portapack-mayhem/firmware/baseband/fprotos/s-came_twee.hpp
Totoo 2ccda5aebd
Subghz decoder (#1646)
* Initial commit - wip

* Half part of the transition of baseband processor.

* More SGD

* WIP, Weather refactor, UI improv

* Rename

* Added 4msps, and fixes

* Fixes

* princeton working

* Renamed proc_weather, bc now multifunctional

* Proto: bett

* FPS_CAME = 4,
    FPS_PRASTEL = 5,
    FPS_AIRFORCE = 6,

* Came Atomo, fixes

* Separate weather and sgd, bc of baseband size limit

* Fix display

* Save space

* More protos

* Dooya proto added

* More protos

* add protos

* More protos

* Move weather to ext app

* nw

* Revert "Move weather to ext app"

This reverts commit 8a84aac2f5.

* revert

* Fix merge

* Better naming

* More protos

* More protos

* Add protos

* Fix warning

* Add NeroRadio

* more protos

* more protos

* More protos

* Shrink a bit

* fixes

* More protos

* Nicer code

* Fix naming

* Fix format

* Remove unused

* Fix some protos, that needs a LOOOONG part with the same lo/high

* Modify key calculation
2023-12-16 16:37:51 -06:00

148 lines
5.8 KiB
C++

#ifndef __FPROTO_CAMETWEE_H__
#define __FPROTO_CAMETWEE_H__
#include "subghzdbase.hpp"
typedef enum : uint8_t {
CameTweeDecoderStepReset = 0,
CameTweeDecoderStepDecoderData,
} CameTweeDecoderStep;
class FProtoSubGhzDCameTwee : public FProtoSubGhzDBase {
public:
FProtoSubGhzDCameTwee() {
sensorType = FPS_CAMETWEE;
te_short = 500;
te_long = 1000;
te_delta = 250;
min_count_bit_for_found = 54;
}
void feed(bool level, uint32_t duration) {
ManchesterEvent event = ManchesterEventReset;
switch (parser_step) {
case CameTweeDecoderStepReset:
if ((!level) && (DURATION_DIFF(duration, te_long * 51) < te_delta * 20)) {
// Found header CAME
parser_step = CameTweeDecoderStepDecoderData;
decode_data = 0;
decode_count_bit = 0;
FProtoGeneral::manchester_advance(manchester_saved_state, ManchesterEventLongLow, &manchester_saved_state, NULL);
FProtoGeneral::manchester_advance(manchester_saved_state, ManchesterEventLongHigh, &manchester_saved_state, NULL);
FProtoGeneral::manchester_advance(manchester_saved_state, ManchesterEventShortLow, &manchester_saved_state, NULL);
}
break;
case CameTweeDecoderStepDecoderData:
if (!level) {
if (DURATION_DIFF(duration, te_short) < te_delta) {
event = ManchesterEventShortLow;
} else if (
DURATION_DIFF(duration, te_long) < te_delta) {
event = ManchesterEventLongLow;
} else if (
duration >= ((uint32_t)te_long * 2 + te_delta)) {
if (decode_count_bit == min_count_bit_for_found) {
data = decode_data;
data_count_bit = decode_count_bit;
subghz_protocol_came_twee_remote_controller();
if (callback) callback(this);
}
decode_data = 0;
decode_count_bit = 0;
FProtoGeneral::manchester_advance(manchester_saved_state, ManchesterEventLongLow, &manchester_saved_state, NULL);
FProtoGeneral::manchester_advance(manchester_saved_state, ManchesterEventLongHigh, &manchester_saved_state, NULL);
FProtoGeneral::manchester_advance(manchester_saved_state, ManchesterEventShortLow, &manchester_saved_state, NULL);
} else {
parser_step = CameTweeDecoderStepReset;
}
} else {
if (DURATION_DIFF(duration, te_short) < te_delta) {
event = ManchesterEventShortHigh;
} else if (
DURATION_DIFF(duration, te_long) < te_delta) {
event = ManchesterEventLongHigh;
} else {
parser_step = CameTweeDecoderStepReset;
}
}
if (event != ManchesterEventReset) {
bool bit;
if (FProtoGeneral::manchester_advance(manchester_saved_state, event, &manchester_saved_state, &bit)) {
decode_data = (decode_data << 1) | !bit;
decode_count_bit++;
}
}
break;
}
}
protected:
ManchesterState manchester_saved_state = ManchesterStateMid1;
void subghz_protocol_came_twee_remote_controller() {
/* Came Twee 54 bit, rolling code 15 parcels with
* a decreasing counter from 0xE to 0x0
* with originally coded dip switches on the console 10 bit code
*
* 0x003FFF72E04A6FEE
* 0x003FFF72D17B5EDD
* 0x003FFF72C2684DCC
* 0x003FFF72B3193CBB
* 0x003FFF72A40E2BAA
* 0x003FFF72953F1A99
* 0x003FFF72862C0988
* 0x003FFF7277DDF877
* 0x003FFF7268C2E766
* 0x003FFF7259F3D655
* 0x003FFF724AE0C544
* 0x003FFF723B91B433
* 0x003FFF722C86A322
* 0x003FFF721DB79211
* 0x003FFF720EA48100
*
* decryption
* the last 32 bits, do XOR by the desired number, divide the result by 4,
* convert the first 16 bits of the resulting 32-bit number to bin and do
* bit-by-bit mirroring, adding up to 10 bits
*
* Example
* Step 1. 0x003FFF721DB79211 => 0x1DB79211
* Step 4. 0x1DB79211 xor 0x1D1D1D11 => 0x00AA8F00
* Step 4. 0x00AA8F00 / 4 => 0x002AA3C0
* Step 5. 0x002AA3C0 => 0x002A
* Step 6. 0x002A bin => b101010
* Step 7. b101010 => b0101010000
* Step 8. b0101010000 => (Dip) Off ON Off ON Off ON Off Off Off Off
*/
uint8_t cnt_parcel = (uint8_t)(data & 0xF);
serial = (uint32_t)(data & 0x0FFFFFFFF);
data = (data ^ came_twee_magic_numbers_xor[cnt_parcel]);
data /= 4;
btn = (data >> 4) & 0x0F;
data >>= 16;
data = (uint16_t)FProtoGeneral::subghz_protocol_blocks_reverse_key(data, 16);
cnt = data >> 6;
}
inline static const uint32_t came_twee_magic_numbers_xor[15] = {
0x0E0E0E00,
0x1D1D1D11,
0x2C2C2C22,
0x3B3B3B33,
0x4A4A4A44,
0x59595955,
0x68686866,
0x77777777,
0x86868688,
0x95959599,
0xA4A4A4AA,
0xB3B3B3BB,
0xC2C2C2CC,
0xD1D1D1DD,
0xE0E0E0EE,
};
};
#endif