portapack-mayhem/firmware/common/bch_code.hpp
jLynx 033c4e9a5b
Formatted code (#1007)
* Updated style

* Updated files

* fixed new line

* Updated spacing

* File fix WIP

* Updated to clang 13

* updated comment style

* Removed old comment code
2023-05-19 08:16:05 +12:00

62 lines
2.0 KiB
C++

/*
* Copyright (C) 2015 Craig Shelley (craig@microtron.org.uk)
* Copyright (C) 2016 Furrtek
*
* BCH Encoder/Decoder - Adapted from GNURadio
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifndef __BCHCODE_H__
#define __BCHCODE_H__
#include <vector>
class BCHCode {
public:
BCHCode(std::vector<int> p_init, int m, int n, int k, int t);
~BCHCode();
BCHCode(const BCHCode&) = delete;
BCHCode(BCHCode&&) = delete;
BCHCode& operator=(const BCHCode&) = delete;
BCHCode& operator=(BCHCode&&) = delete;
int* encode(int data[]);
int decode(int recd[]);
private:
void gen_poly();
void generate_gf();
bool valid{false};
int d{};
int* p{}; // coefficients of primitive polynomial used to generate GF(2**5)
int m{}; // order of the field GF(2**5) = 5
int n{}; // 2**5 - 1 = 31
int k{}; // n - deg(g(x)) = 21 = dimension
int t{}; // 2 = error correcting capability
int* alpha_to{}; // log table of GF(2**5)
int* index_of{}; // antilog table of GF(2**5)
int* g{}; // coefficients of generator polynomial, g(x) [n - k + 1]=[11]
int* bb{}; // coefficients of redundancy polynomial ( x**(10) i(x) ) modulo g(x)
};
#endif /*__BCHCODE_H__*/