portapack-mayhem/firmware/application/apps/ui_subghzd.cpp
Totoo e6afd7744d
SubghzD & Weather improvments (#2237)
* Weather restructure

* Added Solight TE44 protocol

* Add disabled Marantec24, and GangQi

* More opt in subghzd
2024-09-06 20:23:11 +02:00

737 lines
22 KiB
C++

/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2017 Furrtek
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "ui_subghzd.hpp"
#include "audio.hpp"
#include "baseband_api.hpp"
#include "string_format.hpp"
#include "portapack_persistent_memory.hpp"
using namespace portapack;
using namespace ui;
namespace ui {
void SubGhzDRecentEntryDetailView::update_data() {
// process protocol data
parseProtocol();
// set text elements
text_type.set(SubGhzDView::getSensorTypeName((FPROTO_SUBGHZD_SENSOR)entry_.sensorType));
text_id.set("0x" + to_string_hex(serial));
if (entry_.bits > 0) console.writeln("Bits: " + to_string_dec_uint(entry_.bits));
if (btn != SD_NO_BTN) console.writeln("Btn: " + to_string_dec_uint(btn));
if (cnt != SD_NO_CNT) console.writeln("Cnt: " + to_string_dec_uint(cnt));
if (entry_.data != 0) console.writeln("Data: " + to_string_hex(entry_.data));
}
SubGhzDRecentEntryDetailView::SubGhzDRecentEntryDetailView(NavigationView& nav, const SubGhzDRecentEntry& entry)
: nav_{nav},
entry_{entry} {
add_children({&button_done,
&text_type,
&text_id,
&console,
&labels});
button_done.on_select = [&nav](const ui::Button&) {
nav.pop();
};
update_data();
}
void SubGhzDRecentEntryDetailView::focus() {
button_done.focus();
}
void SubGhzDView::focus() {
field_frequency.focus();
}
SubGhzDView::SubGhzDView(NavigationView& nav)
: nav_{nav} {
add_children({&rssi,
&field_rf_amp,
&field_lna,
&field_vga,
&field_frequency,
&button_clear_list,
&recent_entries_view});
baseband::run_image(portapack::spi_flash::image_tag_subghzd);
button_clear_list.on_select = [this](Button&) {
recent.clear();
recent_entries_view.set_dirty();
};
field_frequency.set_step(10000);
const Rect content_rect{0, header_height, screen_width, screen_height - header_height};
recent_entries_view.set_parent_rect(content_rect);
recent_entries_view.on_select = [this](const SubGhzDRecentEntry& entry) {
nav_.push<SubGhzDRecentEntryDetailView>(entry);
};
baseband::set_subghzd_config(0, receiver_model.sampling_rate()); // 0=am
receiver_model.enable();
signal_token_tick_second = rtc_time::signal_tick_second += [this]() {
on_tick_second();
};
}
void SubGhzDView::on_tick_second() {
for (auto& entry : recent) {
entry.inc_age(1);
}
recent_entries_view.set_dirty();
}
void SubGhzDView::on_data(const SubGhzDDataMessage* data) {
SubGhzDRecentEntry key{data->sensorType, data->data, data->bits};
auto matching_recent = find(recent, key.key());
if (matching_recent != std::end(recent)) {
// Found within. Move to front of list, increment counter.
(*matching_recent).reset_age();
recent.push_front(*matching_recent);
recent.erase(matching_recent);
} else {
recent.emplace_front(key);
truncate_entries(recent, 64);
}
recent_entries_view.set_dirty();
}
SubGhzDView::~SubGhzDView() {
rtc_time::signal_tick_second -= signal_token_tick_second;
receiver_model.disable();
baseband::shutdown();
}
const char* SubGhzDView::getSensorTypeName(FPROTO_SUBGHZD_SENSOR type) {
switch (type) {
case FPS_PRINCETON:
return "Princeton";
case FPS_BETT:
return "Bett";
case FPS_CAME:
return "Came";
case FPS_PRASTEL:
return "Prastel";
case FPS_AIRFORCE:
return "Airforce";
case FPS_CAMEATOMO:
return "Came Atomo";
case FPS_CAMETWEE:
return "Came Twee";
case FPS_CHAMBCODE:
return "Chamb Code";
case FPS_CLEMSA:
return "Clemsa";
case FPS_DOITRAND:
return "Doitrand";
case FPS_DOOYA:
return "Dooya";
case FPS_FAAC:
return "Faac";
case FPS_GATETX:
return "Gate TX";
case FPS_HOLTEK:
return "Holtek";
case FPS_HOLTEKHT12X:
return "Holtek HT12X";
case FPS_HONEYWELL:
return "Honeywell";
case FPS_HONEYWELLWDB:
return "Honeywell Wdb";
case FPS_HORMANN:
return "Hormann";
case FPS_IDO:
return "Ido 11x";
case FPS_INTERTECHNOV3:
return "InterTehcno v3";
case FPS_KEELOQ:
return "KeeLoq";
case FPS_KINGGATESSTYLO4K:
return "Kinggate Stylo4K";
case FPS_LINEAR:
return "Linear";
case FPS_LINEARDELTA3:
return "Linear Delta3";
case FPS_MAGELLAN:
return "Magellan";
case FPS_MARANTEC:
return "Marantec";
case FPS_MASTERCODE:
return "Mastercode";
case FPS_MEGACODE:
return "Megacode";
case FPS_NERORADIO:
return "Nero Radio";
case FPS_NERO_SKETCH:
return "Nero Sketch";
case FPS_NICEFLO:
return "Nice Flo";
case FPS_NICEFLORS:
return "Nice Flor S";
case FPS_PHOENIXV2:
return "Phoenix V2";
case FPS_POWERSMART:
return "PowerSmart";
case FPS_SECPLUSV1:
return "SecPlus V1";
case FPS_SECPLUSV2:
return "SecPlus V2";
case FPS_SMC5326:
return "SMC5326";
case FPS_STARLINE:
return "Star Line";
case FPS_X10:
return "X10";
case FPS_LEGRAND:
return "Legrand";
case FPS_SOMIFY_KEYTIS:
return "Somify Keytis";
case FPS_SOMIFY_TELIS:
return "Somify Telis";
case FPS_GANGQI:
return "GangQi";
case FPS_MARANTEC24:
return "Marantec24";
case FPS_Invalid:
default:
return "Unknown";
}
}
std::string SubGhzDView::pad_string_with_spaces(int snakes) {
std::string paddedStr(snakes, ' ');
return paddedStr;
}
void SubGhzDView::on_freqchg(int64_t freq) {
field_frequency.set_value(freq);
}
template <>
void RecentEntriesTable<ui::SubGhzDRecentEntries>::draw(
const Entry& entry,
const Rect& target_rect,
Painter& painter,
const Style& style) {
std::string line{};
line.reserve(30);
line = SubGhzDView::getSensorTypeName((FPROTO_SUBGHZD_SENSOR)entry.sensorType);
line = line + " " + to_string_hex(entry.data << 32);
if (line.length() < 19) {
line += SubGhzDView::pad_string_with_spaces(19 - line.length());
} else {
line = truncate(line, 19);
}
std::string ageStr = to_string_dec_uint(entry.age);
std::string bitsStr = to_string_dec_uint(entry.bits);
line += SubGhzDView::pad_string_with_spaces(5 - bitsStr.length()) + bitsStr;
line += SubGhzDView::pad_string_with_spaces(4 - ageStr.length()) + ageStr;
line.resize(target_rect.width() / 8, ' ');
painter.draw_string(target_rect.location(), style, line);
}
// decoder helper functions
void atomo_decrypt(uint8_t* buff) {
buff[0] = (buff[0] ^ 5) & 0x7F;
uint8_t tmpB = (-buff[0]) & 0x7F;
uint8_t bitCnt = 8;
while (bitCnt < 59) {
if ((tmpB & 0x18) && (((tmpB / 8) & 3) != 3)) {
tmpB = ((tmpB << 1) & 0xFF) | 1;
} else {
tmpB = (tmpB << 1) & 0xFF;
}
if (tmpB & 0x80) {
buff[bitCnt / 8] ^= (0x80 >> (bitCnt & 7));
}
bitCnt++;
}
}
const uint32_t came_twee_magic_numbers_xor[15] = {
0x0E0E0E00,
0x1D1D1D11,
0x2C2C2C22,
0x3B3B3B33,
0x4A4A4A44,
0x59595955,
0x68686866,
0x77777777,
0x86868688,
0x95959599,
0xA4A4A4AA,
0xB3B3B3BB,
0xC2C2C2CC,
0xD1D1D1DD,
0xE0E0E0EE,
};
// to save some byte of fw space, these will be inline. unreadeable? yes. needs a tons of free space? certanly. so sorry for this.
void SubGhzDRecentEntryDetailView::parseProtocol() {
btn = SD_NO_BTN;
cnt = SD_NO_CNT;
serial = 0;
if (entry_.sensorType == FPS_Invalid) return;
if (entry_.sensorType == FPS_BETT) {
return; // needs dip pattern output.
}
if (entry_.sensorType == FPS_AIRFORCE || entry_.sensorType == FPS_PRASTEL || entry_.sensorType == FPS_CAME) {
return; // nothing
}
if (entry_.sensorType == FPS_CAMEATOMO) {
entry_.data ^= 0xFFFFFFFFFFFFFFFF;
entry_.data <<= 4;
uint8_t pack[8] = {};
pack[0] = (entry_.data >> 56);
pack[1] = ((entry_.data >> 48) & 0xFF);
pack[2] = ((entry_.data >> 40) & 0xFF);
pack[3] = ((entry_.data >> 32) & 0xFF);
pack[4] = ((entry_.data >> 24) & 0xFF);
pack[5] = ((entry_.data >> 16) & 0xFF);
pack[6] = ((entry_.data >> 8) & 0xFF);
pack[7] = (entry_.data & 0xFF);
atomo_decrypt(pack);
// cnt_2 = pack[0];
cnt = (uint16_t)pack[1] << 8 | pack[2];
serial = (uint32_t)(pack[3]) << 24 | pack[4] << 16 | pack[5] << 8 | pack[6];
uint8_t btn_decode = (pack[7] >> 4);
if (btn_decode == 0x0) {
btn = 0x1;
} else if (btn_decode == 0x2) {
btn = 0x2;
} else if (btn_decode == 0x4) {
btn = 0x3;
} else if (btn_decode == 0x6) {
btn = 0x4;
}
return;
}
if (entry_.sensorType == FPS_CAMETWEE) {
uint8_t cnt_parcel = (uint8_t)(entry_.data & 0xF);
uint32_t data = (uint32_t)(entry_.data & 0x0FFFFFFFF);
data = (data ^ came_twee_magic_numbers_xor[cnt_parcel]);
serial = data;
data /= 4;
btn = (data >> 4) & 0x0F;
data >>= 16;
data = (uint16_t)FProtoGeneral::subghz_protocol_blocks_reverse_key(data, 16);
cnt = data >> 6;
return;
}
if (entry_.sensorType == FPS_CHAMBCODE) {
return; // nothing
}
if (entry_.sensorType == FPS_CLEMSA) {
serial = (entry_.data >> 2) & 0xFFFF;
btn = (entry_.data & 0x03);
return;
}
if (entry_.sensorType == FPS_DOITRAND) {
cnt = (entry_.data >> 24) | ((entry_.data >> 15) & 0x1);
btn = ((entry_.data >> 18) & 0x3);
return;
}
if (entry_.sensorType == FPS_DOOYA) {
serial = (entry_.data >> 16);
if ((entry_.data >> 12) & 0x0F) {
cnt = (entry_.data >> 8) & 0x0F;
} else {
cnt = 0xff;
}
btn = entry_.data & 0xFF;
return;
}
if (entry_.sensorType == FPS_FAAC) { // stripped down a lot.
uint32_t code_fix = entry_.data >> 32;
uint32_t code_hop = entry_.data & 0xFFFFFFFF;
// uint32_t decrypt = 0;
// uint64_t man;
uint8_t data_tmp = 0;
uint8_t data_prg[8];
data_prg[0] = (code_hop & 0xFF);
data_prg[1] = ((code_hop >> 8) & 0xFF);
data_prg[2] = ((code_hop >> 16) & 0xFF);
data_prg[3] = (code_hop >> 24);
data_prg[4] = (code_fix & 0xFF);
data_prg[5] = ((code_fix >> 8) & 0xFF);
data_prg[6] = ((code_fix >> 16) & 0xFF);
data_prg[7] = (code_fix >> 24);
if (((data_prg[7] == 0x52) && (data_prg[6] == 0x0F) && (data_prg[0] == 0x00))) {
// ProgMode ON
for (uint8_t i = data_prg[1] & 0xF; i != 0; i--) {
data_tmp = data_prg[2];
data_prg[2] = data_prg[2] >> 1 | (data_prg[3] & 1) << 7;
data_prg[3] = data_prg[3] >> 1 | (data_prg[4] & 1) << 7;
data_prg[4] = data_prg[4] >> 1 | (data_prg[5] & 1) << 7;
data_prg[5] = data_prg[5] >> 1 | (data_tmp & 1) << 7;
}
data_prg[2] ^= data_prg[1];
data_prg[3] ^= data_prg[1];
data_prg[4] ^= data_prg[1];
data_prg[5] ^= data_prg[1];
seed = data_prg[5] << 24 | data_prg[4] << 16 | data_prg[3] << 8 | data_prg[2];
// uint32_t dec_prg_1 = data_prg[7] << 24 | data_prg[6] << 16 | data_prg[5] << 8 | data_prg[4];
// uint32_t dec_prg_2 = data_prg[3] << 24 | data_prg[2] << 16 | data_prg[1] << 8 | data_prg[0];
// entry_.data_2 = (uint64_t)dec_prg_1 << 32 | dec_prg_2;
cnt = data_prg[1];
} else {
if (code_fix != 0x0) {
serial = code_fix >> 4;
btn = code_fix & 0xF;
}
}
return;
}
if (entry_.sensorType == FPS_GATETX) {
uint32_t code_found_reverse = FProtoGeneral::subghz_protocol_blocks_reverse_key(entry_.data, entry_.bits);
serial = (code_found_reverse & 0xFF) << 12 | ((code_found_reverse >> 8) & 0xFF) << 4 | ((code_found_reverse >> 20) & 0x0F);
btn = ((code_found_reverse >> 16) & 0x0F);
return;
}
if (entry_.sensorType == FPS_HOLTEK) {
if ((entry_.data & 0xF000000000) == 0x5000000000) {
serial = FProtoGeneral::subghz_protocol_blocks_reverse_key((entry_.data >> 16) & 0xFFFFF, 20);
uint16_t btn_ = entry_.data & 0xFFFF;
if ((btn_ & 0xf) != 0xA) {
btn = 0x1 << 4 | (btn_ & 0xF);
} else if (((btn_ >> 4) & 0xF) != 0xA) {
btn = 0x2 << 4 | ((btn_ >> 4) & 0xF);
} else if (((btn_ >> 8) & 0xF) != 0xA) {
btn = 0x3 << 4 | ((btn_ >> 8) & 0xF);
} else if (((btn_ >> 12) & 0xF) != 0xA) {
btn = 0x4 << 4 | ((btn_ >> 12) & 0xF);
} else {
btn = 0;
}
} else {
serial = 0;
btn = 0;
cnt = 0;
}
return;
}
if (entry_.sensorType == FPS_HOLTEKHT12X) {
btn = entry_.data & 0x0F;
cnt = (entry_.data >> 4) & 0xFF;
return;
}
if (entry_.sensorType == FPS_HONEYWELL) {
serial = (entry_.data >> 24) & 0xFFFFF;
btn = (entry_.data >> 16) & 0xFF; // not exactly button, but can contain btn data too.
cnt = (entry_.data >> 44) & 0xF;
/*
uint8_t contact = (entry_.databtn & 0x80) >> 7;
uint8_t tamper = (entry_.databtn & 0x40) >> 6;
uint8_t reed = (entry_.databtn & 0x20) >> 5;
uint8_t alarm = (entry_.databtn & 0x10) >> 4;
uint8_t battery_low = (entry_.databtn & 0x08) >> 3;
uint8_t heartbeat = (entry_.databtn & 0x04) >> 2;
*/
return;
}
if (entry_.sensorType == FPS_HONEYWELLWDB) {
serial = (entry_.data >> 28) & 0xFFFFF;
// enabled, when we'll have extra fields and free fw space
/* switch ((entry_.data >> 20) & 0x3) {
case 0x02:
device_type = "Doorbell";
break;
case 0x01:
device_type = "PIR-Motion";
break;
default:
device_type = "Unknown";
break;
}
switch ((entry_.data >> 16) & 0x3) {
case 0x00:
alert = "Normal";
break;
case 0x01:
case 0x02:
alert = "High";
break;
case 0x03:
alert = "Full";
break;
default:
alert = "Unknown";
break;
}
secret_knock = (uint8_t)((entry_.data >> 4) & 0x1);
relay = (uint8_t)((entry_.data >> 3) & 0x1);
lowbat = (uint8_t)((entry_.data >> 1) & 0x1);*/
return;
}
if (entry_.sensorType == FPS_HORMANN) {
btn = (entry_.data >> 8) & 0xF;
return;
}
/* if (entry_.sensorType == FPS_HORMANNBISECURE) { //fm not implemented
serial = 0;
for (uint8_t i = 1; i < 5; i++) {
serial = serial << 8 | ((uint8_t*)(&entry_.data))[i];
}
} */
if (entry_.sensorType == FPS_IDO) {
uint64_t code_found_reverse = FProtoGeneral::subghz_protocol_blocks_reverse_key(entry_.data, entry_.bits);
uint32_t code_fix = code_found_reverse & 0xFFFFFF;
serial = code_fix & 0xFFFFF;
btn = (code_fix >> 20) & 0x0F;
return;
}
if (entry_.sensorType == FPS_INTERTECHNOV3) {
if (entry_.bits == 32) {
serial = (entry_.data >> 6) & 0x3FFFFFF;
if ((entry_.data >> 5) & 0x1) {
cnt = 1 << 5;
} else {
cnt = (~entry_.data & 0xF);
}
btn = (entry_.data >> 4) & 0x1;
} else if (entry_.bits == 36) {
serial = (entry_.data >> 10) & 0x3FFFFFF;
if ((entry_.data >> 9) & 0x1) {
cnt = 1 << 5;
} else {
cnt = (~(entry_.data >> 4) & 0xF);
}
btn = (entry_.data) & 0xF;
} else {
serial = 0;
cnt = 0;
btn = 0;
}
return;
}
if (entry_.sensorType == FPS_KEELOQ) {
// too many sub protocol versions, skipping. maybe in future when we'll have much more fw space
return;
}
/* fm not implemented
if (entry_.sensorType == FPS_KIA) {
serial = (uint32_t)((entry_.data >> 12) & 0x0FFFFFFF);
btn = (entry_.data >> 8) & 0x0F;
cnt = (entry_.data >> 40) & 0xFFFF;
return;
}
*/
if (entry_.sensorType == FPS_KINGGATESSTYLO4K) {
uint64_t fix = FProtoGeneral::subghz_protocol_blocks_reverse_key(entry_.data, 53);
btn = (fix >> 17) & 0x0F;
serial = ((fix >> 5) & 0xFFFF0000) | (fix & 0xFFFF);
return;
}
if (entry_.sensorType == FPS_LEGRAND) {
return; // nothing
}
if (entry_.sensorType == FPS_LINEAR || entry_.sensorType == FPS_LINEARDELTA3) {
return; // nothing
}
if (entry_.sensorType == FPS_MAGELLAN) {
uint64_t data_rev = FProtoGeneral::subghz_protocol_blocks_reverse_key(entry_.data >> 8, 24);
serial = data_rev & 0xFFFF;
btn = (data_rev >> 16) & 0xFF;
return;
}
if (entry_.sensorType == FPS_MARANTEC) {
btn = (entry_.data >> 16) & 0xF;
serial = ((entry_.data >> 12) & 0xFFFFFF00) | ((entry_.data >> 8) & 0xFF);
return;
}
if (entry_.sensorType == FPS_MASTERCODE) {
serial = (entry_.data >> 4) & 0xFFFF;
btn = (entry_.data >> 2 & 0x03);
return;
}
if (entry_.sensorType == FPS_MEGACODE) {
if ((entry_.data >> 23) == 1) {
serial = (entry_.data >> 3) & 0xFFFF;
btn = entry_.data & 0b111;
cnt = (entry_.data >> 19) & 0b1111;
} else {
serial = 0;
btn = 0;
cnt = 0;
}
return;
}
if (entry_.sensorType == FPS_NERORADIO) {
return; // nothing
}
if (entry_.sensorType == FPS_NERO_SKETCH) {
return; // nothing
}
if (entry_.sensorType == FPS_NICEFLO || entry_.sensorType == FPS_NICEFLORS) {
return; // nothing, and can't
}
if (entry_.sensorType == FPS_PHOENIXV2) {
uint64_t data_rev = FProtoGeneral::subghz_protocol_blocks_reverse_key(entry_.data, entry_.bits + 4);
serial = data_rev & 0xFFFFFFFF;
cnt = (data_rev >> 40) & 0xFFFF;
btn = (data_rev >> 32) & 0xF;
return;
}
if (entry_.sensorType == FPS_POWERSMART) {
btn = ((entry_.data >> 54) & 0x02) | ((entry_.data >> 40) & 0x1);
serial = ((entry_.data >> 33) & 0x3FFF00) | ((entry_.data >> 32) & 0xFF);
cnt = ((entry_.data >> 49) & 0x3F);
return;
}
if (entry_.sensorType == FPS_PRINCETON) {
serial = entry_.data >> 4;
btn = entry_.data & 0xF;
return;
}
if (entry_.sensorType == FPS_SECPLUSV1) {
uint32_t fixed = (entry_.data >> 32) & 0xFFFFFFFF;
cnt = entry_.data & 0xFFFFFFFF;
btn = fixed % 3;
// uint8_t id0 = (fixed / 3) % 3;
uint8_t id1 = (fixed / 9) % 3;
// uint16_t pin = 0;
if (id1 == 0) {
// (fixed // 3**3) % (3**7) 3^3=27 3^73=72187
serial = (fixed / 27) % 2187;
// pin = (fixed // 3**10) % (3**9) 3^10=59049 3^9=19683
// pin = (fixed / 59049) % 19683;
/* if (pin <= 9999) {
furi_string_cat_printf(output, " pin:%d", pin);
} else if (pin <= 11029) {
furi_string_cat_printf(output, " pin:enter");
} */
} else {
// id = fixed / 27;
serial = fixed / 27;
}
}
if (entry_.sensorType == FPS_SECPLUSV2) {
return; // fw space saver
}
if (entry_.sensorType == FPS_SMC5326) {
return; // dip pattern output needed. skipping
}
if (entry_.sensorType == FPS_STARLINE) {
uint64_t key = FProtoGeneral::subghz_protocol_blocks_reverse_key(entry_.data, entry_.bits);
uint32_t key_fix = key >> 32;
serial = key_fix & 0x00FFFFFF;
btn = key_fix >> 24;
return;
}
if (entry_.sensorType == FPS_X10) {
serial = (entry_.data & 0xF0000000) >> (24 + 4);
btn = (((entry_.data & 0x07000000) >> 24) | ((entry_.data & 0xF800) >> 8));
return;
}
if (entry_.sensorType == FPS_SOMIFY_KEYTIS) {
uint64_t dataa = entry_.data ^ (entry_.data >> 8);
btn = (dataa >> 48) & 0xF;
cnt = (dataa >> 24) & 0xFFFF;
serial = dataa & 0xFFFFFF;
return;
}
if (entry_.sensorType == FPS_SOMIFY_TELIS) {
uint64_t dataa = entry_.data ^ (entry_.data >> 8);
btn = (dataa >> 44) & 0xF; // ctrl
cnt = (dataa >> 24) & 0xFFFF; // rolling code
serial = dataa & 0xFFFFFF; // address}
return;
}
if (entry_.sensorType == FPS_GANGQI) {
btn = 0; // parser needs some time i think in flipper side.
cnt = (uint8_t)(entry_.data >> 32);
serial = (entry_.data & 0xFFFFFFFF);
return;
}
if (entry_.sensorType == FPS_MARANTEC24) {
serial = (entry_.data >> 4);
btn = entry_.data & 0xf;
return;
}
}
} // namespace ui