mirror of
https://github.com/eried/portapack-mayhem.git
synced 2025-01-16 09:47:26 -05:00
567fee1d98
(cherry picked from commit a47bfe1da7bffe9f752e4c522e11593cce6dffd0)
212 lines
6.0 KiB
C++
212 lines
6.0 KiB
C++
/*
|
|
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
|
|
*
|
|
* This file is part of PortaPack.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, Inc., 51 Franklin Street,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include "utility.hpp"
|
|
|
|
#include <cstdint>
|
|
|
|
#if 0
|
|
uint32_t gcd(const uint32_t u, const uint32_t v) {
|
|
/* From http://en.wikipedia.org/wiki/Binary_GCD_algorithm */
|
|
|
|
if( u == v ) {
|
|
return u;
|
|
}
|
|
|
|
if( u == 0 ) {
|
|
return v;
|
|
}
|
|
|
|
if( v == 0 ) {
|
|
return u;
|
|
}
|
|
|
|
if( ~u & 1 ) {
|
|
if( v & 1 ) {
|
|
return gcd(u >> 1, v);
|
|
} else {
|
|
return gcd(u >> 1, v >> 1) << 1;
|
|
}
|
|
}
|
|
|
|
if( ~v & 1 ) {
|
|
return gcd(u, v >> 1);
|
|
}
|
|
|
|
if( u > v ) {
|
|
return gcd((u - v) >> 1, v);
|
|
}
|
|
|
|
return gcd((v - u) >> 1, u);
|
|
}
|
|
#endif
|
|
|
|
float fast_log2(const float val) {
|
|
// Thank you Stack Overflow!
|
|
// http://stackoverflow.com/questions/9411823/fast-log2float-x-implementation-c
|
|
union {
|
|
float val;
|
|
int32_t x;
|
|
} u = { val };
|
|
float log_2 = (((u.x >> 23) & 255) - 128);
|
|
u.x &= ~(255 << 23);
|
|
u.x += (127 << 23);
|
|
log_2 += ((-0.34484843f) * u.val + 2.02466578f) * u.val - 0.67487759f;
|
|
return log_2;
|
|
}
|
|
|
|
float fast_pow2(const float val) {
|
|
union {
|
|
float f;
|
|
uint32_t n;
|
|
} u;
|
|
u.n = val * 8388608 + (0x3f800000 - 60801 * 8);
|
|
return u.f;
|
|
}
|
|
|
|
float mag2_to_dbv_norm(const float mag2) {
|
|
constexpr float mag2_log2_max = 0.0f; //std::log2(1.0f);
|
|
constexpr float log_mag2_mag_factor = 0.5f;
|
|
constexpr float log2_log10_factor = 0.3010299956639812f; //std::log10(2.0f);
|
|
constexpr float log10_dbv_factor = 20.0f;
|
|
constexpr float mag2_to_db_factor = log_mag2_mag_factor * log2_log10_factor * log10_dbv_factor;
|
|
return (fast_log2(mag2) - mag2_log2_max) * mag2_to_db_factor;
|
|
}
|
|
|
|
// Integer in and out approximation
|
|
// >40 times faster float sqrt(x*x+y*y) on Cortex M0
|
|
// derived from https://dspguru.com/dsp/tricks/magnitude-estimator/
|
|
int fast_int_magnitude(int y, int x)
|
|
{
|
|
if(y<0){y=-y;}
|
|
if(x<0){x=-x;}
|
|
if (x>y) {
|
|
return ((x*61)+(y*26)+32)/64;
|
|
} else {
|
|
return ((y*61)+(x*26)+32)/64;
|
|
}
|
|
}
|
|
|
|
// Integer x and y returning an integer bearing in degrees
|
|
// Accurate to 0.5 degrees, so output scaled to whole degrees
|
|
// >60 times faster than float atan2 on Cortex M0
|
|
int int_atan2(int y, int x)
|
|
{
|
|
// Number of bits to shift up before doing the maths. A larger shift
|
|
// may beable to gain accuracy, but it would cause the correction
|
|
// entries to be larger than 1 byte
|
|
static const int bits = 10;
|
|
static const int pi4 = (1 << bits);
|
|
static const int pi34 = (3 << bits);
|
|
|
|
// Special case
|
|
if (x == 0 && y == 0) { return 0; }
|
|
|
|
// Form an approximate angle
|
|
const int yabs = y >= 0 ? y : -y;
|
|
int angle;
|
|
if (x >= 0) {
|
|
angle = pi4 - pi4 * (x - yabs) / (x + yabs);
|
|
} else {
|
|
angle = pi34 - pi4 * (x + yabs) / (yabs - x);
|
|
}
|
|
// Correct the result using a lookup table
|
|
static const int8_t correct[32] = { 0, -23, -42, -59, -72, -83 ,-89 ,-92 ,-92 ,-88 ,-81, -71, -58, -43 ,-27, -9, 9, 27, 43, 58, 71, 81, 88, 92, 92, 89, 83, 72, 59, 42, 23, 0 };
|
|
static const int rnd = (1 << (bits - 1)) / 45; // Minor correction to round to correction values better (add 0.5)
|
|
const int idx = ((angle + rnd) >> (bits - 4)) & 0x1F;
|
|
angle += correct[idx];
|
|
|
|
// Scale for output in degrees
|
|
static const int half = (1 << (bits - 1));
|
|
angle = ((angle * 45)+half) >> bits; // Add on half before rounding
|
|
if (y < 0) { angle = -angle; }
|
|
return angle;
|
|
}
|
|
|
|
// 16 bit value represents a full cycle in but can handle multiples of this.
|
|
// Output in range +/- 16 bit value representing +/- 1.0
|
|
// 4th order cosine approximation has very small error
|
|
// >200 times faster tan float sin on Cortex M0
|
|
// see https://www.coranac.com/2009/07/sines/
|
|
int32_t int16_sin_s4(int32_t x)
|
|
{
|
|
static const int qN = 14, qA = 16, qR=12, B = 19900, C = 3516;
|
|
|
|
const int32_t c = x << (30 - qN); // Semi-circle info into carry.
|
|
x -= 1 << qN; // sine -> cosine calc
|
|
|
|
x = x << (31 - qN); // Mask with PI
|
|
x = x >> (31 - qN); // Note: SIGNED shift! (to qN)
|
|
x = x*x >> (2 * qN - 14); // x=x^2 To Q14
|
|
|
|
int32_t y = B - (x*C >> 14); // B - x^2*C
|
|
y = (1 << qA) - (x*y >> qR); // A - x^2*(B-x^2*C)
|
|
|
|
return c >= 0 ? y : -y;
|
|
}
|
|
|
|
/* GCD implementation derived from recursive implementation at
|
|
* http://en.wikipedia.org/wiki/Binary_GCD_algorithm
|
|
*/
|
|
|
|
static constexpr uint32_t gcd_top(const uint32_t u, const uint32_t v);
|
|
|
|
static constexpr uint32_t gcd_larger(const uint32_t u, const uint32_t v) {
|
|
return (u > v) ? gcd_top((u - v) >> 1, v) : gcd_top((v - u) >> 1, u);
|
|
}
|
|
|
|
static constexpr uint32_t gcd_u_odd_v_even(const uint32_t u, const uint32_t v) {
|
|
return (~v & 1) ? gcd_top(u, v >> 1) : gcd_larger(u, v);
|
|
}
|
|
|
|
static constexpr uint32_t gcd_v_odd(const uint32_t u, const uint32_t v) {
|
|
return (v & 1)
|
|
? gcd_top(u >> 1, v)
|
|
: (gcd_top(u >> 1, v >> 1) << 1);
|
|
}
|
|
|
|
static constexpr uint32_t gcd_u_even(const uint32_t u, const uint32_t v) {
|
|
return (~u & 1)
|
|
? gcd_v_odd(u, v)
|
|
: gcd_u_odd_v_even(u, v)
|
|
;
|
|
}
|
|
|
|
static constexpr uint32_t gcd_v_zero(const uint32_t u, const uint32_t v) {
|
|
return (v == 0) ? u : gcd_u_even(u, v);
|
|
}
|
|
|
|
static constexpr uint32_t gcd_u_zero(const uint32_t u, const uint32_t v) {
|
|
return (u == 0) ? v : gcd_v_zero(u, v);
|
|
}
|
|
|
|
static constexpr uint32_t gcd_uv_equal(const uint32_t u, const uint32_t v) {
|
|
return (u == v) ? u : gcd_u_zero(u, v);
|
|
}
|
|
|
|
static constexpr uint32_t gcd_top(const uint32_t u, const uint32_t v) {
|
|
return gcd_uv_equal(u, v);
|
|
}
|
|
|
|
uint32_t gcd(const uint32_t u, const uint32_t v) {
|
|
return gcd_top(u, v);
|
|
}
|