portapack-mayhem/firmware/baseband/main.cpp
furrtek 66de53744e Jammer UI
Drew jammer UI
Added presets for French GSM operators and a few other funny frequencies
Added minimalist jamming baseband code
2015-11-13 01:19:05 +01:00

1280 lines
38 KiB
C++
Executable File

/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "ch.h"
#include "test.h"
#include "lpc43xx_cpp.hpp"
#include "portapack_shared_memory.hpp"
#include "portapack_dma.hpp"
#include "gpdma.hpp"
#include "baseband.hpp"
#include "baseband_dma.hpp"
#include "event_m4.hpp"
#include "rssi.hpp"
#include "rssi_dma.hpp"
#include "touch_dma.hpp"
#include "dsp_decimate.hpp"
#include "dsp_demodulate.hpp"
#include "dsp_fft.hpp"
#include "dsp_fir_taps.hpp"
#include "dsp_iir.hpp"
#include "baseband_stats_collector.hpp"
#include "rssi_stats_collector.hpp"
#include "channel_stats_collector.hpp"
#include "audio_stats_collector.hpp"
#include "block_decimator.hpp"
#include "clock_recovery.hpp"
#include "access_code_correlator.hpp"
#include "packet_builder.hpp"
#include "message_queue.hpp"
#include "utility.hpp"
#include "debug.hpp"
#include "audio.hpp"
#include "audio_dma.hpp"
#include "gcc.hpp"
#include <cstdint>
#include <cstddef>
#include <array>
#include <string>
#include <bitset>
#include <math.h>
constexpr auto baseband_thread_priority = NORMALPRIO + 20;
constexpr auto rssi_thread_priority = NORMALPRIO + 10;
class ChannelDecimator {
public:
enum class DecimationFactor {
By4,
By8,
By16,
By32,
};
ChannelDecimator(
DecimationFactor f
) : decimation_factor { f }
{
}
void set_decimation_factor(const DecimationFactor f) {
decimation_factor = f;
}
buffer_c16_t execute(buffer_c8_t buffer) {
auto decimated = execute_decimation(buffer);
return decimated;
}
private:
std::array<complex16_t, 1024> work_baseband;
const buffer_c16_t work_baseband_buffer {
work_baseband.data(),
work_baseband.size()
};
const buffer_s16_t work_audio_buffer {
(int16_t*)work_baseband.data(),
sizeof(work_baseband) / sizeof(int16_t)
};
//const bool fs_over_4_downconvert = true;
dsp::decimate::TranslateByFSOver4AndDecimateBy2CIC3 translate;
//dsp::decimate::DecimateBy2CIC3 cic_0;
dsp::decimate::DecimateBy2CIC3 cic_1;
dsp::decimate::DecimateBy2CIC3 cic_2;
dsp::decimate::DecimateBy2CIC3 cic_3;
dsp::decimate::DecimateBy2CIC3 cic_4;
DecimationFactor decimation_factor { DecimationFactor::By32 };
buffer_c16_t execute_decimation(buffer_c8_t buffer) {
/* 3.072MHz complex<int8_t>[2048], [-128, 127]
* -> Shift by -fs/4
* -> 3rd order CIC: -0.1dB @ 0.028fs, -1dB @ 0.088fs, -60dB @ 0.468fs
* -0.1dB @ 86kHz, -1dB @ 270kHz, -60dB @ 1.44MHz
* -> gain of 256
* -> decimation by 2
* -> 1.544MHz complex<int16_t>[1024], [-32768, 32512] */
const auto stage_0_out = translate.execute(buffer, work_baseband_buffer);
//if( fs_over_4_downconvert ) {
// // TODO:
//} else {
// Won't work until cic_0 will accept input type of buffer_c8_t.
// stage_0_out = cic_0.execute(buffer, work_baseband_buffer);
//}
/* 1.536MHz complex<int16_t>[1024], [-32768, 32512]
* -> 3rd order CIC: -0.1dB @ 0.028fs, -1dB @ 0.088fs, -60dB @ 0.468fs
* -0.1dB @ 43kHz, -1dB @ 136kHz, -60dB @ 723kHz
* -> gain of 8
* -> decimation by 2
* -> 768kHz complex<int16_t>[512], [-8192, 8128] */
auto cic_1_out = cic_1.execute(stage_0_out, work_baseband_buffer);
if( decimation_factor == DecimationFactor::By4 ) {
return cic_1_out;
}
/* 768kHz complex<int16_t>[512], [-32768, 32512]
* -> 3rd order CIC decimation by 2, gain of 1
* -> 384kHz complex<int16_t>[256], [-32768, 32512] */
auto cic_2_out = cic_2.execute(cic_1_out, work_baseband_buffer);
if( decimation_factor == DecimationFactor::By8 ) {
return cic_2_out;
}
/* 384kHz complex<int16_t>[256], [-32768, 32512]
* -> 3rd order CIC decimation by 2, gain of 1
* -> 192kHz complex<int16_t>[128], [-32768, 32512] */
auto cic_3_out = cic_3.execute(cic_2_out, work_baseband_buffer);
if( decimation_factor == DecimationFactor::By16 ) {
return cic_3_out;
}
/* 192kHz complex<int16_t>[128], [-32768, 32512]
* -> 3rd order CIC decimation by 2, gain of 1
* -> 96kHz complex<int16_t>[64], [-32768, 32512] */
auto cic_4_out = cic_4.execute(cic_3_out, work_baseband_buffer);
return cic_4_out;
}
};
static constexpr iir_biquad_config_t audio_hpf_config {
{ 0.93346032f, -1.86687724f, 0.93346032f },
{ 1.0f , -1.97730264f, 0.97773668f }
};
static constexpr iir_biquad_config_t non_audio_hpf_config {
{ 0.51891061f, -0.95714180f, 0.51891061f },
{ 1.0f , -0.79878302f, 0.43960231f }
};
class FMSquelch {
public:
bool execute(buffer_s16_t audio) {
// TODO: No hard-coded array size.
std::array<int16_t, N> squelch_energy_buffer;
const buffer_s16_t squelch_energy {
squelch_energy_buffer.data(),
squelch_energy_buffer.size()
};
non_audio_hpf.execute(audio, squelch_energy);
uint64_t max_squared = 0;
for(const auto sample : squelch_energy_buffer) {
const uint64_t sample_squared = sample * sample;
if( sample_squared > max_squared ) {
max_squared = sample_squared;
}
}
return (max_squared < (threshold * threshold));
}
private:
static constexpr size_t N = 32;
static constexpr int16_t threshold = 3072;
// nyquist = 48000 / 2.0
// scipy.signal.iirdesign(wp=8000 / nyquist, ws= 4000 / nyquist, gpass=1, gstop=18, ftype='ellip')
IIRBiquadFilter non_audio_hpf { non_audio_hpf_config };
};
static volatile bool channel_spectrum_request_update { false };
static std::array<complex16_t, 256> channel_spectrum;
static uint32_t channel_spectrum_sampling_rate { 0 };
static uint32_t channel_filter_pass_frequency { 0 };
static uint32_t channel_filter_stop_frequency { 0 };
class BasebandProcessor {
public:
virtual ~BasebandProcessor() = default;
virtual void execute(buffer_c8_t buffer) = 0;
protected:
void feed_channel_stats(const buffer_c16_t channel) {
channel_stats.feed(
channel,
[this](const ChannelStatistics statistics) {
this->post_channel_stats_message(statistics);
}
);
}
void feed_channel_spectrum(
const buffer_c16_t channel,
const uint32_t filter_pass_frequency,
const uint32_t filter_stop_frequency
) {
channel_filter_pass_frequency = filter_pass_frequency;
channel_filter_stop_frequency = filter_stop_frequency;
channel_spectrum_decimator.feed(
channel,
[this](const buffer_c16_t data) {
this->post_channel_spectrum_message(data);
}
);
}
void fill_audio_buffer(const buffer_s16_t audio) {
auto audio_buffer = audio::dma::tx_empty_buffer();
for(size_t i=0; i<audio_buffer.count; i++) {
audio_buffer.p[i].left = audio_buffer.p[i].right = audio.p[i];
}
i2s::i2s0::tx_unmute();
feed_audio_stats(audio);
}
private:
BlockDecimator<256> channel_spectrum_decimator { 4 };
ChannelStatsCollector channel_stats;
ChannelStatisticsMessage channel_stats_message;
AudioStatsCollector audio_stats;
AudioStatisticsMessage audio_stats_message;
void post_channel_stats_message(const ChannelStatistics statistics) {
if( channel_stats_message.is_free() ) {
channel_stats_message.statistics = statistics;
shared_memory.application_queue.push(&channel_stats_message);
}
}
void post_channel_spectrum_message(const buffer_c16_t data) {
if( !channel_spectrum_request_update ) {
channel_spectrum_request_update = true;
std::copy(&data.p[0], &data.p[data.count], channel_spectrum.begin());
channel_spectrum_sampling_rate = data.sampling_rate;
events_flag(EVT_MASK_SPECTRUM);
}
}
void feed_audio_stats(const buffer_s16_t audio) {
audio_stats.feed(
audio,
[this](const AudioStatistics statistics) {
this->post_audio_stats_message(statistics);
}
);
}
void post_audio_stats_message(const AudioStatistics statistics) {
if( audio_stats_message.is_free() ) {
audio_stats_message.statistics = statistics;
shared_memory.application_queue.push(&audio_stats_message);
}
}
};
class NarrowbandAMAudio : public BasebandProcessor {
public:
void execute(buffer_c8_t buffer) override {
auto decimator_out = decimator.execute(buffer);
const buffer_c16_t work_baseband_buffer {
(complex16_t*)decimator_out.p,
sizeof(*decimator_out.p) * decimator_out.count
};
/* 96kHz complex<int16_t>[64]
* -> FIR filter, <?kHz (0.???fs) pass, gain 1.0
* -> 48kHz int16_t[32] */
auto channel = channel_filter.execute(decimator_out, work_baseband_buffer);
// TODO: Feed channel_stats post-decimation data?
feed_channel_stats(channel);
feed_channel_spectrum(
channel,
decimator_out.sampling_rate * channel_filter_taps.pass_frequency_normalized,
decimator_out.sampling_rate * channel_filter_taps.stop_frequency_normalized
);
const buffer_s16_t work_audio_buffer {
(int16_t*)decimator_out.p,
sizeof(*decimator_out.p) * decimator_out.count
};
/* 48kHz complex<int16_t>[32]
* -> AM demodulation
* -> 48kHz int16_t[32] */
auto audio = demod.execute(channel, work_audio_buffer);
audio_hpf.execute_in_place(audio);
fill_audio_buffer(audio);
}
private:
ChannelDecimator decimator { ChannelDecimator::DecimationFactor::By32 };
const fir_taps_real<64>& channel_filter_taps = taps_64_lp_031_070_tfilter;
dsp::decimate::FIRAndDecimateBy2Complex<64> channel_filter { channel_filter_taps.taps };
dsp::demodulate::AM demod;
IIRBiquadFilter audio_hpf { audio_hpf_config };
};
class NarrowbandFMAudio : public BasebandProcessor {
public:
void execute(buffer_c8_t buffer) override {
/* Called every 2048/3072000 second -- 1500Hz. */
auto decimator_out = decimator.execute(buffer);
const buffer_c16_t work_baseband_buffer {
(complex16_t*)decimator_out.p,
sizeof(*decimator_out.p) * decimator_out.count
};
/* 96kHz complex<int16_t>[64]
* -> FIR filter, <6kHz (0.063fs) pass, gain 1.0
* -> 48kHz int16_t[32] */
auto channel = channel_filter.execute(decimator_out, work_baseband_buffer);
// TODO: Feed channel_stats post-decimation data?
feed_channel_stats(channel);
feed_channel_spectrum(
channel,
decimator_out.sampling_rate * channel_filter_taps.pass_frequency_normalized,
decimator_out.sampling_rate * channel_filter_taps.stop_frequency_normalized
);
const buffer_s16_t work_audio_buffer {
(int16_t*)decimator_out.p,
sizeof(*decimator_out.p) * decimator_out.count
};
/* 48kHz complex<int16_t>[32]
* -> FM demodulation
* -> 48kHz int16_t[32] */
auto audio = demod.execute(channel, work_audio_buffer);
static uint64_t audio_present_history = 0;
const auto audio_present_now = squelch.execute(audio);
audio_present_history = (audio_present_history << 1) | (audio_present_now ? 1 : 0);
const bool audio_present = (audio_present_history != 0);
if( !audio_present ) {
// Zero audio buffer.
for(size_t i=0; i<audio.count; i++) {
audio.p[i] = 0;
}
}
audio_hpf.execute_in_place(audio);
fill_audio_buffer(audio);
}
private:
ChannelDecimator decimator { ChannelDecimator::DecimationFactor::By32 };
const fir_taps_real<64>& channel_filter_taps = taps_64_lp_042_078_tfilter;
dsp::decimate::FIRAndDecimateBy2Complex<64> channel_filter { channel_filter_taps.taps };
dsp::demodulate::FM demod { 48000, 7500 };
IIRBiquadFilter audio_hpf { audio_hpf_config };
FMSquelch squelch;
};
class WidebandFMAudio : public BasebandProcessor {
public:
void execute(buffer_c8_t buffer) override {
auto decimator_out = decimator.execute(buffer);
const buffer_s16_t work_audio_buffer {
(int16_t*)decimator_out.p,
sizeof(*decimator_out.p) * decimator_out.count
};
auto channel = decimator_out;
// TODO: Feed channel_stats post-decimation data?
feed_channel_stats(channel);
//feed_channel_spectrum(channel);
/* 768kHz complex<int16_t>[512]
* -> FM demodulation
* -> 768kHz int16_t[512] */
/* TODO: To improve adjacent channel rejection, implement complex channel filter:
* pass < +/- 100kHz, stop > +/- 200kHz
*/
auto audio_oversampled = demod.execute(decimator_out, work_audio_buffer);
/* 768kHz int16_t[512]
* -> 4th order CIC decimation by 2, gain of 1
* -> 384kHz int16_t[256] */
auto audio_8fs = audio_dec_1.execute(audio_oversampled, work_audio_buffer);
/* 384kHz int16_t[256]
* -> 4th order CIC decimation by 2, gain of 1
* -> 192kHz int16_t[128] */
auto audio_4fs = audio_dec_2.execute(audio_8fs, work_audio_buffer);
/* 192kHz int16_t[128]
* -> 4th order CIC decimation by 2, gain of 1
* -> 96kHz int16_t[64] */
auto audio_2fs = audio_dec_3.execute(audio_4fs, work_audio_buffer);
/* 96kHz int16_t[64]
* -> FIR filter, <15kHz (0.156fs) pass, >19kHz (0.198fs) stop, gain of 1
* -> 48kHz int16_t[32] */
auto audio = audio_filter.execute(audio_2fs, work_audio_buffer);
/* -> 48kHz int16_t[32] */
audio_hpf.execute_in_place(audio);
fill_audio_buffer(audio);
}
private:
ChannelDecimator decimator { ChannelDecimator::DecimationFactor::By4 };
//dsp::decimate::FIRAndDecimateBy2Complex<64> channel_filter { taps_64_lp_031_070_tfilter };
dsp::demodulate::FM demod { 768000, 75000 };
dsp::decimate::DecimateBy2CIC4Real audio_dec_1;
dsp::decimate::DecimateBy2CIC4Real audio_dec_2;
dsp::decimate::DecimateBy2CIC4Real audio_dec_3;
const fir_taps_real<64>& audio_filter_taps = taps_64_lp_156_198;
dsp::decimate::FIR64AndDecimateBy2Real audio_filter { audio_filter_taps.taps };
IIRBiquadFilter audio_hpf { audio_hpf_config };
};
class FSKProcessor : public BasebandProcessor {
public:
FSKProcessor(
MessageHandlerMap& message_handlers
) : message_handlers(message_handlers)
{
message_handlers[Message::ID::FSKConfiguration] = [this](const Message* const p) {
auto m = reinterpret_cast<const FSKConfigurationMessage*>(p);
this->configure(m->configuration);
};
}
~FSKProcessor() {
message_handlers[Message::ID::FSKConfiguration] = nullptr;
}
void configure(const FSKConfiguration new_configuration) {
clock_recovery.configure(new_configuration.symbol_rate, 76800);
access_code_correlator.configure(
new_configuration.access_code,
new_configuration.access_code_length,
new_configuration.access_code_tolerance
);
packet_builder.configure(new_configuration.packet_length);
}
void execute(buffer_c8_t buffer) override {
/* 2.4576MHz, 2048 samples */
auto decimator_out = decimator.execute(buffer);
/* 153.6kHz, 128 samples */
const buffer_c16_t work_baseband_buffer {
(complex16_t*)decimator_out.p,
decimator_out.count
};
/* 153.6kHz complex<int16_t>[128]
* -> FIR filter, <?kHz (?fs) pass, gain 1.0
* -> 76.8kHz int16_t[64] */
auto channel = channel_filter.execute(decimator_out, work_baseband_buffer);
/* 76.8kHz, 64 samples */
feed_channel_stats(channel);
feed_channel_spectrum(
channel,
decimator_out.sampling_rate * channel_filter_taps.pass_frequency_normalized,
decimator_out.sampling_rate * channel_filter_taps.stop_frequency_normalized
);
const auto symbol_handler_fn = [this](const float value) {
const uint_fast8_t symbol = (value >= 0.0f) ? 1 : 0;
const bool access_code_found = this->access_code_correlator.execute(symbol);
this->consume_symbol(symbol, access_code_found);
};
// 76.8k
const buffer_s16_t work_demod_buffer {
(int16_t*)decimator_out.p,
decimator_out.count * sizeof(*decimator_out.p) / sizeof(int16_t)
};
auto demodulated = demod.execute(channel, work_demod_buffer);
i2s::i2s0::tx_mute();
for(size_t i=0; i<demodulated.count; i++) {
clock_recovery.execute(demodulated.p[i], symbol_handler_fn);
}
}
private:
ChannelDecimator decimator { ChannelDecimator::DecimationFactor::By16 };
const fir_taps_real<64>& channel_filter_taps = taps_64_lp_031_070_tfilter;
dsp::decimate::FIRAndDecimateBy2Complex<64> channel_filter { channel_filter_taps.taps };
dsp::demodulate::FM demod { 76800, 9600 * 2 };
ClockRecovery clock_recovery;
AccessCodeCorrelator access_code_correlator;
PacketBuilder packet_builder;
FSKPacketMessage message;
MessageHandlerMap& message_handlers;
void consume_symbol(
const uint_fast8_t symbol,
const bool access_code_found
) {
const auto payload_handler_fn = [this](
const std::bitset<256>& payload,
const size_t bits_received
) {
this->payload_handler(payload, bits_received);
};
packet_builder.execute(
symbol,
access_code_found,
payload_handler_fn
);
}
void payload_handler(
const std::bitset<256>& payload,
const size_t bits_received
) {
if( message.is_free() ) {
message.packet.payload = payload;
message.packet.bits_received = bits_received;
shared_memory.application_queue.push(&message);
}
}
};
static const int8_t sintab[1024] = {
0, 1, 2, 2, 3, 4, 5, 5, 6, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 15, 16, 16, 17, 18, 19, 19, 20, 21, 22, 22, 23, 24, 25, 26, 26, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36, 37, 38, 38, 39, 40, 41, 41, 42, 43, 44, 44, 45, 46, 46, 47, 48, 49, 49, 50, 51, 51, 52, 53, 54, 54, 55, 56, 56, 57, 58, 58, 59, 60, 61, 61, 62, 63, 63, 64, 65, 65, 66, 67, 67, 68, 69, 69, 70, 71, 71, 72, 72, 73, 74, 74, 75, 76, 76, 77, 78, 78, 79, 79, 80, 81, 81, 82, 82, 83, 84, 84, 85, 85, 86, 86, 87, 88, 88, 89, 89, 90, 90, 91, 91, 92, 93, 93, 94, 94, 95, 95, 96, 96, 97, 97, 98, 98, 99, 99, 100, 100, 101, 101, 102, 102, 102, 103, 103, 104, 104, 105, 105, 106, 106, 106, 107, 107, 108, 108, 109, 109, 109, 110, 110, 111, 111, 111, 112, 112, 112, 113, 113, 113, 114, 114, 114, 115, 115, 115, 116, 116, 116, 117, 117, 117, 118, 118, 118, 118, 119, 119, 119, 120, 120, 120, 120, 121, 121, 121, 121, 122, 122, 122, 122, 122, 123, 123, 123, 123, 123, 124, 124, 124, 124, 124, 124, 125, 125, 125, 125, 125, 125, 125, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127,
127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 126, 125, 125, 125, 125, 125, 125, 125, 124, 124, 124, 124, 124, 124, 123, 123, 123, 123, 123, 122, 122, 122, 122, 122, 121, 121, 121, 121, 120, 120, 120, 120, 119, 119, 119, 118, 118, 118, 118, 117, 117, 117, 116, 116, 116, 115, 115, 115, 114, 114, 114, 113, 113, 113, 112, 112, 112, 111, 111, 111, 110, 110, 109, 109, 109, 108, 108, 107, 107, 106, 106, 106, 105, 105, 104, 104, 103, 103, 102, 102, 102, 101, 101, 100, 100, 99, 99, 98, 98, 97, 97, 96, 96, 95, 95, 94, 94, 93, 93, 92, 91, 91, 90, 90, 89, 89, 88, 88, 87, 86, 86, 85, 85, 84, 84, 83, 82, 82, 81, 81, 80, 79, 79, 78, 78, 77, 76, 76, 75, 74, 74, 73, 72, 72, 71, 71, 70, 69, 69, 68, 67, 67, 66, 65, 65, 64, 63, 63, 62, 61, 61, 60, 59, 58, 58, 57, 56, 56, 55, 54, 54, 53, 52, 51, 51, 50, 49, 49, 48, 47, 46, 46, 45, 44, 44, 43, 42, 41, 41, 40, 39, 38, 38, 37, 36, 35, 35, 34, 33, 32, 32, 31, 30, 29, 29, 28, 27, 26, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 17, 16, 16, 15, 14, 13, 12, 12, 11, 10, 9, 9, 8, 7, 6, 5, 5, 4, 3, 2, 2, 1, 0, -1, -2, -2, -3, -4, -5, -5, -6, -7, -8, -9, -9, -10, -11, -12, -12, -13, -14, -15, -16, -16, -17, -18, -19, -19, -20, -21, -22, -22, -23, -24, -25, -26, -26, -27, -28, -29, -29, -30, -31,
-32, -32, -33, -34, -35, -35, -36, -37, -38, -38, -39, -40, -41, -41, -42, -43, -44, -44, -45, -46, -46, -47, -48, -49, -49, -50, -51, -51, -52, -53, -54, -54, -55, -56, -56, -57, -58, -58, -59, -60, -61, -61, -62, -63, -63, -64, -65, -65, -66, -67, -67, -68, -69, -69, -70, -71, -71, -72, -72, -73, -74, -74, -75, -76, -76, -77, -78, -78, -79, -79, -80, -81, -81, -82, -82, -83, -84, -84, -85, -85, -86, -86, -87, -88, -88, -89, -89, -90, -90, -91, -91, -92, -93, -93, -94, -94, -95, -95, -96, -96, -97, -97, -98, -98, -99, -99, -100, -100, -101, -101, -102, -102, -102, -103, -103, -104, -104, -105, -105, -106, -106, -106, -107, -107, -108, -108, -109, -109, -109, -110, -110, -111, -111, -111, -112, -112, -112, -113, -113, -113, -114, -114, -114, -115, -115, -115, -116, -116, -116, -117, -117, -117, -118, -118, -118, -118, -119, -119, -119, -120, -120, -120, -120, -121, -121, -121, -121, -122, -122, -122, -122, -122, -123, -123, -123, -123, -123, -124, -124, -124, -124, -124, -124, -125, -125, -125, -125, -125, -125, -125, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127, -127,
-126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -126, -125, -125, -125, -125, -125, -125, -125, -124, -124, -124, -124, -124, -124, -123, -123, -123, -123, -123, -122, -122, -122, -122, -122, -121, -121, -121, -121, -120, -120, -120, -120, -119, -119, -119, -118, -118, -118, -118, -117, -117, -117, -116, -116, -116, -115, -115, -115, -114, -114, -114, -113, -113, -113, -112, -112, -112, -111, -111, -111, -110, -110, -109, -109, -109, -108, -108, -107, -107, -106, -106, -106, -105, -105, -104, -104, -103, -103, -102, -102, -102, -101, -101, -100, -100, -99, -99, -98, -98, -97, -97, -96, -96, -95, -95, -94, -94, -93, -93, -92, -91, -91, -90, -90, -89, -89, -88, -88, -87, -86, -86, -85, -85, -84, -84, -83, -82, -82, -81, -81, -80, -79, -79, -78, -78, -77, -76, -76, -75, -74, -74, -73, -72, -72, -71, -71, -70, -69, -69, -68, -67, -67, -66, -65, -65, -64, -63, -63, -62, -61, -61, -60, -59, -58, -58, -57, -56, -56, -55, -54, -54, -53, -52, -51, -51, -50, -49, -49, -48, -47, -46, -46, -45, -44, -44, -43, -42, -41, -41, -40, -39, -38, -38, -37, -36, -35, -35, -34, -33, -32, -32, -31, -30, -29, -29, -28, -27, -26, -26, -25, -24, -23, -22, -22, -21, -20, -19, -19, -18, -17, -16, -16, -15, -14, -13, -12, -12, -11, -10, -9, -9, -8, -7, -6, -5, -5, -4, -3, -2, -2, -1
};
#define SAMPLES_PER_BIT 192
#define FILTER_SIZE 576
#define SAMPLE_BUFFER_SIZE SAMPLES_PER_BIT + FILTER_SIZE
static int32_t waveform_biphase[] = {
165,167,168,168,167,166,163,160,
157,152,147,141,134,126,118,109,
99,88,77,66,53,41,27,14,
0,-14,-29,-44,-59,-74,-89,-105,
-120,-135,-150,-165,-179,-193,-206,-218,
-231,-242,-252,-262,-271,-279,-286,-291,
-296,-299,-301,-302,-302,-300,-297,-292,
-286,-278,-269,-259,-247,-233,-219,-202,
-185,-166,-145,-124,-101,-77,-52,-26,
0,27,56,85,114,144,175,205,
236,266,296,326,356,384,412,439,
465,490,513,535,555,574,590,604,
616,626,633,637,639,638,633,626,
616,602,586,565,542,515,485,451,
414,373,329,282,232,178,121,62,
0,-65,-132,-202,-274,-347,-423,-500,
-578,-656,-736,-815,-894,-973,-1051,-1128,
-1203,-1276,-1347,-1415,-1479,-1540,-1596,-1648,
-1695,-1736,-1771,-1799,-1820,-1833,-1838,-1835,
-1822,-1800,-1767,-1724,-1670,-1605,-1527,-1437,
-1334,-1217,-1087,-943,-785,-611,-423,-219,
0,235,487,755,1040,1341,1659,1994,
2346,2715,3101,3504,3923,4359,4811,5280,
5764,6264,6780,7310,7856,8415,8987,9573,
10172,10782,11404,12036,12678,13329,13989,14656,
15330,16009,16694,17382,18074,18767,19461,20155,
20848,21539,22226,22909,23586,24256,24918,25571,
26214,26845,27464,28068,28658,29231,29787,30325,
30842,31339,31814,32266,32694,33097,33473,33823,
34144,34437,34699,34931,35131,35299,35434,35535,
35602,35634,35630,35591,35515,35402,35252,35065,
34841,34579,34279,33941,33566,33153,32702,32214,
31689,31128,30530,29897,29228,28525,27788,27017,
26214,25379,24513,23617,22693,21740,20761,19755,
18725,17672,16597,15501,14385,13251,12101,10935,
9755,8563,7360,6148,4927,3701,2470,1235,
0,-1235,-2470,-3701,-4927,-6148,-7360,-8563,
-9755,-10935,-12101,-13251,-14385,-15501,-16597,-17672,
-18725,-19755,-20761,-21740,-22693,-23617,-24513,-25379,
-26214,-27017,-27788,-28525,-29228,-29897,-30530,-31128,
-31689,-32214,-32702,-33153,-33566,-33941,-34279,-34579,
-34841,-35065,-35252,-35402,-35515,-35591,-35630,-35634,
-35602,-35535,-35434,-35299,-35131,-34931,-34699,-34437,
-34144,-33823,-33473,-33097,-32694,-32266,-31814,-31339,
-30842,-30325,-29787,-29231,-28658,-28068,-27464,-26845,
-26214,-25571,-24918,-24256,-23586,-22909,-22226,-21539,
-20848,-20155,-19461,-18767,-18074,-17382,-16694,-16009,
-15330,-14656,-13989,-13329,-12678,-12036,-11404,-10782,
-10172,-9573,-8987,-8415,-7856,-7310,-6780,-6264,
-5764,-5280,-4811,-4359,-3923,-3504,-3101,-2715,
-2346,-1994,-1659,-1341,-1040,-755,-487,-235,
0,219,423,611,785,943,1087,1217,
1334,1437,1527,1605,1670,1724,1767,1800,
1822,1835,1838,1833,1820,1799,1771,1736,
1695,1648,1596,1540,1479,1415,1347,1276,
1203,1128,1051,973,894,815,736,656,
578,500,423,347,274,202,132,65,
0,-62,-121,-178,-232,-282,-329,-373,
-414,-451,-485,-515,-542,-565,-586,-602,
-616,-626,-633,-638,-639,-637,-633,-626,
-616,-604,-590,-574,-555,-535,-513,-490,
-465,-439,-412,-384,-356,-326,-296,-266,
-236,-205,-175,-144,-114,-85,-56,-27,
0,26,52,77,101,124,145,166,
185,202,219,233,247,259,269,278,
286,292,297,300,302,302,301,299,
296,291,286,279,271,262,252,242,
231,218,206,193,179,165,150,135,
120,105,89,74,59,44,29,14,
0,-14,-27,-41,-53,-66,-77,-88,
-99,-109,-118,-126,-134,-141,-147,-152,
-157,-160,-163,-166,-167,-168,-168,-167
};
/*
class RDSProcessor : public BasebandProcessor {
public:
void execute(buffer_c8_t buffer) override {
for (size_t i = 0; i<buffer.count; i++) {
//Sample generation 2.28M/10=228kHz
if(s >= 9) {
s = 0;
if(sample_count >= SAMPLES_PER_BIT) {
cur_bit = (shared_memory.rdsdata[(bit_pos / 26) & 15]>>(25-(bit_pos % 26))) & 1;
prev_output = cur_output;
cur_output = prev_output ^ cur_bit;
int32_t *src = waveform_biphase;
int idx = in_sample_index;
for(int j=0; j<FILTER_SIZE; j++) {
val = (*src++);
if (cur_output) val = -val;
sample_buffer[idx++] += val;
if (idx >= SAMPLE_BUFFER_SIZE) idx = 0;
}
in_sample_index += SAMPLES_PER_BIT;
if (in_sample_index >= SAMPLE_BUFFER_SIZE) in_sample_index -= SAMPLE_BUFFER_SIZE;
bit_pos++;
sample_count = 0;
}
sample = sample_buffer[out_sample_index];
sample_buffer[out_sample_index] = 0;
out_sample_index++;
if (out_sample_index >= SAMPLE_BUFFER_SIZE) out_sample_index = 0;
//AM @ 228k/4=57kHz
switch (mphase) {
case 0:
case 2: sample = 0; break;
case 1: break;
case 3: sample = -sample; break;
}
mphase++;
if (mphase >= 4) mphase = 0;
sample_count++;
} else {
s++;
}
//FM
frq = (sample>>16) * 386760;
phase = (phase + frq);
sphase = phase + (256<<16);
re = sintab[(sphase & 0x03FF0000)>>16];
im = sintab[(phase & 0x03FF0000)>>16];
buffer.p[i] = {(int8_t)re,(int8_t)im};
}
}
private:
int8_t re, im;
uint8_t mphase, s;
uint32_t bit_pos;
int32_t sample_buffer[SAMPLE_BUFFER_SIZE] = {0};
int32_t val;
uint8_t prev_output = 0;
uint8_t cur_output = 0;
uint8_t cur_bit = 0;
int sample_count = SAMPLES_PER_BIT;
int in_sample_index = 0;
int32_t sample;
int out_sample_index = SAMPLE_BUFFER_SIZE-1;
uint32_t phase, sphase;
int32_t sig, frq, frq_im, rdsc;
int32_t k;
};*/
class LCRFSKProcessor : public BasebandProcessor {
public:
void execute(buffer_c8_t buffer) override {
for (size_t i = 0; i<buffer.count; i++) {
//Sample generation 2.28M/10 = 228kHz
if (s >= 9) {
s = 0;
if (sample_count >= shared_memory.afsk_samples_per_bit) {
if (shared_memory.afsk_transmit_done == false)
cur_byte = shared_memory.lcrdata[byte_pos];
if (!cur_byte) {
if (shared_memory.afsk_repeat) {
shared_memory.afsk_repeat--;
bit_pos = 0;
byte_pos = 0;
cur_byte = shared_memory.lcrdata[0];
if( message.is_free() ) {
message.n = shared_memory.afsk_repeat;
shared_memory.application_queue.push(&message);
}
} else {
if( message.is_free() ) {
message.n = 0;
shared_memory.afsk_transmit_done = true;
shared_memory.application_queue.push(&message);
}
cur_byte = 0;
}
}
gbyte = 0;
gbyte = cur_byte << 1;
gbyte |= 1;
cur_bit = (gbyte >> (9-bit_pos)) & 1;
if (bit_pos == 9) {
bit_pos = 0;
byte_pos++;
} else {
bit_pos++;
}
//aphase = 0x2FFFFFF;
sample_count = 0;
} else {
sample_count++;
}
if (cur_bit)
aphase += shared_memory.afsk_phase_inc_mark; //(353205)
else
aphase += shared_memory.afsk_phase_inc_space; //(647542)
sample = sintab[(aphase & 0x03FF0000)>>16];
} else {
s++;
}
sample = sintab[(aphase & 0x03FF0000)>>16];
//FM
frq = sample * shared_memory.afsk_fmmod;
phase = (phase + frq);
sphase = phase + (256<<16);
re = sintab[(sphase & 0x03FF0000)>>16];
im = sintab[(phase & 0x03FF0000)>>16];
buffer.p[i] = {(int8_t)re,(int8_t)im};
}
}
private:
int8_t re, im;
uint8_t s;
uint8_t bit_pos, byte_pos = 0;
char cur_byte = 0;
uint16_t gbyte;
uint8_t cur_bit = 0;
uint32_t sample_count;
uint32_t aphase, phase, sphase;
int32_t sample, sig, frq;
TXDoneMessage message;
};
class ToneProcessor : public BasebandProcessor {
public:
void execute(buffer_c8_t buffer) override {
for (size_t i = 0; i<buffer.count; i++) {
//Sample generation 2.28M/10 = 228kHz
if (s >= 9) {
s = 0;
aphase += 353205; // DEBUG
sample = sintab[(aphase & 0x03FF0000)>>16];
} else {
s++;
}
sample = sintab[(aphase & 0x03FF0000)>>16];
//FM
frq = sample * 500; // DEBUG
phase = (phase + frq);
sphase = phase + (256<<16);
re = sintab[(sphase & 0x03FF0000)>>16];
im = sintab[(phase & 0x03FF0000)>>16];
buffer.p[i] = {(int8_t)re,(int8_t)im};
}
}
private:
int8_t re, im;
uint8_t s;
uint32_t sample_count;
uint32_t aphase, phase, sphase;
int32_t sample, sig, frq;
};
#define POLY_MASK_32 0xB4BCD35C
class JammerProcessor : public BasebandProcessor {
public:
void execute(buffer_c8_t buffer) override {
for (size_t i = 0; i<buffer.count; i++) {
/*if (s > 3000000) {
s = 0;
feedback = lfsr & 1;
lfsr >>= 1;
if (feedback == 1)
lfsr ^= POLY_MASK_32;
} else {
s++;
}
aphase += lfsr;*/
/*if (s >= 10) {
s = 0;
aphase += 353205; // DEBUG
} else {
s++;
}
sample = sintab[(aphase & 0x03FF0000)>>16];*/
if (s >= 10) {
if (sample < 128)
sample++;
else
sample = -127;
s = 0;
} else {
s++;
}
//FM
frq = sample << 17; // Bandwidth
//65536 -> 0.6M
//131072 -> 1.2M
phase = (phase + frq);
sphase = phase + (256<<16);
re = sintab[(sphase & 0x03FF0000)>>16];
im = sintab[(phase & 0x03FF0000)>>16];
buffer.p[i] = {(int8_t)re,(int8_t)im};
}
}
private:
int32_t s, lfsr32 = 0xABCDE;
int8_t re, im;
int feedback;
int32_t lfsr;
uint32_t sample_count;
uint32_t aphase, phase, sphase;
int32_t sample, frq;
};
static BasebandProcessor* baseband_processor { nullptr };
static BasebandConfiguration baseband_configuration;
static baseband::Direction direction = baseband::Direction::Transmit;
static WORKING_AREA(baseband_thread_wa, 8192);
static __attribute__((noreturn)) msg_t baseband_fn(void *arg) {
(void)arg;
chRegSetThreadName("baseband");
BasebandStatsCollector stats;
BasebandStatisticsMessage message;
while(true) {
if (direction == baseband::Direction::Transmit) {
const auto buffer_tmp = baseband::dma::wait_for_tx_buffer();
const buffer_c8_t buffer {
buffer_tmp.p, buffer_tmp.count, baseband_configuration.sampling_rate
};
if( baseband_processor ) {
baseband_processor->execute(buffer);
}
stats.process(buffer,
[&message](const BasebandStatistics statistics) {
if( message.is_free() ) {
message.statistics = statistics;
shared_memory.application_queue.push(&message);
}
}
);
} else {
const auto buffer_tmp = baseband::dma::wait_for_rx_buffer();
const buffer_c8_t buffer {
buffer_tmp.p, buffer_tmp.count, baseband_configuration.sampling_rate
};
if( baseband_processor ) {
baseband_processor->execute(buffer);
}
stats.process(buffer,
[&message](const BasebandStatistics statistics) {
if( message.is_free() ) {
message.statistics = statistics;
shared_memory.application_queue.push(&message);
}
}
);
}
}
}
static WORKING_AREA(rssi_thread_wa, 128);
static __attribute__((noreturn)) msg_t rssi_fn(void *arg) {
(void)arg;
chRegSetThreadName("rssi");
RSSIStatisticsCollector stats;
RSSIStatisticsMessage message;
while(true) {
// TODO: Place correct sampling rate into buffer returned here:
const auto buffer_tmp = rf::rssi::dma::wait_for_buffer();
const rf::rssi::buffer_t buffer {
buffer_tmp.p, buffer_tmp.count, 400000
};
stats.process(
buffer,
[&message](const RSSIStatistics statistics) {
if( message.is_free() ) {
message.statistics = statistics;
shared_memory.application_queue.push(&message);
}
}
);
}
}
extern "C" {
void __late_init(void) {
/* After this call, scheduler, systick, heap, etc. are available. */
/* By doing chSysInit() here, it runs before C++ constructors, which may
* require the heap.
*/
chSysInit();
}
}
static void init() {
i2s::i2s0::configure(
audio::i2s0_config_tx,
audio::i2s0_config_rx,
audio::i2s0_config_dma
);
audio::dma::init();
audio::dma::configure();
audio::dma::enable();
i2s::i2s0::tx_start();
i2s::i2s0::rx_start();
LPC_CREG->DMAMUX = portapack::gpdma_mux;
gpdma::controller.enable();
nvicEnableVector(DMA_IRQn, CORTEX_PRIORITY_MASK(LPC_DMA_IRQ_PRIORITY));
baseband::dma::init();
rf::rssi::init();
touch::dma::init();
chThdCreateStatic(baseband_thread_wa, sizeof(baseband_thread_wa),
baseband_thread_priority, baseband_fn,
nullptr
);
chThdCreateStatic(rssi_thread_wa, sizeof(rssi_thread_wa),
rssi_thread_priority, rssi_fn,
nullptr
);
}
class EventDispatcher {
public:
MessageHandlerMap& message_handlers() {
return message_map;
}
eventmask_t wait() {
return chEvtWaitAny(ALL_EVENTS);
}
void dispatch(const eventmask_t events) {
if( events & EVT_MASK_BASEBAND ) {
handle_baseband_queue();
}
if( events & EVT_MASK_SPECTRUM ) {
handle_spectrum();
}
}
private:
MessageHandlerMap message_map;
ChannelSpectrumMessage spectrum_message;
std::array<uint8_t, 256> spectrum_db;
void handle_baseband_queue() {
while( !shared_memory.baseband_queue.is_empty() ) {
auto message = shared_memory.baseband_queue.pop();
auto& fn = message_map[message->id];
if( fn ) {
fn(message);
}
message->state = Message::State::Free;
}
}
void handle_spectrum() {
if( channel_spectrum_request_update ) {
/* Decimated buffer is full. Compute spectrum. */
std::array<std::complex<float>, 256> samples_swapped;
fft_swap(channel_spectrum, samples_swapped);
channel_spectrum_request_update = false;
fft_c_preswapped(samples_swapped);
if( spectrum_message.is_free() ) {
for(size_t i=0; i<spectrum_db.size(); i++) {
const auto mag2 = magnitude_squared(samples_swapped[i]);
const float db = complex16_mag_squared_to_dbv_norm(mag2);
constexpr float mag_scale = 5.0f;
const unsigned int v = (db * mag_scale) + 255.0f;
spectrum_db[i] = std::max(0U, std::min(255U, v));
}
/* TODO: Rename .db -> .magnitude, or something more (less!) accurate. */
spectrum_message.spectrum.db = &spectrum_db;
spectrum_message.spectrum.db_count = spectrum_db.size();
spectrum_message.spectrum.sampling_rate = channel_spectrum_sampling_rate;
spectrum_message.spectrum.channel_filter_pass_frequency = channel_filter_pass_frequency;
spectrum_message.spectrum.channel_filter_stop_frequency = channel_filter_stop_frequency;
shared_memory.application_queue.push(&spectrum_message);
}
}
}
};
static void m0apptxevent_interrupt_enable() {
nvicEnableVector(M0CORE_IRQn, CORTEX_PRIORITY_MASK(LPC43XX_M0APPTXEVENT_IRQ_PRIORITY));
}
extern "C" {
CH_IRQ_HANDLER(MAPP_IRQHandler) {
CH_IRQ_PROLOGUE();
chSysLockFromIsr();
events_flag_isr(EVT_MASK_BASEBAND);
chSysUnlockFromIsr();
creg::m0apptxevent::clear();
CH_IRQ_EPILOGUE();
}
}
std::array<baseband::sample_t, 8192> baseband_buffer;
int main(void) {
init();
events_initialize(chThdSelf());
m0apptxevent_interrupt_enable();
EventDispatcher event_dispatcher;
auto& message_handlers = event_dispatcher.message_handlers();
//const auto baseband_buffer = new std::array<baseband::sample_t, 8192>();
message_handlers[Message::ID::BasebandConfiguration] = [&message_handlers](const Message* const p) {
auto message = reinterpret_cast<const BasebandConfigurationMessage*>(p);
if( message->configuration.mode != baseband_configuration.mode ) {
// TODO: Timing problem around disabling DMA and nulling and deleting old processor
auto old_p = baseband_processor;
baseband_processor = nullptr;
delete old_p;
switch(message->configuration.mode) {
case 1:
direction = baseband::Direction::Receive;
baseband_processor = new NarrowbandAMAudio();
break;
case 2:
direction = baseband::Direction::Receive;
baseband_processor = new NarrowbandFMAudio();
break;
case 3:
direction = baseband::Direction::Receive;
baseband_processor = new WidebandFMAudio();
break;
case 4:
direction = baseband::Direction::Receive;
baseband_processor = new FSKProcessor(message_handlers);
break;
/*case 15:
direction = baseband::Direction::Transmit;
baseband_processor = new RDSProcessor();
break;*/
case 16:
direction = baseband::Direction::Transmit;
baseband_processor = new LCRFSKProcessor();
break;
case 17:
direction = baseband::Direction::Transmit;
baseband_processor = new ToneProcessor();
break;
case 18:
direction = baseband::Direction::Transmit;
baseband_processor = new JammerProcessor();
break;
default:
break;
}
if( baseband_processor ) {
if( direction == baseband::Direction::Receive ) {
rf::rssi::start();
}
baseband::dma::enable(direction);
} else {
baseband::dma::disable();
rf::rssi::stop();
}
}
baseband::dma::configure(
baseband_buffer.data(),
direction
);
baseband_configuration = message->configuration;
};
/* TODO: Ensure DMAs are configured to point at first LLI in chain. */
rf::rssi::dma::allocate(4, 400);
touch::dma::allocate();
touch::dma::enable();
baseband::dma::configure(
baseband_buffer.data(),
direction
);
//baseband::dma::allocate(4, 2048);d
while(true) {
const auto events = event_dispatcher.wait();
event_dispatcher.dispatch(events);
}
return 0;
}