same parsing code as the application.

This approach suffers from most of the flaws outlined

in Section VIII-A—the detector must know exactly which

parsing code is used by the application and must be updated

whenever the application’s parsing logic changes—but these

flaws may be easier to mitigate in a host-based deployment.

X. CONCLUSION

We presented two classes of practical attacks against au-

tomated malware detectors. They enable even unobfuscated,

easily recognizable malware to evade detection by placing

it in specially crafted files that are processed differently by

the detector and the endhost. All 36 antivirus scanners in

our experimental testing proved vulnerable to these attacks,

yielding a total of 45 different exploits, almost all of which

are reported here for the first time. The rest have been known

only anecdotally and never been systematically analyzed.

We argue that semantic gaps in file processing are a funda-

mental flaw of network- and cloud-based malware detectors,

regardless of the actual detection technique they use. As

long as the detector analyzes files on its own, independently

of the actual operating systems and applications on the

endhosts, it faces the insurmountable challenge of correctly

replicating their file-processing logic on every possible input.

Development of malware detectors that do not suffer from

this gap—for example, if they operate on exact virtual

copies of protected systems that process each file using the

actual applications and faithfully emulate human response,

or if they are integrated with the parsing logic of actual

applications—is an interesting topic for future research.

Acknowledgments. The research described in this paper

was partially supported by the NSF grants CNS-0746888

and CNS-0905602, Google research award, and the MURI

program under AFOSR Grant No. FA9550-08-1-0352.

REFERENCES

[1] S. Alvarez. Antivirus insecurity. http:

//events.ccc.de/camp/2007/Fahrplan/attachments/1324-

AntivirusInSecuritySergioshadownAlvarez.pdf, 2007.

[2] S. Alvarez and T. Zoller. The death of AV de-

fense in depth? - revisiting anti-virus software. http:

//cansecwest.com/csw08/csw08-alvarez.pdf, 2008.

[3] avast! Anti-virus engine malformed ZIP/CAB archive

virus detection bypass. http://secunia.com/advisories/

17126/, 2005.

[4] A. Barth, J. Caballero, and D. Song. Secure content

sniffing for web browsers, or how to stop papers from

reviewing themselves. In S&P, 2009.

[5] D. Bates, A. Barth, and C. Jackson. Regular expres-

sions considered harmful in client-side XSS filters. In

WWW, 2010.

[6] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and

D. Song. Towards automatic discovery of deviations in

binary implementations with applications to error de-

tection and fingerprint generation. In USENIX Security,

2007.

[7] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted

and automatic generation of high-coverage tests for

complex systems programs. In OSDI, 2008.

[8] X. Chen, J. Andersen, Z. Mao, M. Bailey, and

J. Nazario. Towards an understanding of anti-

virtualization and anti-debugging behavior in modern

malware. In DSN, 2008.

[9] ClamAV. http://www.clamav.net.

[10] http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=

evasion, 2012.

[11] EICAR — The Anti-Virus or Anti-Malware Test File.

http://www.eicar.org/anti virus test file.htm.

[12] T. Garfinkel. Traps and pitfalls: Practical problems in

system call interposition based security tools. In NDSS,

2003.

[13] T. Garfinkel and M. Rosenblum. A virtual machine

introspection based architecture for intrusion detection.

In NDSS, 2003.

[14] M. Gavin. Recognizing corrupt and malformed

PDF files. http://labs.appligent.com/presentations/

recognizing malformed pdf f.pdf.

[15] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and

M. Veanes. Fast and precise sanitizer analysis with

BEK. In USENIX Security, 2011.

[16] M. Hypponen. Retroviruses - how viruses fight

back. http://www.hypponen.com/staff/hermanni/more/

papers/retro.htm, 1994.

[17] G. Kessler. File signatures table. http://www.

garykessler.net/library/file sigs.html, 2012.

[18] McAfee VirusScan vulnerability. http://www.pc1news.

com/news/0665/mcafeevirusscanvulnerability-allow-

compressed-archives-to-bypass-the-scan-engine.html,

2009.

[19] J. Nazario. Mime sniffing and phishing.

http://http://asert.arbornetworks.com/2009/03/mime-

sniffing-and-phishing/, 2009.

[20] J. Oberheide, M. Bailey, and F. Jahanian. PolyPack: An

automated online packing service for optimal antivirus

evasion. In WOOT, 2009.

[21] J. Oberheide, E. Cooke, and F. Jahanian. CloudAV:

N-version antivirus in the network cloud. In USENIX

Security, 2008.

[22] J. Oberheide and F. Jahanian. Remote fingerprinting
and exploitation of mail server antivirus engines. http:

//jon.oberheide.org/files/umich09-mailav.pdf, 2009.

[23] Microsoft patch breaks Impress/PowerPoint compat-

ibility. http://user.services.openoffice.org/en/forum/

viewtopic.php?t=36515, 2010.

[24] OpenOffice-MS interoperability bugs. http:

//openoffice.org/bugzilla/buglist.cgi?keywords=ms

interoperability, 2011.

[25] W. Palant. The hazards of MIME sniffing. http:

//adblockplus.org/blog/the-hazards-of-mime-sniffing,

2007.

[26] S. Porst. How to really obfuscate your PDF mal-

ware. http://www.recon.cx/2010/slides/recon 2010

sebastian porst.pdf, 2010.

[27] T. Ptacek and T. Newsham. Insertion, evasion, and

denial of service: Eluding network intrusion detection,

1998.

[28] T. Scholte, D. Balzarotti, and E. Kirda. Quo vadis? A

study of the evolution of input validation vulnerabilities

in Web applications. In FC, 2011.

[29] C. Sheehan. Pimp my PE: Parsing malicious and mal-

formed executables. http://research.sunbelt-software.

com/ViperSDK/Pimp%20My%20PE.ppt, 2007.

[30] IE content-type logic. http://blogs.msdn.com/b/ie/

archive/2005/02/01/364581.aspx, 2005.

[31] P. Ször and P. Ferrie. Hunting for metamor-

phic. http://www.symantec.com/avcenter/reference/

hunting.for.metamorphic.pdf.

[32] Virus Total. http://www.virustotal.com.

[33] VX Heavens. http://vx.netlux.org/vl.php.

[34] R. Watson. Exploiting concurrency vulnerabilities in

system call wrappers. In WOOT, 2007.

[35] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter,

R. Shin, and D. Song. A systematic analysis of

XSS sanitization in Web application frameworks. In

ESORICS, 2011.

[36] A. Wheeler and N. Mehta. 0wning antivirus.

http://www.blackhat.com/presentations/bh-europe-

05/bh-eu-05-wheeler-mehta-up.pdf, 2005.

[37] F. Xue. Attacking antivirus. http://www.blackhat.com/

presentations/bh-europe-08/Feng-Xue/Whitepaper/bh-

eu-08-xue-WP.pdf, 2008.

[38] Anti-virus software may not properly scan malformed

zip archives. http://www.kb.cert.org/vuls/id/968818,

2005.

[39] Musing on information security. http://blog.zoller.lu/

search/label/Advisory, 2009.

APPENDIX

Table XIII
EXAMPLES OF CLAMAV’S FIXED-OFFSET “MAGIC STRINGS” IN THE ORDER THEY ARE CHECKED.

Order Offset Length File type Magic content Order Offset Length File type Magic content

1 0 9 mirc.ini 5b 61 6c 69 61 73 65 73 5d 25 0 5 EVS mail 582d455653

2 257 5
TAR-

POSIX
7573746172 26 0 17 Mail

582d4170706172656e746c792d

546f3a20

3 0 5 RTF 7b5c727466 27 0 4 Mail 546f3a20

4 0 14 SIP log 5349502d48495420285349502f48 28 0 9 Mail 5375626a6563743a20

5 8 4 SIS 19040010 29 0 4
compress.

exed
535a4444

6 6 4 JPEG 4a464946 30 0 13 Maildir 52657475726e2d706174683a20

7 6 4 JPEG 45786966 31 0 13 Maildir 52657475726e2d506174683a20

8 0 3 MP3 fffb90 32 0 10 Raw mail 52656365697665643a20

9 0 3 JPEG ffd8ff 33 0 4 RAR 52617221

10 0 8
OLE2

container
d0cf11e0a1b11ae1 34 0 4 RIFX 52494658

11 0 8 CryptFF b6b9acaefeffffff 35 0 4 RIFF 52494646

12 0 4 PNG 89504e47 36 0 8 ZIP 504b3030504b0304

13 0 4 ELF 7f454c46 37 0 4 ZIP 504b0304

14 0 4 TNEF 789f3e22 38 0 4
Ogg

Stream
4f676753

15 0 14
VPOP3

(DOS)
763a0d0a52656365697665643a20 39 0 12 Mail 4d6573736167652d49643a20

16 0 13
VPOP3

(UNIX)
763a0a52656365697665643a20 40 0 12 Mail 4d6573736167652d49443a20

17 0 6 UUencoded 626567696e20 41 0 2 MS-EXE 4d5a

18 0 2 ARJ 60ea 42 0 4 MS CAB 4d534346

19 0 8 Mail 582d5549444c3a20 43 0 4 MS CHM 49545346

20 0 11 Symantec 582d53796d616e7465632d 44 0 3 MP3 494433

21 0 9 Mail 582d53696576653a20 45 0 26
Qmail

bounce

48692e205468697320697320746865

20716d61696c2d73656e64

22 0 11 Mail 582d5265616c2d546f3a20 46 0 3 GIF 474946

23 0 15 Mail 582d4f726967696e616c2d546f3a20 47 0 6
Exim

mail
46726f6d3a20

24 0 17 Mail
582d456e76656c6f70652d46

726f6d3a20
48 0 5 MBox 46726f6d20

Table XIV
“MAGIC STRINGS” FOR FILE TYPES NOT SUPPORTED BY CLAMAV (SOURCE: [17]). MULTIPLE OFFSETS SEPARATED BY ”,” INDICATE THAT THE

MAGIC CONTENT CAN APPEAR AT ANY OF THEM.

Offset Length File type Magic content

0 8 MS Office files D0 CF 11 E0 A1 B1 1A E1

0 2 TAR.Z (LZW) 1F 9D

0 2 TAR.Z (LZH) 1F A0

0 8 AR, MS Coff 21 3C 61 72 63 68 3E 0A

0 4 PACK 50 41 43 4B

2 3 LZA,LZH 2D 6C 68

0 6 7Zip 37 7A BC AF 27 1C

526 5 PKZIP SFX 50 4B 53 70 58

29,152 6 WinZip 57 69 6E 5A 69 70

30 6 PKLITE 50 4B 4C 49 54 45

0 4 PKZIP 50 4B 03 04

0 4 Zoo 5A 4F 4F 20

4 8 Quicktime MOV 6D 6F 6F 76

0,30 23 EPS 25 21 50 53 2D 41 64 6F 62 65 2D 33 2E 30 20 45 50 53 46 2D 33 20 30

32769, 34817, 36865 5 ISO 43 44 30 30 31

