portapack-mayhem/firmware/application/ui_closecall.cpp

394 lines
10 KiB
C++

/*
* Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "ui_closecall.hpp"
#include "msgpack.hpp"
#include "rtc_time.hpp"
#include "event_m0.hpp"
#include "portapack.hpp"
#include "baseband_api.hpp"
#include "string_format.hpp"
#include <cstring>
#include <stdio.h>
#include <algorithm>
using namespace portapack;
namespace ui {
void CloseCallView::focus() {
button_exit.focus();
}
CloseCallView::~CloseCallView() {
rtc_time::signal_tick_second -= signal_token_tick_second;
receiver_model.disable();
baseband::shutdown();
}
void CloseCallView::do_detection() {
uint8_t xmax = 0;
int64_t imax = 0;
uint16_t iraw = 0, c;
uint8_t power;
rf::Frequency freq_low, freq_high;
mean /= (CC_BIN_NB * slices_max);
// Find max value over threshold from all slices
for (c = 0; c < slices_max; c++) {
power = slicemax_db[c];
if (power >= min_threshold) {
if ((power - min_threshold >= mean) && (power > xmax)) {
xmax = power;
imax = slicemax_idx[c] + (c * CC_BIN_NB);
iraw = slicemax_idx[c];
}
}
}
// e-Message POCSAG FR:
// 466.025 MHz - 466.05 MHz - 466.075 MHz - 466.175 MHz - 466.20625 MHz - 466.23125 MHz
// 25 25 100 31 25
// Catches:
// 466.000
// 466.021 21
// 466.042 21
// 466.148 106
// 466.169 21
// 466.190 21
// Lock / release
if ((imax >= last_channel - 2) && (imax <= last_channel + 2) && imax) {
// Staying around the same frequency (+/- 25.4kHz)
if (detect_counter >= (5 / slices_max)) {
if ((imax != locked_imax) || (!locked)) {
std::string finalstr;
// 236 steps = 3.072MHz
// Resolution = 13.1kHz
if (locked) {
resolved_frequency = (resolved_frequency + slice_start + (CC_BIN_WIDTH * (imax - 118))) / 2; // Mean
} else {
resolved_frequency = slice_start + (CC_BIN_WIDTH * (imax - 118)); // Init
if ((resolved_frequency >= f_min) && (resolved_frequency <= f_max)) {
// Correct according to DC spike mask width (8 for now)
if (iraw > 118)
resolved_frequency -= (4 * CC_BIN_WIDTH);
else
resolved_frequency += (4 * CC_BIN_WIDTH);
text_infos.set("Locked !");
big_display.set_style(&style_locked);
big_display.set(resolved_frequency);
// Approximation/error display
freq_low = (resolved_frequency - 6000) / 1000;
freq_high = (resolved_frequency + 6000) / 1000;
finalstr = "~12kHz: " + to_string_dec_uint(freq_low / 1000) + "." + to_string_dec_uint(freq_low % 1000);
finalstr += "/" + to_string_dec_uint(freq_high / 1000) + "." + to_string_dec_uint(freq_high % 1000);
text_precision.set(finalstr);
locked = true;
locked_imax = imax;
}
}
//text_debug.set(to_string_dec_int(CC_BIN_WIDTH * (imax - 118)));
}
release_counter = 0;
} else {
detect_counter++;
}
} else {
detect_counter = 0;
if (locked) {
if (release_counter == 6) {
locked = false;
text_infos.set("Lost");
big_display.set_style(&style_grey);
big_display.set(resolved_frequency);
} else {
release_counter++;
}
}
}
last_channel = imax;
scan_counter++;
portapack::display.fill_rectangle({last_pos, 90, 1, 13}, Color::black());
last_pos = (ui::Coord)(iraw);
portapack::display.fill_rectangle({last_pos, 90, 1, 13}, Color::red());
}
void CloseCallView::on_channel_spectrum(const ChannelSpectrum& spectrum) {
uint8_t xmax = 0;
uint16_t imax = 0;
uint8_t threshold;
size_t i, m;
baseband::spectrum_streaming_stop();
// Draw spectrum line (for debug), 2 black pixels left and right
std::array<Color, 240> pixel_row;
for(i = 0; i < 118; i++) {
const auto pixel_color = spectrum_rgb3_lut[spectrum.db[256 - 120 + i]]; // 136~253 in 2~119
pixel_row[i + 2] = pixel_color;
}
for(i = 122; i < 240; i++) {
const auto pixel_color = spectrum_rgb3_lut[spectrum.db[i - 120]]; // 2~119 in 120~237
pixel_row[i - 2] = pixel_color;
}
display.draw_pixels(
{ { 0, 96 + slices_counter * 4 }, { pixel_row.size(), 1 } },
pixel_row
);
// Find max for this slice:
// Check if left of slice needs to be trimmed (masked)
//if (slices_counter == 0)
// i = slice_trim;
//else
i = 0;
for ( ; i < 118; i++) {
threshold = spectrum.db[256 - 120 + i]; // 128+8 = 136~254
if (threshold > xmax) {
xmax = threshold;
imax = i;
}
}
// Check if right of slice needs to be trimmed (masked)
if (slices_counter == (slices_max - 1))
m = 240 - slice_trim;
else
m = 240;
for (i = 122 ; i < m; i++) {
threshold = spectrum.db[i - 120]; // 240-120 = 120 -> +8 = 128
if (threshold > xmax) { // (0~2) 2~120 (120~136) 136~254 (254~256)
xmax = threshold;
imax = i - 4;
}
}
slicemax_db[slices_counter] = xmax;
slicemax_idx[slices_counter] = imax;
// Add to mean
for (i = 136; i < 254; i++)
mean += spectrum.db[i];
for (i = 2; i < 120; i++)
mean += spectrum.db[i];
// Slice update
if (slicing) {
if (slices_counter >= (slices_max - 1)) {
do_detection();
mean = 0;
slices_counter = 0;
} else {
slices_counter++;
}
slice_frequency = slice_start + (slices_counter * CC_SLICE_WIDTH);
receiver_model.set_tuning_frequency(slice_frequency);
} else {
do_detection();
}
baseband::spectrum_streaming_start();
}
void CloseCallView::on_show() {
baseband::spectrum_streaming_start();
}
void CloseCallView::on_hide() {
baseband::spectrum_streaming_stop();
}
void CloseCallView::on_range_changed() {
rf::Frequency slices_span;
rf::Frequency resolved_frequency;
int64_t offset;
f_max = field_frequency_max.value();
f_min = field_frequency_min.value();
scan_span = abs(f_max - f_min);
if (scan_span > CC_SLICE_WIDTH) {
// ex: 100~115 (15): 102.5(97.5~107.5) -> 112.5(107.5~117.5) = 2.5 lost left and right
slices_max = (scan_span + CC_SLICE_WIDTH - 1) / CC_SLICE_WIDTH;
slices_span = slices_max * CC_SLICE_WIDTH;
offset = ((scan_span - slices_span) / 2) + (CC_SLICE_WIDTH / 2);
slice_start = std::min(f_min, f_max) + offset;
slice_trim = 0;
slicing = true;
// Todo: trims
} else {
slice_frequency = (f_max + f_min) / 2;
slice_start = slice_frequency;
receiver_model.set_tuning_frequency(slice_frequency);
//resolved_frequency = (CC_SLICE_WIDTH - scan_span) / 2; // Trim frequency span (for both sides)
//resolved_frequency /= CC_BIN_WIDTH; // Convert to bin span
//slice_trim = resolved_frequency;
//portapack::display.fill_rectangle({0, 97, 240, 4}, Color::black());
//portapack::display.fill_rectangle({0, 97, slice_trim, 4}, Color::orange());
//portapack::display.fill_rectangle({240 - slice_trim, 97, slice_trim, 4}, Color::orange());
slices_max = 1;
slices_counter = 0;
slicing = false;
}
/*
f_min = field_frequency_min.value();
scan_span = 3000000;
slice_frequency = (f_min + 1500000);
slice_start = slice_frequency;
receiver_model.set_tuning_frequency(slice_frequency);
slice_trim = 0;
slices_max = 1;
slices_counter = 0;
slicing = false;
field_frequency_max.set_value(f_min + 3000000);
*/
text_slices.set(to_string_dec_int(slices_max));
slices_counter = 0;
}
void CloseCallView::on_lna_changed(int32_t v_db) {
receiver_model.set_lna(v_db);
}
void CloseCallView::on_vga_changed(int32_t v_db) {
receiver_model.set_vga(v_db);
}
void CloseCallView::on_tick_second() {
// Update scan rate indication
text_rate.set(to_string_dec_uint(scan_counter, 3));
scan_counter = 0;
}
CloseCallView::CloseCallView(
NavigationView& nav
)
{
baseband::run_image(portapack::spi_flash::image_tag_closecall);
add_children({
&text_labels_a,
&text_labels_b,
&text_labels_c,
&field_frequency_min,
&field_frequency_max,
&field_lna,
&field_vga,
&field_threshold,
&text_slices,
&text_rate,
&text_mhz,
&text_infos,
&text_precision,
&text_debug,
&big_display,
&button_exit
});
text_labels_a.set_style(&style_grey);
text_labels_b.set_style(&style_grey);
text_labels_c.set_style(&style_grey);
text_slices.set_style(&style_grey);
text_rate.set_style(&style_grey);
text_mhz.set_style(&style_grey);
big_display.set_style(&style_grey);
// DEBUG
receiver_model.set_tuning_frequency(464400000);
field_threshold.set_value(80);
field_threshold.on_change = [this](int32_t v) {
min_threshold = v;
};
field_frequency_min.set_value(receiver_model.tuning_frequency());
field_frequency_min.set_step(100000);
field_frequency_min.on_change = [this](rf::Frequency f) {
(void)f;
this->on_range_changed();
};
field_frequency_min.on_edit = [this, &nav]() {
auto new_view = nav.push<FrequencyKeypadView>(receiver_model.tuning_frequency());
new_view->on_changed = [this](rf::Frequency f) {
//this->on_range_changed();
this->field_frequency_min.set_value(f);
};
};
field_frequency_max.set_value(receiver_model.tuning_frequency() + 2000000);
field_frequency_max.set_step(100000);
field_frequency_max.on_change = [this](rf::Frequency f) {
(void)f;
this->on_range_changed();
};
field_frequency_max.on_edit = [this, &nav]() {
auto new_view = nav.push<FrequencyKeypadView>(receiver_model.tuning_frequency());
new_view->on_changed = [this](rf::Frequency f) {
//this->on_range_changed();
this->field_frequency_max.set_value(f);
};
};
field_lna.set_value(receiver_model.lna());
field_lna.on_change = [this](int32_t v) {
this->on_lna_changed(v);
};
field_vga.set_value(receiver_model.vga());
field_vga.on_change = [this](int32_t v_db) {
this->on_vga_changed(v_db);
};
on_range_changed();
button_exit.on_select = [&nav](Button&){
nav.pop();
};
signal_token_tick_second = rtc_time::signal_tick_second += [this]() {
this->on_tick_second();
};
receiver_model.set_modulation(ReceiverModel::Mode::SpectrumAnalysis);
receiver_model.set_sampling_rate(3072000);
receiver_model.set_baseband_bandwidth(2500000);
receiver_model.enable();
}
} /* namespace ui */