mirror of
https://github.com/eried/portapack-mayhem.git
synced 2025-01-14 16:57:14 -05:00
5547782f5a
Python math, numpy, scipy produce values with significant rounding errors.
145 lines
4.4 KiB
C++
145 lines
4.4 KiB
C++
/*
|
|
* Copyright (C) 2013 Jared Boone, ShareBrained Technology, Inc.
|
|
*
|
|
* This file is part of PortaPack.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, Inc., 51 Franklin Street,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#ifndef __DSP_FFT_H__
|
|
#define __DSP_FFT_H__
|
|
|
|
#include <cstdint>
|
|
#include <cstddef>
|
|
#include <complex>
|
|
#include <cmath>
|
|
#include <type_traits>
|
|
#include <array>
|
|
|
|
#include "dsp_types.hpp"
|
|
#include "complex.hpp"
|
|
#include "hal.h"
|
|
|
|
namespace std {
|
|
/* https://github.com/AE9RB/fftbench/blob/master/cxlr.hpp
|
|
* Nice trick from AE9RB (David Turnbull) to get compiler to produce simpler
|
|
* fma (fused multiply-accumulate) instead of worrying about NaN handling
|
|
*/
|
|
inline complex<float>
|
|
operator*(const complex<float>& v1, const complex<float>& v2) {
|
|
return complex<float> {
|
|
v1.real() * v2.real() - v1.imag() * v2.imag(),
|
|
v1.real() * v2.imag() + v1.imag() * v2.real()
|
|
};
|
|
}
|
|
} /* namespace std */
|
|
|
|
constexpr bool power_of_two(const size_t n) {
|
|
return (n & (n - 1)) == 0;
|
|
}
|
|
|
|
constexpr size_t log_2(const size_t n, const size_t p = 0) {
|
|
return (n <= 1) ? p : log_2(n / 2, p + 1);
|
|
}
|
|
|
|
template<typename T, size_t N>
|
|
void fft_swap(const buffer_c16_t src, std::array<T, N>& dst) {
|
|
static_assert(power_of_two(N), "only defined for N == power of two");
|
|
|
|
for(size_t i=0; i<N; i++) {
|
|
const size_t i_rev = __RBIT(i) >> (32 - log_2(N));
|
|
const auto s = src.p[i];
|
|
dst[i_rev] = {
|
|
static_cast<typename T::value_type>(s.real()),
|
|
static_cast<typename T::value_type>(s.imag())
|
|
};
|
|
}
|
|
}
|
|
|
|
template<typename T, size_t N>
|
|
void fft_swap(const std::array<complex16_t, N>& src, std::array<T, N>& dst) {
|
|
static_assert(power_of_two(N), "only defined for N == power of two");
|
|
|
|
for(size_t i=0; i<N; i++) {
|
|
const size_t i_rev = __RBIT(i) >> (32 - log_2(N));
|
|
const auto s = src[i];
|
|
dst[i_rev] = {
|
|
static_cast<typename T::value_type>(s.real()),
|
|
static_cast<typename T::value_type>(s.imag())
|
|
};
|
|
}
|
|
}
|
|
|
|
template<typename T, size_t N>
|
|
void fft_swap(const std::array<T, N>& src, std::array<T, N>& dst) {
|
|
static_assert(power_of_two(N), "only defined for N == power of two");
|
|
|
|
for(size_t i=0; i<N; i++) {
|
|
const size_t i_rev = __RBIT(i) >> (32 - log_2(N));
|
|
dst[i_rev] = src[i];
|
|
}
|
|
}
|
|
|
|
template<typename T, size_t N>
|
|
void fft_swap_in_place(std::array<T, N>& data) {
|
|
static_assert(power_of_two(N), "only defined for N == power of two");
|
|
|
|
for(size_t i=0; i<N/2; i++) {
|
|
const size_t i_rev = __RBIT(i) >> (32 - log_2(N));
|
|
std::swap(data[i], data[i_rev]);
|
|
}
|
|
}
|
|
|
|
/* http://beige.ucs.indiana.edu/B673/node14.html */
|
|
/* http://www.drdobbs.com/cpp/a-simple-and-efficient-fft-implementatio/199500857?pgno=3 */
|
|
|
|
template<typename T, size_t N>
|
|
void fft_c_preswapped(std::array<T, N>& data) {
|
|
static_assert(power_of_two(N), "only defined for N == power of two");
|
|
constexpr auto K = log_2(N);
|
|
|
|
constexpr size_t K_max = 8;
|
|
static_assert(K <= K_max, "No FFT twiddle factors for K > 8");
|
|
static constexpr std::array<std::complex<float>, K_max> wp_table { {
|
|
{ -2.0f, 0.0f },
|
|
{ -1.0f, -1.0f },
|
|
{ -0.2928932188134524756f, -0.7071067811865475244f },
|
|
{ -0.076120467488713243872f, -0.38268343236508977173f },
|
|
{ -0.019214719596769550874f, -0.19509032201612826785f },
|
|
{ -0.0048152733278031137552f, -0.098017140329560601994f },
|
|
{ -0.0012045437948276072852f, -0.049067674327418014255f },
|
|
{ -0.00030118130379577988423f, -0.024541228522912288032f },
|
|
} };
|
|
|
|
/* Provide data to this function, pre-swapped. */
|
|
for(size_t k = 0; k < log_2(N); k++) {
|
|
const size_t mmax = 1 << k;
|
|
const auto wp = wp_table[k];
|
|
T w { 1.0f, 0.0f };
|
|
for(size_t m = 0; m < mmax; ++m) {
|
|
for(size_t i = m; i < N; i += mmax * 2) {
|
|
const size_t j = i + mmax;
|
|
const T temp = w * data[j];
|
|
data[j] = data[i] - temp;
|
|
data[i] += temp;
|
|
}
|
|
w += w * wp;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif/*__DSP_FFT_H__*/
|