update: Add link to Wikipedia article about fine-tuning LLMs

Signed-off-by: redoomed1 <redoomed1@privacyguides.org>
This commit is contained in:
redoomed1 2025-03-22 12:28:57 -07:00 committed by GitHub
parent 4b7bb3d0af
commit 07420ba21c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -41,7 +41,7 @@ To run AI locally, you need both an AI model and an AI client.
### Choosing a Model
There are many permissively licensed models available to download. [Hugging Face](https://huggingface.co/models) is a platform that lets you browse, research, and download models in common formats like [GGUF](https://huggingface.co/docs/hub/en/gguf). Companies that provide good open-weights models include big names like Mistral, Meta, Microsoft, and Google. However, there are also many community models and 'fine-tunes' available. As mentioned above, quantized models offer the best balance between model quality and performance for those using consumer-grade hardware.
There are many permissively licensed models available to download. [Hugging Face](https://huggingface.co/models) is a platform that lets you browse, research, and download models in common formats like [GGUF](https://huggingface.co/docs/hub/en/gguf). Companies that provide good open-weights models include big names like Mistral, Meta, Microsoft, and Google. However, there are also many community models and [fine-tuned](https://en.wikipedia.org/wiki/Fine-tuning_(deep_learning)) models available. As mentioned above, quantized models offer the best balance between model quality and performance for those using consumer-grade hardware.
To help you choose a model that fits your needs, you can look at leaderboards and benchmarks. The most widely-used leaderboard is the community-driven [LM Arena](https://lmarena.ai). Additionally, the [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) focuses on the performance of open-weights models on common benchmarks like [MMLU-Pro](https://arxiv.org/abs/2406.01574). There are also specialized benchmarks which measure factors like [emotional intelligence](https://eqbench.com), ["uncensored general intelligence"](https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard), and [many others](https://www.nebuly.com/blog/llm-leaderboards).