portapack-mayhem/firmware/application/ui/ui_receiver.cpp
Kyle Reed 9b665a43c5
Radio state initialization (#1236)
* WIP RadioState init

* TX/RX cleanup

* Update all apps using RadioState and setting modulation mode

* Set apps to use AM mode

* Don't push modulation update in RadioState.

* Support passing overrides to Audio and MicTX

* Support set_nearest on OptionsField, fix recon step

* Fix audio, typo

---------

Co-authored-by: kallanreed <kylereed@manzana.lan>
Co-authored-by: kallanreed <kallanreed@noreply.github.com>
2023-07-04 18:26:26 -05:00

400 lines
9.9 KiB
C++

/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "ui_receiver.hpp"
#include "ui_freqman.hpp"
#include "portapack.hpp"
using namespace portapack;
#include "string_format.hpp"
#include "max283x.hpp"
namespace ui {
/* FrequencyField ********************************************************/
FrequencyField::FrequencyField(
const Point parent_pos)
: Widget{{parent_pos, {8 * 10, 16}}},
length_{11},
range(rf::tuning_range) {
set_focusable(true);
}
rf::Frequency FrequencyField::value() const {
return value_;
}
void FrequencyField::set_value(rf::Frequency new_value) {
new_value = clamp_value(new_value);
if (new_value != value_) {
value_ = new_value;
if (on_change) {
on_change(value_);
}
set_dirty();
}
}
void FrequencyField::set_step(rf::Frequency new_value) {
step = new_value;
// TODO: Quantize current frequency to a step of the new size?
}
void FrequencyField::paint(Painter& painter) {
const std::string str_value = to_string_short_freq(value_);
const auto paint_style = has_focus() ? style().invert() : style();
painter.draw_string(
screen_pos(),
paint_style,
str_value);
}
bool FrequencyField::on_key(const ui::KeyEvent event) {
if (event == ui::KeyEvent::Select) {
if (on_edit) {
on_edit();
return true;
}
}
return false;
}
bool FrequencyField::on_encoder(const EncoderEvent delta) {
if (step == 0) { // 'Auto' mode.'
auto ms = RTT2MS(halGetCounterValue());
auto delta_ms = last_ms_ <= ms ? ms - last_ms_ : ms;
last_ms_ = ms;
// The goal is to map 'scale' to a range of about 10 to 10M.
// The faster the encoder is rotated, the larger the step.
// Linear doesn't feel right. Hyperbolic felt better.
// To get these magic numbers, I graphed the function until the
// curve shape seemed about right then tested on device.
delta_ms = std::min(145ull, delta_ms) + 5; // Prevent DIV/0
int64_t scale = 200'000'000 / (0.001'55 * pow(delta_ms, 5.45)) + 8;
set_value(value() + (delta * scale));
} else {
set_value(value() + (delta * step));
}
return true;
}
bool FrequencyField::on_touch(const TouchEvent event) {
if (event.type == TouchEvent::Type::Start) {
focus();
}
return true;
}
void FrequencyField::on_focus() {
if (on_show_options) {
on_show_options();
}
}
rf::Frequency FrequencyField::clamp_value(rf::Frequency value) {
return range.clip(value);
}
/* FrequencyKeypadView ***************************************************/
bool FrequencyKeypadView::on_encoder(const EncoderEvent delta) {
focused_button += delta;
if (focused_button < 0) {
focused_button = buttons.size() - 1;
} else if (focused_button >= (int16_t)buttons.size()) {
focused_button = 0;
}
buttons[focused_button].focus();
return true;
}
FrequencyKeypadView::FrequencyKeypadView(
NavigationView& nav,
const rf::Frequency value) {
add_child(&text_value);
const auto button_fn = [this](Button& button) {
this->on_button(button);
};
const char* const key_caps = "123456789<0.";
int n = 0;
for (auto& button : buttons) {
add_child(&button);
const std::string label{
key_caps[n]};
button.id = n;
button.on_highlight = [this](Button& button) {
focused_button = button.id;
};
button.on_select = button_fn;
button.set_parent_rect({(n % 3) * button_w,
(n / 3) * button_h + 24,
button_w, button_h});
button.set_text(label);
n++;
}
add_children({&button_save,
&button_load,
&button_close});
button_save.on_select = [this, &nav](Button&) {
nav.push<FrequencySaveView>(this->value());
};
button_load.on_select = [this, &nav](Button&) {
auto load_view = nav.push<FrequencyLoadView>();
load_view->on_frequency_loaded = [this](rf::Frequency value) {
set_value(value);
};
};
button_close.on_select = [this, &nav](Button&) {
if (on_changed) {
on_changed(this->value());
}
nav.pop();
};
set_value(value);
}
void FrequencyKeypadView::focus() {
button_close.focus();
}
rf::Frequency FrequencyKeypadView::value() const {
return mhz.as_int() * 1000000ULL + submhz.as_int() * submhz_base;
}
void FrequencyKeypadView::set_value(const rf::Frequency new_value) {
mhz.set(new_value / 1000000);
mhz.remove_leading_zeros();
submhz.set((new_value % 1000000) / submhz_base);
submhz.remove_trailing_zeros();
update_text();
}
void FrequencyKeypadView::on_button(Button& button) {
const auto s = button.text();
if (s == ".") {
field_toggle();
} else if (s == "<") {
digit_delete();
} else {
digit_add(s[0]);
}
update_text();
}
void FrequencyKeypadView::digit_add(const char c) {
if (state == State::DigitMHz) {
if (clear_field_if_digits_entered) {
mhz.clear();
}
mhz.add_digit(c);
} else {
submhz.add_digit(c);
}
clear_field_if_digits_entered = false;
}
void FrequencyKeypadView::digit_delete() {
if (state == State::DigitMHz) {
mhz.delete_digit();
} else {
submhz.delete_digit();
}
}
void FrequencyKeypadView::field_toggle() {
if (state == State::DigitMHz) {
state = State::DigitSubMHz;
submhz.clear();
} else {
state = State::DigitMHz;
clear_field_if_digits_entered = true;
}
}
void FrequencyKeypadView::update_text() {
const auto s = mhz.as_string() + "." + submhz.as_string();
text_value.set(s);
}
/* FrequencyOptionsView **************************************************/
FrequencyOptionsView::FrequencyOptionsView(
const Rect parent_rect,
const Style* const style)
: View{parent_rect} {
set_style(style);
field_step.on_change = [this](size_t n, OptionsField::value_t v) {
(void)n;
this->on_step_changed(v);
};
field_ppm.on_change = [this](int32_t v) {
this->on_reference_ppm_correction_changed(v);
};
add_children({
&text_step,
&field_step,
});
if (portapack::clock_manager.get_reference().source == ClockManager::ReferenceSource::Xtal) {
add_child(&field_ppm);
add_child(&text_ppm);
}
}
void FrequencyOptionsView::set_step(rf::Frequency f) {
field_step.set_by_nearest_value(f);
}
void FrequencyOptionsView::set_reference_ppm_correction(int32_t v) {
field_ppm.set_value(v);
}
void FrequencyOptionsView::on_step_changed(rf::Frequency v) {
if (on_change_step) {
on_change_step(v);
}
}
void FrequencyOptionsView::on_reference_ppm_correction_changed(int32_t v) {
if (on_change_reference_ppm_correction) {
on_change_reference_ppm_correction(v);
}
}
/* RFAmpField ************************************************************/
RFAmpField::RFAmpField(
Point parent_pos)
: NumberField{
parent_pos,
1,
{0, 1},
1,
' ',
} {
set_value(receiver_model.rf_amp());
on_change = [](int32_t v) {
receiver_model.set_rf_amp(v);
};
}
/* RadioGainOptionsView **************************************************/
RadioGainOptionsView::RadioGainOptionsView(
const Rect parent_rect,
const Style* const style)
: View{parent_rect} {
set_style(style);
add_children({
&label_rf_amp,
&field_rf_amp,
});
}
/* LNAGainField **********************************************************/
LNAGainField::LNAGainField(
Point parent_pos)
: NumberField{
parent_pos,
2,
{max283x::lna::gain_db_range.minimum, max283x::lna::gain_db_range.maximum},
max283x::lna::gain_db_step,
' ',
} {
set_value(receiver_model.lna());
on_change = [](int32_t v) {
receiver_model.set_lna(v);
};
}
void LNAGainField::on_focus() {
if (on_show_options) {
on_show_options();
}
}
/* VGAGainField **********************************************************/
VGAGainField::VGAGainField(
Point parent_pos)
: NumberField{
parent_pos,
2,
{max283x::vga::gain_db_range.minimum, max283x::vga::gain_db_range.maximum},
max283x::vga::gain_db_step,
' ',
} {
set_value(receiver_model.vga());
on_change = [](int32_t v) {
receiver_model.set_vga(v);
};
}
void VGAGainField::on_focus() {
if (on_show_options) {
on_show_options();
}
}
/* AudioVolumeField *******************************************************/
AudioVolumeField::AudioVolumeField(
Point parent_pos)
: NumberField{
parent_pos,
/* length */ 2,
/* range */ {0, 99},
/* step */ 1,
/* fill char */ ' '} {
set_value(receiver_model.normalized_headphone_volume());
on_change = [](int32_t v) {
receiver_model.set_normalized_headphone_volume(v);
};
}
} /* namespace ui */