portapack-mayhem/firmware/common/sonde_packet.cpp
2024-12-28 12:47:58 +01:00

491 lines
19 KiB
C++

/*
* Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2017 Furrtek
* Early 2023 joyel24 added meteomodem M20 support
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "sonde_packet.hpp"
#include "string_format.hpp"
#include <cstring>
// #include <complex>
namespace sonde {
static uint8_t calibytes[51 * 16]; // need these vars to survive
static uint8_t calfrchk[51]; // so subframes are preserved while populated
// Defines for Vaisala RS41, from https://github.com/rs1729/RS/blob/master/rs41/rs41sg.c
#define MASK_LEN 64
// Following values include the 4 bytes less shift, consumed in detecting the header on proc_sonde
#define block_status 0x35 // 0x039 // 40 bytes
#define block_gpspos 0x10E // 0x112 // 21 bytes
#define block_meas 0x61 // 0x65 // 42 bytes
#define pos_FrameNb 0x37 // 0x03B // 2 byte
#define pos_SondeID 0x39 // 0x03D // 8 byte
#define pos_Voltage 0x041 // 0x045 // 3 bytes (but first one is the important one) voltage x 10 ie: 26 = 2.6v
#define pos_CalData 0x04E // 0x052 // 1 byte, counter 0x00..0x32
#define pos_temp 0x063 // 0x067 // 3 bytes (uint24_t)
#define pos_GPSecefX 0x110 // 0x114 // 4 byte
#define pos_GPSecefY 0x114 // 0x118 // 4 byte (not actually used since Y and Z are following X, and grabbed in that same loop)
#define pos_GPSecefZ 0x118 // 0x11C // 4 byte (same as Y)
#define PI 3.1415926535897932384626433832795 // 3.1416 //(3.1415926535897932384626433832795)
Packet::Packet(
const baseband::Packet& packet,
const Type type)
: packet_{packet},
decoder_{packet_},
reader_bi_m{decoder_},
type_{type} {
if (type_ == Type::Meteomodem_unknown) {
// Right now we're just sure that the sync is from a Meteomodem sonde, differentiate between models now
const uint32_t id_byte = reader_bi_m.read(0 * 8, 16);
if (id_byte == 0x649F)
type_ = Type::Meteomodem_M10;
else if (id_byte == 0x648F)
type_ = Type::Meteomodem_M2K2;
else if (id_byte == 0x4520) // https://raw.githubusercontent.com/projecthorus/radiosonde_auto_rx/master/demod/mod/m20mod.c
type_ = Type::Meteomodem_M20;
}
}
size_t Packet::length() const {
return decoder_.symbols_count();
}
Timestamp Packet::received_at() const {
return packet_.timestamp();
}
Packet::Type Packet::type() const {
return type_;
}
// euquiq here:
// RS41SG 320 bits header, 320bytes frame (or more if it is an "extended frame")
// The raw data is xor-scrambled with the values in the 64 bytes vaisala_mask (see.hpp)
// from 0x008 to 0x037 (48 bytes reed-solomon error correction data)
uint8_t Packet::vaisala_descramble(const uint32_t pos) const { // vaisala_descramble(const uint32_t pos) const {
// packet_[i]; its a bit; packet_.size the total (should be 2560 bits)
uint8_t value = 0;
for (uint8_t i = 0; i < 8; i++)
value = (value << 1) | packet_[(pos * 8) + (7 - i)]; // get the byte from the bits collection
// packetReader reader { packet_ }; //This works just as above.
// value = reader.read(pos * 8,8);
// shift pos because first 4 bytes are consumed by proc_sonde in finding the vaisala signature
uint32_t mask_pos = pos + 4;
value = value ^ vaisala_mask[mask_pos % MASK_LEN]; // descramble with the xor pseudorandom table
return value;
};
GPS_data Packet::get_GPS_data() const {
GPS_data result;
if ((type_ == Type::Meteomodem_M10) || (type_ == Type::Meteomodem_M2K2)) {
result.alt = (reader_bi_m.read(22 * 8, 32) / 1000) - 48;
result.lat = reader_bi_m.read(14 * 8, 32) / ((1ULL << 32) / 360.0);
result.lon = reader_bi_m.read(18 * 8, 32) / ((1ULL << 32) / 360.0);
} else if (type_ == Type::Meteomodem_M20) {
result.alt = reader_bi_m.read(8 * 8, 24) / 100.0; // <|
result.lat = reader_bi_m.read(28 * 8, 32) / 1000000.0; // <| Inspired by https://raw.githubusercontent.com/projecthorus/radiosonde_auto_rx/master/demod/mod/m20mod.c
result.lon = reader_bi_m.read(32 * 8, 32) / 1000000.0; // <|
} else if (type_ == Type::Vaisala_RS41_SG) {
uint8_t XYZ_bytes[4];
int32_t XYZ; // 32bit
double_t X[3];
for (int32_t k = 0; k < 3; k++) { // Get X,Y,Z ECEF position from GPS
for (int32_t i = 0; i < 4; i++) // each one is 4 bytes (32 bits)
XYZ_bytes[i] = vaisala_descramble(pos_GPSecefX + (4 * k) + i);
memcpy(&XYZ, XYZ_bytes, 4);
X[k] = XYZ / 100.0;
}
double_t a = 6378137.0;
double_t b = 6356752.31424518;
double_t e = sqrt((a * a - b * b) / (a * a));
double_t ee = sqrt((a * a - b * b) / (b * b));
double_t lam = atan2(X[1], X[0]);
double_t p = sqrt(X[0] * X[0] + X[1] * X[1]);
double_t t = atan2(X[2] * a, p * b);
double_t phi = atan2(X[2] + ee * ee * b * sin(t) * sin(t) * sin(t),
p - e * e * a * cos(t) * cos(t) * cos(t));
double_t R = a / sqrt(1 - e * e * sin(phi) * sin(phi));
result.alt = p / cos(phi) - R;
result.lat = phi * 180 / PI;
result.lon = lam * 180 / PI;
}
return result;
}
uint32_t Packet::battery_voltage() const {
if (type_ == Type::Meteomodem_M10)
return (reader_bi_m.read(69 * 8, 8) + (reader_bi_m.read(70 * 8, 8) << 8)) * 1000 / 150;
else if (type_ == Type::Meteomodem_M20) {
return 0; // NOT SUPPPORTED YET
} else if (type_ == Type::Meteomodem_M2K2)
return reader_bi_m.read(69 * 8, 8) * 66; // Actually 65.8
else if (type_ == Type::Vaisala_RS41_SG) {
uint32_t voltage = vaisala_descramble(pos_Voltage) * 100; // byte 69 = voltage * 10 (check if this value needs to be multiplied)
return voltage;
} else {
return 0; // Unknown
}
}
uint32_t Packet::frame() const {
if (type_ == Type::Vaisala_RS41_SG) {
uint32_t frame_number = vaisala_descramble(pos_FrameNb) | (vaisala_descramble(pos_FrameNb + 1) << 8);
return frame_number;
} else {
return 0; // Unknown
}
}
temp_humid Packet::get_temp_humid() const {
temp_humid result;
result.humid = 0;
result.temp = 0;
if (type_ == Type::Meteomodem_M10) {
// https://github.com/projecthorus/radiosonde_auto_rx/blob/master/demod/mod/m10mod.c
// temp:
uint16_t ADC_Ti_raw = (reader_bi_m.read(0x49 * 8, 8) << 8) | reader_bi_m.read(0x48 * 8, 8) << 8; // int.temp.diode, ref: 4095->1.5V
if (ADC_Ti_raw != 0) {
// internal
float vti, ti;
// INCH1A (temp.diode), slau144
vti = ADC_Ti_raw / 4095.0 * 1.5; // V_REF+ = 1.5V, no calibration
ti = (vti - 0.986) / 0.00355; // 0.986/0.00355=277.75, 1.5/4095/0.00355=0.1032
result.temp = ti;
}
// NTC - Thermistor Shibaura PB5 - 41E
float p0 = 1.07303516e-03,
p1 = 2.41296733e-04,
p2 = 2.26744154e-06,
p3 = 6.52855181e-08;
// T/K = 1/( p0 + p1*ln(R) + p2*ln(R)^2 + p3*ln(R)^3 )
// range/scale 0, 1, 2: // M10-pcb
float Rs_T[3] = {12.1e3, 36.5e3, 475.0e3}; // bias/series
float Rp[3] = {1e20, 330.0e3, 2000.0e3}; // parallel, Rp[0]=inf
uint8_t scT; // {0,1,2}, range/scale voltage divider
uint16_t ADC_RT; // ADC12 P6.7(A7) , adr_0377h,adr_0376h
// uint16_t Tcal[2]; // adr_1000h[scT*4]
float adc_max = 4095.0; // ADC12
float x, R;
float T = 0; // T/Kelvin
scT = reader_bi_m.read(0x3E * 8, 8); // adr_0455h
ADC_RT = (reader_bi_m.read(0x40 * 8, 8) << 8) | reader_bi_m.read(0x3F * 8, 8);
if (ADC_RT != 0) {
ADC_RT -= 0xA000;
// Tcal[0] = (reader_bi_m.read(0x42 * 8, 8) << 8) | reader_bi_m.read(0x41 * 8, 8);
// Tcal[1] = (reader_bi_m.read(0x44 * 8, 8) << 8) | reader_bi_m.read(0x43 * 8, 8);
x = (adc_max - ADC_RT) / ADC_RT; // (Vcc-Vout)/Vout
if (scT < 3)
R = Rs_T[scT] / (x - Rs_T[scT] / Rp[scT]);
else
R = -1;
if (R > 0) T = 1 / (p0 + p1 * log(R) + p2 * log(R) * log(R) + p3 * log(R) * log(R) * log(R));
result.temp = T - 273.15;
}
// humidity:
// get count rh:
float TBCCR1 = (reader_bi_m.read(0x35 * 8, 8) | (reader_bi_m.read(0x36 * 8, 8) << 8) | (reader_bi_m.read(0x37 * 8, 8) << 16)) / 1000.0;
// get count 55:
float TBCREF = (reader_bi_m.read(0x32 * 8, 8) | (reader_bi_m.read(0x33 * 8, 8) << 8) | (reader_bi_m.read(0x34 * 8, 8) << 16)) / 1000.0;
if (TBCREF != 0) {
float cRHc55 = TBCCR1 / TBCREF; //;get_count_RH(gpx) / get_count_55(gpx); // CalRef 55%RH , T=20C ?
// get_Tntc2: --unused.
// float Rs = 22.1e3; // P5.6=Vcc
// float R25 = 2.2e3;
// float b = 3650.0; // B/Kelvin
// float T25 = 25.0 + 273.15; // T0=25C, R0=R25=5k
// -> Steinhart-Hart coefficients (polyfit):
// cRHc55_RH:
// float TH = get_Tntc2(gpx); --unused
float rh = (cRHc55 - 0.8955) / 0.002; // UPSI linear transfer function
// temperature compensation
float T0 = 0.0, T1 = -30.0; // T/C
if (result.temp < T0) rh += T0 - result.temp / 5.5; // approx/empirical
if (result.temp < T1) rh *= 1.0 + (T1 - result.temp) / 75.0; // approx/empirical
if (rh < 0.0) rh = 0.0;
if (rh > 100.0) rh = 100.0;
result.humid = rh;
}
}
if (type_ == Type::Vaisala_RS41_SG && crc_ok_RS41()) // Only process if packet is healthy
{
// memset(calfrchk, 0, 51); // is this necessary ? only if the sondeID changes (new sonde)
// original code from https://github.com/rs1729/RS/blob/master/rs41/rs41ptu.c
float Rf1, // ref-resistor f1 (750 Ohm)
Rf2, // ref-resistor f2 (1100 Ohm)
co1[3], // { -243.911 , 0.187654 , 8.2e-06 }
calT1[3], // calibration T1
co2[3], // { -243.911 , 0.187654 , 8.2e-06 }
calT2[3], // calibration T2-Hum
calH[2]; // calibration Hum
uint32_t meas[12], i;
//-------------- get_CalData
//-------------- populate calibytes (from getFrameConf)
uint8_t calfr = vaisala_descramble(pos_CalData); // get subframe #slot
for (i = 0; i < 16; i++) // Load subrfame calibration page (16 bytes) into #slot
calibytes[calfr * 16 + i] = vaisala_descramble(pos_CalData + 1 + i); // pos = pos_CalData + 1 + i ; vaisala_descramble(pos)
calfrchk[calfr] = 1; // flag this #slot as populated
memcpy(&Rf1, calibytes + 61, 4); // 0x03*0x10+13
memcpy(&Rf2, calibytes + 65, 4); // 0x04*0x10+ 1
memcpy(co1 + 0, calibytes + 77, 4); // 0x04*0x10+13
memcpy(co1 + 1, calibytes + 81, 4); // 0x05*0x10+ 1
memcpy(co1 + 2, calibytes + 85, 4); // 0x05*0x10+ 5
memcpy(calT1 + 0, calibytes + 89, 4); // 0x05*0x10+ 9
memcpy(calT1 + 1, calibytes + 93, 4); // 0x05*0x10+13
memcpy(calT1 + 2, calibytes + 97, 4); // 0x06*0x10+ 1
memcpy(calH + 0, calibytes + 117, 4); // 0x07*0x10+ 5
memcpy(calH + 1, calibytes + 121, 4); // 0x07*0x10+ 9
memcpy(co2 + 0, calibytes + 293, 4); // 0x12*0x10+ 5
memcpy(co2 + 1, calibytes + 297, 4); // 0x12*0x10+ 9
memcpy(co2 + 2, calibytes + 301, 4); // 0x12*0x10+13
memcpy(calT2 + 0, calibytes + 305, 4); // 0x13*0x10+ 1
memcpy(calT2 + 1, calibytes + 309, 4); // 0x13*0x10+ 5
memcpy(calT2 + 2, calibytes + 313, 4); // 0x13*0x10+ 9
//---------------------------------------
for (i = 0; i < 12; i++)
meas[i] = vaisala_descramble(pos_temp + (3 * i)) |
(vaisala_descramble(pos_temp + (3 * i) + 1) << 8) |
(vaisala_descramble(pos_temp + (3 * i) + 2) << 16);
//----Check if necessary calibytes are already present for calculation
if (calfrchk[0x03] && calfrchk[0x04] && calfrchk[0x04] && calfrchk[0x05] && calfrchk[0x05] && calfrchk[0x06]) // Calibites OK for Temperature
{
//----------get_Tc------------------------
float* p = co1;
float* c = calT1;
float g = (float)(meas[2] - meas[1]) / (Rf2 - Rf1), // gain
Rb = (meas[1] * Rf2 - meas[2] * Rf1) / (float)(meas[2] - meas[1]), // ofs
Rc = meas[0] / g - Rb,
R = Rc * c[0],
T = (p[0] + p[1] * R + p[2] * R * R + c[1]) * (1.0 + c[2]);
result.temp = T;
}
if (calfrchk[0x07]) {
//----------get_RH------------------------
float a0 = 7.5; // empirical
float a1 = 350.0 / calH[0]; // empirical
float fh = (meas[3] - meas[4]) / (float)(meas[5] - meas[4]);
float rh = 100.0 * (a1 * fh - a0);
float T0 = 0.0, T1 = -25.0; // T/C
rh += T0 - result.temp / 5.5; // empir. temperature compensation
if (result.temp < T1)
rh *= 1.0 + (T1 - result.temp) / 90.0; // empir. temperature compensation
if (rh < 0.0)
rh = 0.0;
if (rh > 100.0)
rh = 100.0;
if (result.temp < -273.0)
rh = -1.0;
result.humid = rh;
}
}
return result;
}
std::string Packet::type_string() const {
switch (type_) {
case Type::Unknown:
return "Unknown";
case Type::Meteomodem_unknown:
return "Meteomodem ???";
case Type::Meteomodem_M10:
return "Meteomodem M10";
case Type::Meteomodem_M20:
return "Meteomodem M20";
case Type::Meteomodem_M2K2:
return "Meteomodem M2K2";
case Type::Vaisala_RS41_SG:
return "Vaisala RS41-SG";
default:
return "? 0x" + symbols_formatted().data.substr(0, 6);
}
}
std::string Packet::serial_number() const {
if (type_ == Type::Meteomodem_M10) {
// See https://github.com/rs1729/RS/blob/master/m10/m10x.c line 606
// Starting at byte #93: 00000000 11111111 22222222 33333333 44444444
// CCCC AAAABBBB
// 44444444 33333333
// DDDEEEEE EEEEEEEE
return to_string_hex(reader_bi_m.read(93 * 8 + 16, 4), 1) +
to_string_dec_uint(reader_bi_m.read(93 * 8 + 20, 4), 2, '0') + " " +
to_string_hex(reader_bi_m.read(93 * 8 + 4, 4), 1) + " " +
to_string_dec_uint(reader_bi_m.read(93 * 8 + 24, 3), 1) +
to_string_dec_uint(reader_bi_m.read(93 * 8 + 27, 13), 4, '0');
} else if (type_ == Type::Vaisala_RS41_SG) {
std::string serial_id = "";
uint8_t achar;
for (uint8_t i = 0; i < 8; i++) { // euquiq: Serial ID is 8 bytes long, each byte a char
achar = vaisala_descramble(pos_SondeID + i);
if (achar < 32 || achar > 126)
return "?"; // Maybe there are ids with less than 8 bytes and this is not OK.
serial_id += (char)achar;
}
return serial_id;
} else {
return "?";
}
}
FormattedSymbols Packet::symbols_formatted() const {
if (type_ == Type::Vaisala_RS41_SG) { // Euquiq: now we distinguish different types
uint32_t bytes = packet_.size() / 8; // Need the byte amount, which if full, it SHOULD be 320 size() should return 2560
std::string hex_data;
std::string hex_error;
hex_data.reserve(bytes * 2); // 2 hexa chars per byte
hex_error.reserve(1);
for (uint32_t i = 0; i < bytes; i++) // log will show the packet starting on the last 4 bytes from signature 93DF1A60
hex_data += to_string_hex(vaisala_descramble(i), 2);
return {hex_data, hex_error};
} else {
return format_symbols(decoder_);
}
}
bool Packet::crc_ok() const {
switch (type_) {
case Type::Meteomodem_M10:
return crc_ok_M10();
case Type::Vaisala_RS41_SG:
return crc_ok_RS41();
default:
return true; // euquiq: it was false, but if no crc routine, then no way to check
}
}
// each data block has a 2 byte header, data, and 2 byte tail:
// 1st byte: block ID
// 2nd byte: data length (without header or tail)
// <data>
// 2 bytes CRC16 over the data.
bool Packet::crc_ok_RS41() const // check CRC for the data blocks we need
{
if (!crc16rs41(block_status))
return false;
if (!crc16rs41(block_gpspos))
return false;
if (!crc16rs41(block_meas))
return false;
return true;
}
// Checks CRC16 on a RS41 field:
bool Packet::crc16rs41(uint32_t field_start) const {
int crc16poly = 0x1021;
int rem = 0xFFFF, b, j;
int xbyte;
uint32_t pos = field_start + 1;
uint8_t length = vaisala_descramble(pos);
if (pos + length + 2 > packet_.size() / 8)
return false; // Out of packet!
for (b = 0; b < length; b++) {
pos++;
xbyte = vaisala_descramble(pos);
rem = rem ^ (xbyte << 8);
for (j = 0; j < 8; j++) {
if (rem & 0x8000) {
rem = (rem << 1) ^ crc16poly;
} else {
rem = (rem << 1);
}
rem &= 0xFFFF;
}
}
// Check calculated CRC against packet's one
pos++;
int crcok = vaisala_descramble(pos) | (vaisala_descramble(pos + 1) << 8);
if (crcok != rem)
return false;
return true;
}
bool Packet::crc_ok_M10() const {
uint16_t cs{0};
uint32_t c0, c1, t, t6, t7, s, b;
for (size_t i = 0; i < packet_.size(); i++) {
b = packet_[i];
c1 = cs & 0xFF;
// B
b = (b >> 1) | ((b & 1) << 7);
b ^= (b >> 2) & 0xFF;
// A1
t6 = (cs & 1) ^ ((cs >> 2) & 1) ^ ((cs >> 4) & 1);
t7 = ((cs >> 1) & 1) ^ ((cs >> 3) & 1) ^ ((cs >> 5) & 1);
t = (cs & 0x3F) | (t6 << 6) | (t7 << 7);
// A2
s = (cs >> 7) & 0xFF;
s ^= (s >> 2) & 0xFF;
c0 = b ^ t ^ s;
cs = ((c1 << 8) | c0) & 0xFFFF;
}
return ((cs & 0xFFFF) == ((packet_[0x63] << 8) | (packet_[0x63 + 1])));
}
} /* namespace sonde */