portapack-mayhem/firmware/baseband/proc_btlerx.cpp

291 lines
12 KiB
C++

/*
* Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
* Copyright (C) 2020 Shao
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "proc_btlerx.hpp"
#include "portapack_shared_memory.hpp"
#include "event_m4.hpp"
void BTLERxProcessor::execute(const buffer_c8_t& buffer) {
if (!configured) return;
// FM demodulation
/*const auto decim_0_out = decim_0.execute(buffer, dst_buffer);
const auto channel = decim_1.execute(decim_0_out, dst_buffer);
feed_channel_stats(channel);
auto audio_oversampled = demod.execute(channel, work_audio_buffer);*/
const auto decim_0_out = decim_0.execute(buffer, dst_buffer);
feed_channel_stats(decim_0_out);
auto audio_oversampled = demod.execute(decim_0_out, work_audio_buffer);
/*std::fill(spectrum.begin(), spectrum.end(), 0);
for(size_t i=0; i<spectrum.size(); i++) {
spectrum[i] += buffer.p[i];
}
const buffer_c16_t buffer_c16 {spectrum.data(),spectrum.size(),buffer.sampling_rate};
feed_channel_stats(buffer_c16);
auto audio_oversampled = demod.execute(buffer_c16, work_audio_buffer);*/
// Audio signal processing
for (size_t c = 0; c < audio_oversampled.count; c++) {
/*const int32_t sample_int = audio_oversampled.p[c] * 32768.0f;
int32_t current_sample = __SSAT(sample_int, 16);
current_sample /= 128;*/
int32_t current_sample = audio_oversampled.p[c]; // if I directly use this, some results can pass crc but not correct.
rb_head++;
rb_head = (rb_head) % RB_SIZE;
rb_buf[rb_head] = current_sample;
skipSamples = skipSamples - 1;
if (skipSamples < 1) {
int32_t threshold_tmp = 0;
for (int c = 0; c < 8; c++) {
threshold_tmp = threshold_tmp + (int32_t)rb_buf[(rb_head + c) % RB_SIZE];
}
g_threshold = (int32_t)threshold_tmp / 8;
int transitions = 0;
if (rb_buf[(rb_head + 9) % RB_SIZE] > g_threshold) {
for (int c = 0; c < 8; c++) {
if (rb_buf[(rb_head + c) % RB_SIZE] > rb_buf[(rb_head + c + 1) % RB_SIZE])
transitions = transitions + 1;
}
} else {
for (int c = 0; c < 8; c++) {
if (rb_buf[(rb_head + c) % RB_SIZE] < rb_buf[(rb_head + c + 1) % RB_SIZE])
transitions = transitions + 1;
}
}
bool packet_detected = false;
// if ( transitions==4 && abs(g_threshold)<15500)
if (transitions == 4) {
uint8_t packet_data[500];
int packet_length;
uint32_t packet_crc;
// uint32_t calced_crc; // NOTE: restore when CRC is passing
uint64_t packet_addr_l;
// uint32_t result; // NOTE: restore when CRC is passing
uint8_t crc[3];
uint8_t packet_header_arr[2];
packet_addr_l = 0;
for (int i = 0; i < 4; i++) {
bool current_bit;
uint8_t byte = 0;
for (int c = 0; c < 8; c++) {
if (rb_buf[(rb_head + (i + 1) * 8 + c) % RB_SIZE] > g_threshold)
current_bit = true;
else
current_bit = false;
byte |= current_bit << (7 - c);
}
uint8_t byte_temp = (uint8_t)(((byte * 0x0802LU & 0x22110LU) | (byte * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16);
packet_addr_l |= ((uint64_t)byte_temp) << (8 * i);
}
channel_number = 38;
for (int t = 0; t < 2; t++) {
bool current_bit;
uint8_t byte = 0;
for (int c = 0; c < 8; c++) {
if (rb_buf[(rb_head + 5 * 8 + t * 8 + c) % RB_SIZE] > g_threshold)
current_bit = true;
else
current_bit = false;
byte |= current_bit << (7 - c);
}
packet_header_arr[t] = byte;
}
uint8_t byte_temp2 = (uint8_t)(((channel_number * 0x0802LU & 0x22110LU) | (channel_number * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16);
uint8_t lfsr_1 = byte_temp2 | 2;
int header_length = 2;
int header_counter = 0;
while (header_length--) {
for (uint8_t i = 0x80; i; i >>= 1) {
if (lfsr_1 & 0x80) {
lfsr_1 ^= 0x11;
(packet_header_arr[header_counter]) ^= i;
}
lfsr_1 <<= 1;
}
header_counter = header_counter + 1;
}
if (packet_addr_l == 0x8E89BED6) {
uint8_t byte_temp3 = (uint8_t)(((packet_header_arr[1] * 0x0802LU & 0x22110LU) | (packet_header_arr[1] * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16);
packet_length = byte_temp3 & 0x3F;
} else {
packet_length = 0;
}
for (int t = 0; t < packet_length + 2 + 3; t++) {
bool current_bit;
uint8_t byte = 0;
for (int c = 0; c < 8; c++) {
if (rb_buf[(rb_head + 5 * 8 + t * 8 + c) % RB_SIZE] > g_threshold)
current_bit = true;
else
current_bit = false;
byte |= current_bit << (7 - c);
}
packet_data[t] = byte;
}
uint8_t byte_temp4 = (uint8_t)(((channel_number * 0x0802LU & 0x22110LU) | (channel_number * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16);
uint8_t lfsr_2 = byte_temp4 | 2;
int pdu_crc_length = packet_length + 2 + 3;
int pdu_crc_counter = 0;
while (pdu_crc_length--) {
for (uint8_t i = 0x80; i; i >>= 1) {
if (lfsr_2 & 0x80) {
lfsr_2 ^= 0x11;
(packet_data[pdu_crc_counter]) ^= i;
}
lfsr_2 <<= 1;
}
pdu_crc_counter = pdu_crc_counter + 1;
}
if (packet_addr_l == 0x8E89BED6) {
crc[0] = crc[1] = crc[2] = 0x55;
} else {
crc[0] = crc[1] = crc[2] = 0;
}
uint8_t v, t, d, crc_length;
uint32_t crc_result = 0;
crc_length = packet_length + 2;
int counter = 0;
while (crc_length--) {
uint8_t byte_temp5 = (uint8_t)(((packet_data[counter] * 0x0802LU & 0x22110LU) | (packet_data[counter] * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16);
d = byte_temp5;
for (v = 0; v < 8; v++, d >>= 1) {
t = crc[0] >> 7;
crc[0] <<= 1;
if (crc[1] & 0x80) crc[0] |= 1;
crc[1] <<= 1;
if (crc[2] & 0x80) crc[1] |= 1;
crc[2] <<= 1;
if (t != (d & 1)) {
crc[2] ^= 0x5B;
crc[1] ^= 0x06;
}
}
counter = counter + 1;
}
for (v = 0; v < 3; v++) crc_result = (crc_result << 8) | crc[v];
// calced_crc = crc_result; // NOTE: restore when CRC is passing
packet_crc = 0;
for (int c = 0; c < 3; c++) packet_crc = (packet_crc << 8) | packet_data[packet_length + 2 + c];
if (packet_addr_l == 0x8E89BED6)
// if (packet_crc==calced_crc) // NOTE: restore when CRC is passing
{
uint8_t mac_data[6];
int counter = 0;
for (int i = 7; i >= 2; i--) {
uint8_t byte_temp6 = (uint8_t)(((packet_data[i] * 0x0802LU & 0x22110LU) | (packet_data[i] * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16);
// result = byte_temp6; // NOTE: restore when CRC is passing
mac_data[counter] = byte_temp6;
counter = counter + 1;
}
data_message.is_data = false;
data_message.value = 'A';
shared_memory.application_queue.push(data_message);
data_message.is_data = true;
data_message.value = mac_data[0];
shared_memory.application_queue.push(data_message);
data_message.is_data = true;
data_message.value = mac_data[1];
shared_memory.application_queue.push(data_message);
data_message.is_data = true;
data_message.value = mac_data[2];
shared_memory.application_queue.push(data_message);
data_message.is_data = true;
data_message.value = mac_data[3];
shared_memory.application_queue.push(data_message);
data_message.is_data = true;
data_message.value = mac_data[4];
shared_memory.application_queue.push(data_message);
data_message.is_data = true;
data_message.value = mac_data[5];
shared_memory.application_queue.push(data_message);
data_message.is_data = false;
data_message.value = 'B';
shared_memory.application_queue.push(data_message);
packet_detected = true;
} else
packet_detected = false;
}
if (packet_detected) {
skipSamples = 20;
}
}
}
}
void BTLERxProcessor::on_message(const Message* const message) {
if (message->id == Message::ID::BTLERxConfigure)
configure(*reinterpret_cast<const BTLERxConfigureMessage*>(message));
}
void BTLERxProcessor::configure(const BTLERxConfigureMessage& message) {
(void)message; // avoid warning
decim_0.configure(taps_200k_wfm_decim_0.taps);
decim_1.configure(taps_200k_wfm_decim_1.taps);
demod.configure(audio_fs, 5000);
configured = true;
}
int main() {
EventDispatcher event_dispatcher{std::make_unique<BTLERxProcessor>()};
event_dispatcher.run();
return 0;
}