portapack-mayhem/firmware/application/string_format.cpp

460 lines
13 KiB
C++

/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "string_format.hpp"
using namespace std::literals;
/* This takes a pointer to the end of a buffer
* and fills it backwards towards the front.
* The return value 'q' is a pointer to the start.
* TODO: use std::array for all this. */
template <typename Int>
static char* to_string_dec_uint_internal(
char* p,
Int n) {
*p = 0;
auto q = p;
do {
*(--q) = n % 10 + '0';
n /= 10;
} while (n != 0);
return q;
}
static char* to_string_dec_uint_pad_internal(
char* const term,
const uint32_t n,
const int32_t l,
const char fill) {
auto q = to_string_dec_uint_internal(term, n);
// Fill with padding if needed.
// TODO: use std::array instead. There's no
// bounds checks on any of this!
if (fill) {
while ((term - q) < l) {
*(--q) = fill;
}
}
return q;
}
static char* to_string_dec_uint_internal(uint64_t n, StringFormatBuffer& buffer, size_t& length) {
auto end = &buffer.back();
auto start = to_string_dec_uint_internal(end, n);
length = end - start;
return start;
}
char* to_string_dec_uint(uint64_t n, StringFormatBuffer& buffer, size_t& length) {
return to_string_dec_uint_internal(n, buffer, length);
}
char* to_string_dec_int(int64_t n, StringFormatBuffer& buffer, size_t& length) {
bool negative = n < 0;
auto start = to_string_dec_uint(negative ? -n : n, buffer, length);
if (negative) {
*(--start) = '-';
++length;
}
return start;
}
std::string to_string_dec_int(int64_t n) {
StringFormatBuffer b{};
size_t len{};
char* str = to_string_dec_int(n, b, len);
return std::string(str, len);
}
std::string to_string_dec_uint(uint64_t n) {
StringFormatBuffer b{};
size_t len{};
char* str = to_string_dec_uint(n, b, len);
return std::string(str, len);
}
std::string to_string_bin(
const uint32_t n,
const uint8_t l) {
char p[33];
for (uint8_t c = 0; c < l; c++) {
if (n & (1 << (l - 1 - c)))
p[c] = '1';
else
p[c] = '0';
}
p[l] = 0;
return p;
}
std::string to_string_dec_uint(
const uint32_t n,
const int32_t l,
const char fill) {
char p[16];
auto term = p + sizeof(p) - 1;
auto q = to_string_dec_uint_pad_internal(term, n, l, fill);
// Right justify.
// (This code is redundant and won't do anything if a fill character was specified)
while ((term - q) < l) {
*(--q) = ' ';
}
return q;
}
std::string to_string_dec_int(
const int32_t n,
const int32_t l,
const char fill) {
const size_t negative = (n < 0) ? 1 : 0;
uint32_t n_abs = negative ? -n : n;
char p[16];
auto term = p + sizeof(p) - 1;
auto q = to_string_dec_uint_pad_internal(term, n_abs, l - negative, fill);
// Add sign.
if (negative) {
*(--q) = '-';
}
// Right justify.
// (This code is redundant and won't do anything if a fill character was specified)
while ((term - q) < l) {
*(--q) = ' ';
}
return q;
}
std::string to_string_decimal(float decimal, int8_t precision) {
double integer_part;
double fractional_part;
std::string result;
fractional_part = modf(decimal, &integer_part) * pow(10, precision);
if (fractional_part < 0) {
fractional_part = -fractional_part;
}
result = to_string_dec_int(integer_part) + "." + to_string_dec_uint(fractional_part, precision, '0');
return result;
}
// right-justified frequency in Hz, always 10 characters
std::string to_string_freq(const uint64_t f) {
std::string final_str{""};
if (f < 1000000)
final_str = to_string_dec_int(f, 10, ' ');
else
final_str = to_string_dec_int(f / 1000000, 4) + to_string_dec_int(f % 1000000, 6, '0');
return final_str;
}
// right-justified frequency in MHz, rounded to 4 decimal places, always 9 characters
std::string to_string_short_freq(const uint64_t f) {
auto final_str = to_string_dec_int((f + 50) / 1000000, 4) + "." + to_string_dec_int(((f + 50) / 100) % 10000, 4, '0');
return final_str;
}
// non-justified non-padded frequency in MHz, rounded to specified number of decimal places
std::string to_string_rounded_freq(const uint64_t f, int8_t precision) {
std::string final_str{""};
static constexpr uint32_t pow10[7] = {
1,
10,
100,
1000,
10000,
100000,
1000000,
};
if (precision < 1) {
final_str = to_string_dec_uint(f / 1000000);
} else {
if (precision > 6)
precision = 6;
uint32_t divisor = pow10[6 - precision];
final_str = to_string_dec_uint((f + (divisor / 2)) / 1000000) + "." + to_string_dec_int(((f + (divisor / 2)) / divisor) % pow10[precision], precision, '0');
}
return final_str;
}
std::string to_string_time_ms(const uint32_t ms) {
std::string final_str{""};
if (ms < 1000) {
final_str = to_string_dec_uint(ms) + "ms";
} else {
auto seconds = ms / 1000;
if (seconds >= 60)
final_str = to_string_dec_uint(seconds / 60) + "m";
return final_str + to_string_dec_uint(seconds % 60) + "s";
}
return final_str;
}
static char* to_string_hex_internal(char* ptr, uint64_t value, uint8_t length) {
if (length == 0)
return ptr;
*(--ptr) = uint_to_char(value & 0xF, 16);
return to_string_hex_internal(ptr, value >> 4, length - 1);
}
std::string to_string_hex(uint64_t value, int32_t length) {
constexpr uint8_t buffer_length = 33;
char buffer[buffer_length];
char* ptr = &buffer[buffer_length - 1];
*ptr = '\0';
length = std::min<uint8_t>(buffer_length - 1, length);
return to_string_hex_internal(ptr, value, length);
}
std::string to_string_hex_array(uint8_t* array, int32_t length) {
std::string str_return;
str_return.reserve(length * 2);
for (uint8_t i = 0; i < length; i++)
str_return += to_string_hex(array[i], 2);
return str_return;
}
std::string to_string_datetime(const rtc::RTC& value, const TimeFormat format) {
std::string string{""};
if (format == YMDHMS) {
string += to_string_dec_uint(value.year(), 4) + "-" +
to_string_dec_uint(value.month(), 2, '0') + "-" +
to_string_dec_uint(value.day(), 2, '0') + " ";
}
string += to_string_dec_uint(value.hour(), 2, '0') + ":" +
to_string_dec_uint(value.minute(), 2, '0');
if ((format == YMDHMS) || (format == HMS))
string += ":" + to_string_dec_uint(value.second(), 2, '0');
return string;
}
std::string to_string_timestamp(const rtc::RTC& value) {
return to_string_dec_uint(value.year(), 4, '0') +
to_string_dec_uint(value.month(), 2, '0') +
to_string_dec_uint(value.day(), 2, '0') +
to_string_dec_uint(value.hour(), 2, '0') +
to_string_dec_uint(value.minute(), 2, '0') +
to_string_dec_uint(value.second(), 2, '0');
}
std::string to_string_FAT_timestamp(const FATTimestamp& timestamp) {
return to_string_dec_uint((timestamp.FAT_date >> 9) + 1980) + "-" +
to_string_dec_uint((timestamp.FAT_date >> 5) & 0xF, 2, '0') + "-" +
to_string_dec_uint((timestamp.FAT_date & 0x1F), 2, '0') + " " +
to_string_dec_uint((timestamp.FAT_time >> 11), 2, '0') + ":" +
to_string_dec_uint((timestamp.FAT_time >> 5) & 0x3F, 2, '0');
}
std::string to_string_file_size(uint32_t file_size) {
static const std::string suffix[5] = {"B", "kB", "MB", "GB", "??"};
size_t suffix_index = 0;
while (file_size >= 1024) {
file_size /= 1024;
suffix_index++;
}
if (suffix_index > 4)
suffix_index = 4;
return to_string_dec_uint(file_size) + suffix[suffix_index];
}
std::string to_string_mac_address(const uint8_t* macAddress, uint8_t length, bool noColon) {
std::string string;
string += to_string_hex(macAddress[0], 2);
for (int i = 1; i < length; i++) {
string += noColon ? to_string_hex(macAddress[i], 2) : ":" + to_string_hex(macAddress[i], 2);
}
return string;
}
std::string to_string_formatted_mac_address(const char* macAddress) {
std::string formattedAddress;
for (int i = 0; i < 12; i += 2) {
if (i > 0) {
formattedAddress += ':';
}
formattedAddress += macAddress[i];
formattedAddress += macAddress[i + 1];
}
return formattedAddress;
}
void generateRandomMacAddress(char* macAddress) {
const char hexDigits[] = "0123456789ABCDEF";
// Generate 12 random hexadecimal characters
for (int i = 0; i < 12; i++) {
int randomIndex = rand() % 16;
macAddress[i] = hexDigits[randomIndex];
}
macAddress[12] = '\0'; // Null-terminate the string
}
uint64_t readUntil(File& file, char* result, std::size_t maxBufferSize, char delimiter) {
std::size_t bytesRead = 0;
while (true) {
char ch;
File::Result<File::Size> readResult = file.read(&ch, 1);
if (readResult.is_ok() && readResult.value() > 0) {
if (ch == delimiter) {
// Found a space character, stop reading
break;
} else if (bytesRead < maxBufferSize) {
// Append the character to the result if there's space
result[bytesRead++] = ch;
} else {
// Buffer is full, break to prevent overflow
break;
}
} else {
break; // End of file or error
}
}
// Null-terminate the result string
result[bytesRead] = '\0';
return bytesRead;
}
std::string unit_auto_scale(double n, const uint32_t base_unit, uint32_t precision) {
const uint32_t powers_of_ten[5] = {1, 10, 100, 1000, 10000};
std::string string{""};
uint32_t prefix_index = base_unit;
double integer_part;
double fractional_part;
precision = std::min((uint32_t)4, precision);
while (n > 1000) {
n /= 1000.0;
prefix_index++;
}
fractional_part = modf(n, &integer_part) * powers_of_ten[precision];
if (fractional_part < 0)
fractional_part = -fractional_part;
string = to_string_dec_int(integer_part);
if (precision)
string += '.' + to_string_dec_uint(fractional_part, precision, '0');
if (prefix_index != 3)
string += unit_prefix[prefix_index];
return string;
}
double get_decimals(double num, int16_t mult, bool round) {
num -= int(num); // keep decimals only
num *= mult; // Shift decimals into integers
if (!round) return num;
int16_t intnum = int(num); // Round it up if necessary
num -= intnum; // Get decimal part
if (num > .5) intnum++; // Round up
return intnum;
}
static const char* whitespace_str = " \t\r\n";
std::string trim(std::string_view str) {
auto first = str.find_first_not_of(whitespace_str);
if (first == std::string::npos)
return {};
auto last = str.find_last_not_of(whitespace_str);
return std::string{str.substr(first, last - first + 1)};
}
std::string trimr(std::string_view str) {
size_t last = str.find_last_not_of(whitespace_str);
return std::string{last != std::string::npos ? str.substr(0, last + 1) : ""};
}
std::string truncate(std::string_view str, size_t length) {
return std::string{str.length() <= length ? str : str.substr(0, length)};
}
uint8_t char_to_uint(char c, uint8_t radix) {
uint8_t v = 0;
if (c >= '0' && c <= '9')
v = c - '0';
else if (c >= 'A' && c <= 'F')
v = c - 'A' + 10; // A is dec: 10
else if (c >= 'a' && c <= 'f')
v = c - 'a' + 10; // A is dec: 10
return v < radix ? v : 0;
}
char uint_to_char(uint8_t val, uint8_t radix) {
if (val >= radix)
return 0;
if (val < 10)
return '0' + val;
else
return 'A' + val - 10; // A is dec: 10
}