portapack-mayhem/firmware/baseband/proc_afskrx.cpp
Mark Thompson 0b2d5f75cc
Start audio DMA only in apps that use audio (#1982)
* Start audio DMA only in apps that use audio
* Rename main.cpp to main.cpp.unuse
* shrink_tx_buffer fix for transfers_per_buffer==1 scenario
2024-03-13 16:07:44 +01:00

192 lines
6.2 KiB
C++

/*
* Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "proc_afskrx.hpp"
#include "portapack_shared_memory.hpp"
#include "audio_dma.hpp"
#include "event_m4.hpp"
void AFSKRxProcessor::execute(const buffer_c8_t& buffer) {
// This is called at 3072000 / 2048 = 1500Hz
if (!configured) return;
// FM demodulation
const auto decim_0_out = decim_0.execute(buffer, dst_buffer); // 2048 / 8 = 256 (512 I/Q samples)
const auto decim_1_out = decim_1.execute(decim_0_out, dst_buffer); // 256 / 8 = 32 (64 I/Q samples)
const auto channel_out = channel_filter.execute(decim_1_out, dst_buffer); // 32 / 2 = 16 (32 I/Q samples)
feed_channel_stats(channel_out);
auto audio = demod.execute(channel_out, audio_buffer);
audio_output.write(audio);
// Audio signal processing
for (size_t c = 0; c < audio.count; c++) {
const int32_t sample_int = audio.p[c] * 32768.0f;
int32_t current_sample = __SSAT(sample_int, 16);
current_sample /= 128;
// Delay line put
delay_line[delay_line_index & 0x3F] = current_sample;
// Delay line get, and LPF
sample_mixed = (delay_line[(delay_line_index - (samples_per_bit / 2)) & 0x3F] * current_sample) / 4;
sample_filtered = prev_mixed + sample_mixed + (prev_filtered / 2);
delay_line_index++;
prev_filtered = sample_filtered;
prev_mixed = sample_mixed;
// Slice
sample_bits <<= 1;
sample_bits |= (sample_filtered < -20) ? 1 : 0;
// Check for "clean" transition: either 0011 or 1100
if ((((sample_bits >> 2) ^ sample_bits) & 3) == 3) {
// Adjust phase
if (phase < 0x8000)
phase += 0x800; // Is this a proper value ?
else
phase -= 0x800;
}
phase += phase_inc;
if (phase >= 0x10000) {
phase &= 0xFFFF;
if (trigger_word) {
// Continuous-stream value-triggered mode (AX.25) - UNTESTED
word_bits <<= 1;
word_bits |= (sample_bits & 1);
bit_counter++;
if (triggered) {
if (bit_counter == word_length) {
bit_counter = 0;
data_message.is_data = true;
data_message.value = word_bits & word_mask;
shared_memory.application_queue.push(data_message);
}
} else {
if ((word_bits & word_mask) == trigger_value) {
triggered = !triggered;
bit_counter = 0;
data_message.is_data = true;
data_message.value = trigger_value;
shared_memory.application_queue.push(data_message);
}
}
} else {
// RS232-like modem mode
if (state == WAIT_START) {
if (!(sample_bits & 1)) {
// Got start bit
state = RECEIVE;
bit_counter = 0;
}
} else if (state == WAIT_STOP) {
if (sample_bits & 1) {
// Got stop bit
state = WAIT_START;
}
} else {
word_bits <<= 1;
word_bits |= (sample_bits & 1);
bit_counter++;
}
if (bit_counter == word_length) {
bit_counter = 0;
state = WAIT_STOP;
data_message.is_data = true;
data_message.value = word_bits;
shared_memory.application_queue.push(data_message);
}
}
}
}
}
void AFSKRxProcessor::on_message(const Message* const message) {
if (message->id == Message::ID::AFSKRxConfigure)
configure(*reinterpret_cast<const AFSKRxConfigureMessage*>(message));
}
void AFSKRxProcessor::configure(const AFSKRxConfigureMessage& message) {
/*constexpr size_t decim_0_input_fs = baseband_fs;
constexpr size_t decim_0_output_fs = decim_0_input_fs / decim_0.decimation_factor;
constexpr size_t decim_1_input_fs = decim_0_output_fs;
constexpr size_t decim_1_output_fs = decim_1_input_fs / decim_1.decimation_factor;
constexpr size_t channel_filter_input_fs = decim_1_output_fs;
const size_t channel_filter_output_fs = channel_filter_input_fs / 2;
const size_t demod_input_fs = channel_filter_output_fs;*/
decim_0.configure(taps_11k0_decim_0.taps);
decim_1.configure(taps_11k0_decim_1.taps);
channel_filter.configure(taps_11k0_channel.taps, 2);
demod.configure(audio_fs, 5000);
audio_output.configure(audio_24k_hpf_300hz_config, audio_24k_deemph_300_6_config, 0);
samples_per_bit = audio_fs / message.baudrate;
phase_inc = (0x10000 * message.baudrate) / audio_fs;
phase = 0;
trigger_word = message.trigger_word;
word_length = message.word_length;
trigger_value = message.trigger_value;
word_mask = (1 << word_length) - 1;
// Delay line
delay_line_index = 0;
triggered = false;
state = WAIT_START;
configured = true;
}
int main() {
audio::dma::init_audio_out();
EventDispatcher event_dispatcher{std::make_unique<AFSKRxProcessor>()};
event_dispatcher.run();
return 0;
}