mirror of
https://github.com/eried/portapack-mayhem.git
synced 2025-01-08 05:58:08 -05:00
442 lines
12 KiB
C++
442 lines
12 KiB
C++
/*
|
|
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
|
|
* Copyleft (ɔ) 2024 zxkmm under GPL license
|
|
* Copyright (C) 2024 u-foka
|
|
* Copyright (C) 2024 Mark Thompson
|
|
*
|
|
* This file is part of PortaPack.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, Inc., 51 Franklin Street,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#ifndef __PORTAPACK_IO_H__
|
|
#define __PORTAPACK_IO_H__
|
|
|
|
#include <cstdint>
|
|
#include <cstddef>
|
|
#include <array>
|
|
|
|
#include "platform.hpp"
|
|
#include "gpio.hpp"
|
|
#include "ui.hpp"
|
|
|
|
// #include "portapack_persistent_memory.hpp"
|
|
|
|
// Darkened pixel bit mask for each possible shift value.
|
|
static const uint16_t darken_mask[4] = {
|
|
0b1111111111111111, // RrrrrGgggggBbbbb
|
|
0b0111101111101111, // 0Rrrr0Ggggg0Bbbb
|
|
0b0011100111100111, // 00Rrr00Gggg00Bbb
|
|
0b0001100011100011 // 000Rr000Ggg000Bb
|
|
};
|
|
|
|
// To darken, dividing each color level R/G/B by 2^shift.
|
|
#define DARKENED_PIXEL(pixel, shift) ((pixel >> shift) & darken_mask[shift])
|
|
|
|
// To un-darken, multiply each color level by 2^shift (might still be darker that before since some bits may have been lost above).
|
|
// This function will only be called when the pixel has previously been darkened, so no masking is needed.
|
|
#define UNDARKENED_PIXEL(pixel, shift) (pixel << shift)
|
|
|
|
namespace portapack {
|
|
|
|
class IO {
|
|
public:
|
|
enum class TouchPinsConfig : uint8_t {
|
|
XN_BIT = (1 << 0),
|
|
XP_BIT = (1 << 1),
|
|
YN_BIT = (1 << 2),
|
|
YP_BIT = (1 << 3),
|
|
|
|
XN_OE = (1 << 4),
|
|
XP_OE = (1 << 5),
|
|
YN_OE = (1 << 6),
|
|
YP_OE = (1 << 7),
|
|
|
|
XN_IN = XN_BIT,
|
|
XN_OUT_1 = XN_OE | XN_BIT,
|
|
XN_OUT_0 = XN_OE,
|
|
|
|
XP_IN = XP_BIT,
|
|
XP_OUT_1 = XP_OE | XP_BIT,
|
|
XP_OUT_0 = XP_OE,
|
|
|
|
YN_IN = YN_BIT,
|
|
YN_OUT_1 = YN_OE | YN_BIT,
|
|
YN_OUT_0 = YN_OE,
|
|
|
|
YP_IN = YP_BIT,
|
|
YP_OUT_1 = YP_OE | YP_BIT,
|
|
YP_OUT_0 = YP_OE,
|
|
|
|
/* Allow pins to be pulled up by CPLD pull-ups. */
|
|
Float = XP_IN | XN_IN | YP_IN | YN_IN,
|
|
|
|
/* Drive one plane to 0V, other plane is pulled up. Watch for when pulled-up
|
|
* plane falls to ~0V.
|
|
*/
|
|
WaitTouch = XP_OUT_0 | XN_OUT_0 | YP_IN | YN_IN,
|
|
|
|
/* Create a voltage divider between X plane, touch resistance, Y plane. */
|
|
SensePressure = XP_IN | XN_OUT_0 | YP_OUT_1 | YN_IN,
|
|
|
|
/* Create a voltage divider across X plane, read voltage from Y plane. */
|
|
SenseX = XP_OUT_1 | XN_OUT_0 | YP_IN | YN_IN,
|
|
|
|
/* Create a voltage divider across Y plane, read voltage from X plane. */
|
|
SenseY = XP_IN | XN_IN | YP_OUT_1 | YN_OUT_0,
|
|
};
|
|
|
|
constexpr IO(
|
|
GPIO gpio_dir,
|
|
GPIO gpio_lcd_rdx,
|
|
GPIO gpio_lcd_wrx,
|
|
GPIO gpio_io_stbx,
|
|
GPIO gpio_addr,
|
|
GPIO gpio_rot_a,
|
|
GPIO gpio_rot_b)
|
|
: gpio_dir{gpio_dir},
|
|
gpio_lcd_rdx{gpio_lcd_rdx},
|
|
gpio_lcd_wrx{gpio_lcd_wrx},
|
|
gpio_io_stbx{gpio_io_stbx},
|
|
gpio_addr{gpio_addr},
|
|
gpio_rot_a{gpio_rot_a},
|
|
gpio_rot_b{gpio_rot_b} {};
|
|
|
|
void init();
|
|
|
|
void lcd_backlight(const bool value);
|
|
void lcd_reset_state(const bool active);
|
|
void audio_reset_state(const bool active);
|
|
void reference_oscillator(const bool enable);
|
|
|
|
void lcd_data_write_command_and_data(
|
|
const uint_fast8_t command,
|
|
const uint8_t* data,
|
|
const size_t data_count) {
|
|
lcd_command(command);
|
|
for (size_t i = 0; i < data_count; i++) {
|
|
lcd_write_data(data[i]);
|
|
}
|
|
}
|
|
|
|
void lcd_data_write_command_and_data(
|
|
const uint_fast8_t command,
|
|
const std::initializer_list<uint8_t>& data) {
|
|
lcd_command(command);
|
|
for (const auto d : data) {
|
|
lcd_write_data(d);
|
|
}
|
|
}
|
|
|
|
void lcd_data_read_command_and_data(
|
|
const uint_fast8_t command,
|
|
uint16_t* const data,
|
|
const size_t data_count) {
|
|
lcd_command(command);
|
|
for (size_t i = 0; i < data_count; i++) {
|
|
data[i] = lcd_read_data();
|
|
}
|
|
}
|
|
|
|
void lcd_write_word(const uint32_t w) {
|
|
lcd_write_data(w);
|
|
}
|
|
|
|
void lcd_write_words(const uint16_t* const w, size_t n) {
|
|
for (size_t i = 0; i < n; i++) {
|
|
lcd_write_data(w[i]);
|
|
}
|
|
}
|
|
|
|
void lcd_write_pixel(ui::Color pixel) {
|
|
lcd_write_data(pixel.v);
|
|
}
|
|
|
|
uint32_t lcd_read_word() {
|
|
return lcd_read_data();
|
|
}
|
|
|
|
void lcd_write_pixels(ui::Color pixel, size_t n) {
|
|
while (n--) {
|
|
lcd_write_data(pixel.v);
|
|
}
|
|
}
|
|
|
|
void lcd_write_pixels_unrolled8(ui::Color pixel, size_t n) {
|
|
auto v = pixel.v;
|
|
n >>= 3;
|
|
while (n--) {
|
|
lcd_write_data(v);
|
|
lcd_write_data(v);
|
|
lcd_write_data(v);
|
|
lcd_write_data(v);
|
|
lcd_write_data(v);
|
|
lcd_write_data(v);
|
|
lcd_write_data(v);
|
|
lcd_write_data(v);
|
|
}
|
|
}
|
|
|
|
void lcd_write_pixels(const ui::Color* const pixels, size_t n) {
|
|
for (size_t i = 0; i < n; i++) {
|
|
lcd_write_pixel(pixels[i]);
|
|
}
|
|
}
|
|
|
|
void lcd_read_bytes(uint8_t* byte, size_t byte_count) {
|
|
size_t word_count = byte_count / 2;
|
|
while (word_count) {
|
|
const auto word = lcd_read_data();
|
|
*(byte++) = word >> 8;
|
|
*(byte++) = word >> 0;
|
|
word_count--;
|
|
}
|
|
if (byte_count & 1) {
|
|
const auto word = lcd_read_data();
|
|
*(byte++) = word >> 8;
|
|
}
|
|
}
|
|
|
|
uint32_t io_read() {
|
|
io_stb_assert();
|
|
dir_read();
|
|
addr_0();
|
|
__asm__("nop");
|
|
__asm__("nop");
|
|
__asm__("nop");
|
|
const auto switches_raw = data_read();
|
|
io_stb_deassert();
|
|
|
|
return switches_raw;
|
|
}
|
|
bool get_is_inverted();
|
|
|
|
uint32_t io_update(const TouchPinsConfig write_value);
|
|
|
|
uint32_t lcd_te() {
|
|
return gpio_rot_a.read();
|
|
}
|
|
|
|
uint32_t dfu_read() {
|
|
return gpio_rot_b.read();
|
|
}
|
|
|
|
private:
|
|
const GPIO gpio_dir;
|
|
const GPIO gpio_lcd_rdx;
|
|
const GPIO gpio_lcd_wrx;
|
|
const GPIO gpio_io_stbx;
|
|
const GPIO gpio_addr;
|
|
const GPIO gpio_rot_a;
|
|
const GPIO gpio_rot_b;
|
|
|
|
static constexpr ioportid_t gpio_data_port_id = 3;
|
|
static constexpr size_t gpio_data_shift = 8;
|
|
static constexpr ioportmask_t gpio_data_mask = 0xffU << gpio_data_shift;
|
|
|
|
uint8_t io_reg{0x03};
|
|
|
|
void lcd_rd_assert() {
|
|
gpio_lcd_rdx.clear();
|
|
}
|
|
|
|
void lcd_rd_deassert() {
|
|
gpio_lcd_rdx.set();
|
|
}
|
|
|
|
void lcd_wr_assert() {
|
|
gpio_lcd_wrx.clear();
|
|
}
|
|
|
|
void lcd_wr_deassert() {
|
|
gpio_lcd_wrx.set();
|
|
}
|
|
|
|
void io_stb_assert() {
|
|
gpio_io_stbx.clear();
|
|
}
|
|
|
|
void io_stb_deassert() {
|
|
gpio_io_stbx.set();
|
|
}
|
|
|
|
void addr(const bool value) {
|
|
gpio_addr.write(value);
|
|
}
|
|
|
|
void addr_1() {
|
|
gpio_addr.set();
|
|
}
|
|
|
|
void addr_0() {
|
|
gpio_addr.clear();
|
|
}
|
|
|
|
void data_mask_set() {
|
|
LPC_GPIO->MASK[gpio_data_port_id] = ~gpio_data_mask;
|
|
}
|
|
|
|
void dir_write() {
|
|
gpio_dir.clear();
|
|
LPC_GPIO->DIR[gpio_data_port_id] |= gpio_data_mask;
|
|
/* TODO: Manipulating DIR[3] makes me queasy. The RFFC5072 DATA pin
|
|
* is also on port 3, and switches direction periodically...
|
|
* Time to resort to bit-banding to enforce atomicity? But then, how
|
|
* to change direction on eight bits efficiently? Or do I care, since
|
|
* the PortaPack data bus shouldn't change direction too frequently?
|
|
*/
|
|
}
|
|
|
|
void dir_read() {
|
|
LPC_GPIO->DIR[gpio_data_port_id] &= ~gpio_data_mask;
|
|
gpio_dir.set();
|
|
}
|
|
|
|
void data_write_low(const uint32_t value) {
|
|
LPC_GPIO->MPIN[gpio_data_port_id] = (value << gpio_data_shift);
|
|
}
|
|
|
|
void data_write_high(const uint32_t value) {
|
|
LPC_GPIO->MPIN[gpio_data_port_id] = value;
|
|
}
|
|
|
|
uint32_t data_read() {
|
|
return (LPC_GPIO->MPIN[gpio_data_port_id] >> gpio_data_shift) & 0xffU;
|
|
}
|
|
|
|
void lcd_command(const uint32_t value) {
|
|
data_write_high(0); /* Drive high byte (with zero -- don't care) */
|
|
dir_write(); /* Turn around data bus, MCU->CPLD */
|
|
addr(0); /* Indicate command */
|
|
__asm__("nop");
|
|
__asm__("nop");
|
|
__asm__("nop");
|
|
lcd_wr_assert(); /* Latch high byte */
|
|
|
|
data_write_low(value); /* Drive low byte (pass-through) */
|
|
__asm__("nop");
|
|
__asm__("nop");
|
|
__asm__("nop");
|
|
lcd_wr_deassert(); /* Complete write operation */
|
|
|
|
addr(1); /* Set up for data phase (most likely after a command) */
|
|
}
|
|
|
|
// void high_contrast(ui::Color& pixel, size_t contrast_level_shift) { // TODO
|
|
// uint16_t r = (pixel.v >> 11) & 0x1F;
|
|
// uint16_t g = (pixel.v >> 5) & 0x3F;
|
|
// uint16_t b = pixel.v & 0x1F;
|
|
//
|
|
// if ((r << contrast_level_shift) > 0x1F) { // should be slightly smaller, need more obverse...
|
|
// r = 0x1F;
|
|
// } else {
|
|
// r = r << contrast_level_shift;
|
|
// }
|
|
//
|
|
// if ((g << contrast_level_shift) > 0x3F) { // same as above
|
|
// g = 0x3F;
|
|
// } else {
|
|
// g = g << contrast_level_shift;
|
|
// }
|
|
//
|
|
// if ((b << contrast_level_shift) > 0x1F) { // same as above
|
|
// b = 0x1F;
|
|
// } else {
|
|
// b = b << contrast_level_shift;
|
|
// }
|
|
//
|
|
// pixel.v = (r << 11) | (g << 5) | b;
|
|
// }
|
|
//
|
|
// void gray_scale(ui::Color& pixel) { // TODO: the blackwhite not looks right....
|
|
// uint16_t r = (pixel.v >> 11) & 0x1F;
|
|
// uint16_t g = (pixel.v >> 5) & 0x3F;
|
|
// uint16_t b = pixel.v & 0x1F;
|
|
//
|
|
// uint16_t average = (r + g + b) / 3;
|
|
//
|
|
// pixel.v = (average << 11) | (average << 5) | average;
|
|
// }
|
|
|
|
void lcd_write_data(const uint32_t value) __attribute__((always_inline)) {
|
|
// NOTE: Assumes and DIR=0 and ADDR=1 from command phase.
|
|
data_write_high(value); /* Drive high byte */
|
|
__asm__("nop");
|
|
lcd_wr_assert(); /* Latch high byte */
|
|
|
|
data_write_low(value); /* Drive low byte (pass-through) */
|
|
__asm__("nop");
|
|
__asm__("nop");
|
|
__asm__("nop");
|
|
lcd_wr_deassert(); /* Complete write operation */
|
|
}
|
|
|
|
uint32_t lcd_read_data() {
|
|
// NOTE: Assumes ADDR=1 from command phase.
|
|
dir_read();
|
|
|
|
/* Start read operation */
|
|
lcd_rd_assert();
|
|
/* Wait for passthrough data(15:8) to settle -- ~16ns (3 cycles) typical */
|
|
/* Wait for read control L duration (355ns) */
|
|
halPolledDelay(71); // 355ns
|
|
const auto value_high = data_read();
|
|
|
|
/* Latch data[7:0] */
|
|
lcd_rd_deassert();
|
|
/* Wait for latched data[7:0] to settle -- ~26ns (5 cycles) typical */
|
|
/* Wait for read control H duration (90ns) */
|
|
halPolledDelay(18); // 90ns
|
|
|
|
const auto value_low = data_read();
|
|
uint32_t original_value = (value_high << 8) | value_low;
|
|
|
|
return original_value;
|
|
}
|
|
|
|
void io_write(const bool address, const uint_fast16_t value) {
|
|
data_write_low(value);
|
|
dir_write();
|
|
addr(address);
|
|
__asm__("nop");
|
|
__asm__("nop");
|
|
__asm__("nop");
|
|
io_stb_assert();
|
|
__asm__("nop");
|
|
__asm__("nop");
|
|
__asm__("nop");
|
|
io_stb_deassert();
|
|
}
|
|
/*
|
|
void lcd_data_write_command_and_data(
|
|
const uint_fast16_t command,
|
|
const uint8_t* const data,
|
|
const size_t count
|
|
) {
|
|
lcd_data_write_command(command);
|
|
for(size_t i=0; i<count; i++) {
|
|
lcd_data_write_data(data[i]);
|
|
}
|
|
}
|
|
*/
|
|
};
|
|
|
|
extern IO io;
|
|
|
|
} /* namespace portapack */
|
|
|
|
#endif /*__PORTAPACK_IO_H__*/
|