mirror of
https://github.com/privacyguides/privacyguides.org.git
synced 2025-05-02 06:16:27 -04:00
Tidy links, and lint (#2435)
Tidies up a number of things: - Outdated links that redirect - Dead links - Remove unnecessary parameters eg "en" and "en-US" - Shortened amazon, apps.apple.com, reddit links - Removed trailing / - Remove www (except for PG assets) - Optimize unoptimized SVGs and remove xml declarations - Lint yaml, md files Co-Authored-By: Daniel Gray <dngray@privacyguides.org>
This commit is contained in:
parent
d8627a1ad2
commit
aaa843d272
116 changed files with 700 additions and 1311 deletions
|
@ -18,7 +18,7 @@ Below, we discuss and provide a tutorial to prove what an outside observer may s
|
|||
|
||||
### Unencrypted DNS
|
||||
|
||||
1. Using [`tshark`](https://www.wireshark.org/docs/man-pages/tshark.html) (part of the [Wireshark](https://en.wikipedia.org/wiki/Wireshark) project) we can monitor and record internet packet flow. This command records packets that meet the rules specified:
|
||||
1. Using [`tshark`](https://wireshark.org/docs/man-pages/tshark.html) (part of the [Wireshark](https://en.wikipedia.org/wiki/Wireshark) project) we can monitor and record internet packet flow. This command records packets that meet the rules specified:
|
||||
|
||||
```bash
|
||||
tshark -w /tmp/dns.pcap udp port 53 and host 1.1.1.1 or host 8.8.8.8
|
||||
|
@ -39,7 +39,7 @@ Below, we discuss and provide a tutorial to prove what an outside observer may s
|
|||
nslookup privacyguides.org 8.8.8.8
|
||||
```
|
||||
|
||||
3. Next, we want to [analyse](https://www.wireshark.org/docs/wsug_html_chunked/ChapterIntroduction.html#ChIntroWhatIs) the results:
|
||||
3. Next, we want to [analyse](https://wireshark.org/docs/wsug_html_chunked/ChapterIntroduction.html#ChIntroWhatIs) the results:
|
||||
|
||||
=== "Wireshark"
|
||||
|
||||
|
@ -74,7 +74,7 @@ Encrypted DNS can refer to one of a number of protocols, the most common ones be
|
|||
|
||||
### DNS over TLS (DoT)
|
||||
|
||||
[**DNS over TLS**](https://en.wikipedia.org/wiki/DNS_over_TLS) is another method for encrypting DNS communication that is defined in [RFC 7858](https://datatracker.ietf.org/doc/html/rfc7858). Support was first implemented in Android 9, iOS 14, and on Linux in [systemd-resolved](https://www.freedesktop.org/software/systemd/man/resolved.conf.html#DNSOverTLS=) in version 237. Preference in the industry has been moving away from DoT to DoH in recent years, as DoT is a [complex protocol](https://dnscrypt.info/faq/) and has varying compliance to the RFC across the implementations that exist. DoT also operates on a dedicated port 853 which can be blocked easily by restrictive firewalls.
|
||||
[**DNS over TLS**](https://en.wikipedia.org/wiki/DNS_over_TLS) is another method for encrypting DNS communication that is defined in [RFC 7858](https://datatracker.ietf.org/doc/html/rfc7858). Support was first implemented in Android 9, iOS 14, and on Linux in [systemd-resolved](https://freedesktop.org/software/systemd/man/resolved.conf.html#DNSOverTLS=) in version 237. Preference in the industry has been moving away from DoT to DoH in recent years, as DoT is a [complex protocol](https://dnscrypt.info/faq) and has varying compliance to the RFC across the implementations that exist. DoT also operates on a dedicated port 853 which can be blocked easily by restrictive firewalls.
|
||||
|
||||
### DNS over HTTPS (DoH)
|
||||
|
||||
|
@ -106,7 +106,7 @@ In this example we will record what happens when we make a DoH request:
|
|||
wireshark -r /tmp/dns_doh.pcap
|
||||
```
|
||||
|
||||
We can see the [connection establishment](https://en.wikipedia.org/wiki/Transmission_Control_Protocol#Connection_establishment) and [TLS handshake](https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/) that occurs with any encrypted connection. When looking at the "application data" packets that follow, none of them contain the domain we requested or the IP address returned.
|
||||
We can see the [connection establishment](https://en.wikipedia.org/wiki/Transmission_Control_Protocol#Connection_establishment) and [TLS handshake](https://cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake) that occurs with any encrypted connection. When looking at the "application data" packets that follow, none of them contain the domain we requested or the IP address returned.
|
||||
|
||||
## Why **shouldn't** I use encrypted DNS?
|
||||
|
||||
|
@ -158,9 +158,9 @@ Server Name Indication is typically used when a IP address hosts many websites.
|
|||
tshark -r /tmp/pg.pcap -Tfields -Y tls.handshake.extensions_server_name -e tls.handshake.extensions_server_name
|
||||
```
|
||||
|
||||
This means even if we are using "Encrypted DNS" servers, the domain will likely be disclosed through SNI. The [TLS v1.3](https://en.wikipedia.org/wiki/Transport_Layer_Security#TLS_1.3) protocol brings with it [Encrypted Client Hello](https://blog.cloudflare.com/encrypted-client-hello/), which prevents this kind of leak.
|
||||
This means even if we are using "Encrypted DNS" servers, the domain will likely be disclosed through SNI. The [TLS v1.3](https://en.wikipedia.org/wiki/Transport_Layer_Security#TLS_1.3) protocol brings with it [Encrypted Client Hello](https://blog.cloudflare.com/encrypted-client-hello), which prevents this kind of leak.
|
||||
|
||||
Governments, in particular [China](https://www.zdnet.com/article/china-is-now-blocking-all-encrypted-https-traffic-using-tls-1-3-and-esni/) and [Russia](https://www.zdnet.com/article/russia-wants-to-ban-the-use-of-secure-protocols-such-as-tls-1-3-doh-dot-esni/), have either already [started blocking](https://en.wikipedia.org/wiki/Server_Name_Indication#Encrypted_Client_Hello) it or expressed a desire to do so. Recently, Russia has [started blocking foreign websites](https://github.com/net4people/bbs/issues/108) that use the [HTTP/3](https://en.wikipedia.org/wiki/HTTP/3) standard. This is because the [QUIC](https://en.wikipedia.org/wiki/QUIC) protocol that is a part of HTTP/3 requires that `ClientHello` also be encrypted.
|
||||
Governments, in particular [China](https://zdnet.com/article/china-is-now-blocking-all-encrypted-https-traffic-using-tls-1-3-and-esni) and [Russia](https://zdnet.com/article/russia-wants-to-ban-the-use-of-secure-protocols-such-as-tls-1-3-doh-dot-esni), have either already [started blocking](https://en.wikipedia.org/wiki/Server_Name_Indication#Encrypted_Client_Hello) it or expressed a desire to do so. Recently, Russia has [started blocking foreign websites](https://github.com/net4people/bbs/issues/108) that use the [HTTP/3](https://en.wikipedia.org/wiki/HTTP/3) standard. This is because the [QUIC](https://en.wikipedia.org/wiki/QUIC) protocol that is a part of HTTP/3 requires that `ClientHello` also be encrypted.
|
||||
|
||||
### Online Certificate Status Protocol (OCSP)
|
||||
|
||||
|
@ -290,7 +290,7 @@ The DNSSEC signing process is similar to someone signing a legal document with a
|
|||
|
||||
DNSSEC implements a hierarchical digital signing policy across all layers of DNS. For example, in the case of a `privacyguides.org` lookup, a root DNS server would sign a key for the `.org` nameserver, and the `.org` nameserver would then sign a key for `privacyguides.org`’s authoritative nameserver.
|
||||
|
||||
<small>Adapted from [DNS Security Extensions (DNSSEC) overview](https://cloud.google.com/dns/docs/dnssec) by Google and [DNSSEC: An Introduction](https://blog.cloudflare.com/dnssec-an-introduction/) by Cloudflare, both licensed under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/).</small>
|
||||
<small>Adapted from [DNS Security Extensions (DNSSEC) overview](https://cloud.google.com/dns/docs/dnssec) by Google and [DNSSEC: An Introduction](https://blog.cloudflare.com/dnssec-an-introduction) by Cloudflare, both licensed under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0).</small>
|
||||
|
||||
## What is QNAME minimization?
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue