Encryption of data is the only way to control who can access it. If you are currently not using encryption software for your hard disk, emails or files, you should pick an option here.
**Cryptomator** is an encryption solution designed for privately saving files to any cloud provider. It allows you to create vaults that are stored on a virtual drive, the contents of which are encrypted and synced with your cloud storage provider.
Cryptomator uses AES-256 encryption to encrypt both files and filenames. Cryptomator cannot encrypt metadata such as access, modification, and creation timestamps, nor the number and size of files and folders.
Some Cryptomator cryptographic libraries have been [audited](https://community.cryptomator.org/t/has-there-been-a-security-review-audit-of-cryptomator/44) by Cure53. The scope of the audited libraries includes: [cryptolib](https://github.com/cryptomator/cryptolib), [cryptofs](https://github.com/cryptomator/cryptofs), [siv-mode](https://github.com/cryptomator/siv-mode) and [cryptomator-objc-cryptor](https://github.com/cryptomator/cryptomator-objc-cryptor). The audit did not extend to [cryptolib-swift](https://github.com/cryptomator/cryptolib-swift), which is a library used by Cryptomator for iOS.
Cryptomator's documentation details its intended [security target](https://docs.cryptomator.org/en/latest/security/security-target/), [security architecture](https://docs.cryptomator.org/en/latest/security/architecture/), and [best practices](https://docs.cryptomator.org/en/latest/security/best-practices/) for use in further detail.
**Picocrypt** is a small and simple encryption tool that provides modern encryption. Picocrypt uses the secure XChaCha20 cipher and the Argon2id key derivation function to provide a high level of security. It uses Go's standard x/crypto modules for its encryption features.
**VeraCrypt** is a source-available freeware utility used for on-the-fly encryption. It can create a virtual encrypted disk within a file, encrypt a partition, or encrypt the entire storage device with pre-boot authentication.
VeraCrypt is a fork of the discontinued TrueCrypt project. According to its developers, security improvements have been implemented and issues raised by the initial TrueCrypt code audit have been addressed.
When encrypting with VeraCrypt, you have the option to select from different [hash functions](https://en.wikipedia.org/wiki/VeraCrypt#Encryption_scheme). We suggest you **only** select [SHA-512](https://en.wikipedia.org/wiki/SHA-512) and stick to the [AES](https://en.wikipedia.org/wiki/Advanced_Encryption_Standard) block cipher.
Truecrypt has been [audited a number of times](https://en.wikipedia.org/wiki/TrueCrypt#Security_audits), and VeraCrypt has also been [audited separately](https://en.wikipedia.org/wiki/VeraCrypt#VeraCrypt_audit).
Modern operating systems include [FDE](https://en.wikipedia.org/wiki/Disk_encryption) and will have a [secure cryptoprocessor](https://en.wikipedia.org/wiki/Secure_cryptoprocessor).
**BitLocker** is the full volume encryption solution bundled with Microsoft Windows. The main reason we recommend it is because of its [use of TPM](https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/how-windows-uses-the-tpm). [ElcomSoft](https://en.wikipedia.org/wiki/ElcomSoft), a forensics company, has written about it in [Understanding BitLocker TPM Protection](https://blog.elcomsoft.com/2021/01/understanding-BitLocker-tpm-protection/).
BitLocker is [only supported](https://support.microsoft.com/en-us/windows/turn-on-device-encryption-0c453637-bc88-5f74-5105-741561aae838) on Pro, Enterprise and Education editions of Windows. It can be enabled on Home editions provided that they meet the prerequisites.
To enable BitLocker on "Home" editions of Windows, you must have partitions formatted with a [GUID Partition Table](https://en.wikipedia.org/wiki/GUID_Partition_Table) and have a dedicated TPM (v1.2, 2.0+) module.
1. Open a command prompt and check your drive's partition table format with the following command. You should see "**GPT**" listed under "Partition Style":
3. Access [Advanced Startup Options](https://support.microsoft.com/en-us/windows/advanced-startup-options-including-safe-mode-b90e7808-80b5-a291-d4b8-1a1af602b617). You need to reboot while pressing the F8 key before Windows starts and go into the *command prompt* in **Troubleshoot** → **Advanced Options** → **Command Prompt**.
4. Login with your admin account and type this in the command prompt to start encryption:
**FileVault** is the on-the-fly volume encryption solution built into macOS. FileVault is recommended because it [leverages](https://support.apple.com/guide/security/volume-encryption-with-filevault-sec4c6dc1b6e/web) hardware security capabilities present on an Apple silicon SoC or T2 Security Chip.
We recommend opening containers and volumes with `udisksctl` as this uses [Polkit](https://en.wikipedia.org/wiki/Polkit). Most file managers, such as those included with popular desktop environments, can unlock encrypted files. Tools like [udiskie](https://github.com/coldfix/udiskie) can run in the system tray and provide a helpful user interface.
We recommend you always [back up your LUKS headers](https://wiki.archlinux.org/title/Dm-crypt/Device_encryption#Backup_and_restore) in case of partial drive failure. This can be done with:
**Hat.sh** is a web application that provides secure client-side file encryption in your browser. It can also be self-hosted and is useful if you need to encrypt a file but cannot install any software on your device due to organizational policies.
**Kryptor** is a free and open-source file encryption and signing tool that makes use of modern and secure cryptographic algorithms. It aims to be a better version of [age](https://github.com/FiloSottile/age) and [Minisign](https://jedisct1.github.io/minisign/) to provide a simple, easier alternative to GPG.
OpenPGP is sometimes needed for specific tasks such as digitally signing and encrypting email. PGP has many features and is [complex](https://latacora.micro.blog/2019/07/16/the-pgp-problem.html) as it has been around a long time. For tasks such as signing or encrypting files, we suggest the above options.
When encrypting with PGP, you have the option to configure different options in your `gpg.conf` file. We recommend staying with the standard options specified in the [GnuPG user FAQ](https://www.gnupg.org/faq/gnupg-faq.html#new_user_gpg_conf).
When [generating keys](https://www.gnupg.org/gph/en/manual/c14.html) we suggest using the `future-default` command as this will instruct GnuPG use modern cryptography such as [Curve25519](https://en.wikipedia.org/wiki/Curve25519#History) and [Ed25519](https://ed25519.cr.yp.to/):
**GnuPG** is a GPL-licensed alternative to the PGP suite of cryptographic software. GnuPG is compliant with [RFC 4880](https://tools.ietf.org/html/rfc4880), which is the current IETF specification of OpenPGP. The GnuPG project has been working on an [updated draft](https://datatracker.ietf.org/doc/draft-ietf-openpgp-crypto-refresh/) in an attempt to modernize OpenPGP. GnuPG is a part of the Free Software Foundation's GNU software project and has received major [funding](https://gnupg.org/blog/20220102-a-new-future-for-gnupg.html) from the German government.
**GPG4win** is a package for Windows from [Intevation and g10 Code](https://gpg4win.org/impressum.html). It includes [various tools](https://gpg4win.org/about.html) that can assist you in using GPG on Microsoft Windows. The project was initiated and originally [funded by](https://web.archive.org/web/20190425125223/https://joinup.ec.europa.eu/news/government-used-cryptography) Germany's Federal Office for Information Security (BSI) in 2005.
We recommend taking a look at their [First steps](https://gpgtools.tenderapp.com/kb/how-to/first-steps-where-do-i-start-where-do-i-begin-setup-gpgtools-create-a-new-key-your-first-encrypted-email) and [Knowledge base](https://gpgtools.tenderapp.com/kb) for support.
**OpenKeychain** is an Android implementation of GnuPG. It's commonly required by mail clients such as [K-9 Mail](email-clients.md#k-9-mail) and [FairEmail](email-clients.md#fairemail) and other Android apps to provide encryption support. Cure53 completed a [security audit](https://www.openkeychain.org/openkeychain-3-6) of OpenKeychain 3.6 in October 2015. Technical details about the audit and OpenKeychain's solutions can be found [here](https://github.com/open-keychain/open-keychain/wiki/cure53-Security-Audit-2015).