portapack-mayhem/firmware/baseband/proc_aprsrx.cpp
2021-03-11 22:27:19 -06:00

259 lines
6.2 KiB
C++

/*
* Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "proc_aprsrx.hpp"
#include "portapack_shared_memory.hpp"
#include "event_m4.hpp"
#include "stdio.h"
void APRSRxProcessor::execute(const buffer_c8_t& buffer) {
// This is called at 3072000 / 2048 = 1500Hz
if (!configured) return;
// FM demodulation
const auto decim_0_out = decim_0.execute(buffer, dst_buffer); // 2048 / 8 = 256 (512 I/Q samples)
const auto decim_1_out = decim_1.execute(decim_0_out, dst_buffer); // 256 / 8 = 32 (64 I/Q samples)
const auto channel_out = channel_filter.execute(decim_1_out, dst_buffer); // 32 / 2 = 16 (32 I/Q samples)
feed_channel_stats(channel_out);
auto audio = demod.execute(channel_out, audio_buffer);
audio_output.write(audio);
// Audio signal processing
for (size_t c = 0; c < audio.count; c++) {
const int32_t sample_int = audio.p[c] * 32768.0f;
int32_t current_sample = __SSAT(sample_int, 16);
current_sample /= 128;
// Delay line put
delay_line[delay_line_index & 0x3F] = current_sample;
// Delay line get, and LPF
sample_mixed = (delay_line[(delay_line_index - (samples_per_bit/2)) & 0x3F] * current_sample) / 4;
sample_filtered = prev_mixed + sample_mixed + (prev_filtered / 2);
delay_line_index++;
prev_filtered = sample_filtered;
prev_mixed = sample_mixed;
// Slice
sample_bits <<= 1;
uint8_t bit = (sample_filtered < -20) ? 1 : 0;
sample_bits |= bit;
/*
int16_t scaled = bit == 1 ? 32767 : -32767;
if( stream ) {
const size_t bytes_to_write = sizeof(scaled) * 1;
const auto result = stream->write(&scaled, bytes_to_write);
}
*/
// Check for "clean" transition: either 0011 or 1100
if ((((sample_bits >> 2) ^ sample_bits) & 3) == 3) {
// Adjust phase
if (phase < 0x8000)
phase += 0x800; // Is this a proper value ?
else
phase -= 0x800;
}
phase += phase_inc;
if (phase >= 0x10000) {
phase &= 0xFFFF;
if (true) {
uint8_t bit;
if(__builtin_popcount(sample_bits & 0xFF) >= 0x05){
bit = 0x1;
}
else {
bit = 0x0;
}
if(parse_bit(bit)){
parse_packet();
}
}
}
}
}
void APRSRxProcessor::parse_packet(){
//validate crc
if(packet_buffer_size >= aprs::APRS_MIN_LENGTH){
uint16_t crc = 0xFFFF;
for(size_t i = 0; i < packet_buffer_size; i++){
uint8_t byte = packet_buffer[i];
crc = ((crc >> 8) ^ crc_ccitt_tab[(crc ^ byte) & 0xFF]) & 0xFFFF;
}
if(crc == 0xF0B8){
parse_ax25();
}
}
}
void APRSRxProcessor::parse_ax25(){
aprs_packet.clear();
aprs_packet.set_valid_checksum(true);
for(size_t i = 0; i < packet_buffer_size; i++){
aprs_packet.set(i, packet_buffer[i]);
}
APRSPacketMessage packet_message { aprs_packet };
shared_memory.application_queue.push(packet_message);
}
bool APRSRxProcessor::parse_bit(const uint8_t current_bit){
uint8_t decoded_bit = ~(current_bit ^ last_bit) & 0x1;
last_bit = current_bit;
int16_t log = decoded_bit == 0 ? -32768 : 32767;
//if( stream ) {
// const size_t bytes_to_write = sizeof(log) * 1;
// const auto result = stream->write(&log, bytes_to_write);
// }
if(decoded_bit & 0x1){
if(ones_count < 8){
ones_count++;
}
}
else {
if(ones_count > 6){ //not valid
state = WAIT_FLAG;
current_byte = 0;
ones_count = 0;
byte_index = 0;
packet_buffer_size = 0;
return false;
}
else if(ones_count == 6){ //flag
bool done = false;
if(state == IN_FRAME){
done = true;
}
else {
packet_buffer_size = 0;
}
state = WAIT_FRAME;
current_byte = 0;
ones_count = 0;
byte_index = 0;
return done;
}
else if(ones_count == 5){ //bit stuff
ones_count = 0;
return false;
}
else {
ones_count = 0;
}
}
//store
current_byte = current_byte >> 1;
current_byte |= (decoded_bit == 0x1 ? 0x80 : 0x0);
byte_index++;
if(byte_index >= 8){
byte_index = 0;
if(state == WAIT_FRAME){
state = IN_FRAME;
}
if(state == IN_FRAME){
if(packet_buffer_size + 1 >= 256){
state = WAIT_FLAG;
current_byte = 0;
ones_count = 0;
byte_index = 0;
packet_buffer_size = 0;
return false;
}
packet_buffer[packet_buffer_size++] = current_byte;
}
}
return false;
}
void APRSRxProcessor::on_message(const Message* const message) {
if (message->id == Message::ID::APRSRxConfigure)
configure(*reinterpret_cast<const APRSRxConfigureMessage*>(message));
if(message->id == Message::ID::CaptureConfig)
capture_config(*reinterpret_cast<const CaptureConfigMessage*>(message));
}
void APRSRxProcessor::capture_config(const CaptureConfigMessage& message) {
if( message.config ) {
//stream = std::make_unique<StreamInput>(message.config);
audio_output.set_stream(std::make_unique<StreamInput>(message.config));
} else {
//stream.reset();
audio_output.set_stream(nullptr);
}
}
void APRSRxProcessor::configure(const APRSRxConfigureMessage& message) {
decim_0.configure(taps_11k0_decim_0.taps, 33554432);
decim_1.configure(taps_11k0_decim_1.taps, 131072);
channel_filter.configure(taps_11k0_channel.taps, 2);
demod.configure(audio_fs, 5000);
audio_output.configure(audio_24k_hpf_300hz_config, audio_24k_deemph_300_6_config, 0);
samples_per_bit = audio_fs / message.baudrate;
phase_inc = (0x10000 * message.baudrate) / audio_fs;
phase = 0;
// Delay line
delay_line_index = 0;
state = WAIT_FLAG;
configured = true;
}
int main() {
EventDispatcher event_dispatcher { std::make_unique<APRSRxProcessor>() };
event_dispatcher.run();
return 0;
}