portapack-mayhem/firmware/common/pocsag.cpp
Kyle Reed e7e1bedcad
Support squelch in pocsag (#1415)
* Support squelch in pocsag

* Revert smooth threshold
2023-08-27 15:56:40 -07:00

438 lines
13 KiB
C++

/*
* Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "pocsag.hpp"
#include "baseband_api.hpp"
#include "portapack.hpp"
using namespace portapack;
#include "string_format.hpp"
#include "utility.hpp"
namespace pocsag {
std::string bitrate_str(BitRate bitrate) {
switch (bitrate) {
case BitRate::FSK512:
return "512bps ";
case BitRate::FSK1200:
return "1200bps";
case BitRate::FSK2400:
return "2400bps";
case BitRate::FSK3200:
return "3200bps";
default:
return "????";
}
}
std::string flag_str(PacketFlag packetflag) {
switch (packetflag) {
case PacketFlag::NORMAL:
return "OK";
case PacketFlag::TIMED_OUT:
return "TIMED OUT";
default:
return "";
}
}
void insert_BCH(BCHCode& BCH_code, uint32_t* codeword) {
uint32_t parity = 0;
int data[21];
int bit;
int* bb;
size_t c;
for (c = 0; c < 21; c++) {
bit = (((*codeword) << c) & 0x80000000U) ? 1 : 0;
if (bit) parity++;
data[c] = bit;
}
bb = BCH_code.encode(data);
// Make sure ECC bits are cleared
(*codeword) &= 0xFFFFF801;
for (c = 0; c < 10; c++) {
bit = bb[c];
(*codeword) |= (bit << (10 - c));
if (bit) parity++;
}
// Even parity
(*codeword) |= (parity & 1);
}
uint32_t get_digit_code(char code) {
if ((code >= '0') && (code <= '9')) {
code -= '0';
} else {
if (code == 'S')
code = 10;
else if (code == 'U')
code = 11;
else if (code == ' ')
code = 12;
else if (code == '-')
code = 13;
else if (code == ']')
code = 14;
else if (code == '[')
code = 15;
else
code = 12;
}
code = ((code & 0x0C) >> 2) | ((code & 0x03) << 2); // ----3210 -> ----1032
code = ((code & 0x0A) >> 1) | ((code & 0x05) << 1); // ----1032 -> ----0123
return code;
}
void pocsag_encode(const MessageType type, BCHCode& BCH_code, const uint32_t function, const std::string message, const uint32_t address, std::vector<uint32_t>& codewords) {
size_t b, c, address_slot;
size_t bit_idx, char_idx = 0;
uint32_t codeword, digit_code;
char ascii_char = 0;
size_t message_size = message.size();
// Preamble
for (b = 0; b < (POCSAG_PREAMBLE_LENGTH / 32); b++) {
codewords.push_back(0xAAAAAAAA);
}
// Address
codeword = (address & 0x1FFFF8U) << 10;
address_slot = (address & 7) * 2;
// Function
codeword |= (function << 11);
insert_BCH(BCH_code, &codeword);
// Address batch
codewords.push_back(POCSAG_SYNCWORD);
for (c = 0; c < 16; c++) {
if (c == address_slot) {
codewords.push_back(codeword);
if (type != MessageType::ADDRESS_ONLY) break;
} else
codewords.push_back(POCSAG_IDLEWORD);
}
if (type == MessageType::ADDRESS_ONLY) return; // Done.
c++;
codeword = 0;
bit_idx = 20 + 11;
// Messages batch(es)
do {
if (c == 0) codewords.push_back(POCSAG_SYNCWORD);
for (; c < 16; c++) {
// Fill up 20 bits
if (type == MessageType::ALPHANUMERIC) {
if ((char_idx < message_size) || (ascii_char)) {
do {
bit_idx -= 7;
if (char_idx < message_size)
ascii_char = message[char_idx] & 0x7F;
else
ascii_char = 0; // Codeword padding
// Bottom's up
ascii_char = (ascii_char & 0xF0) >> 4 | (ascii_char & 0x0F) << 4; // *6543210 -> 3210*654
ascii_char = (ascii_char & 0xCC) >> 2 | (ascii_char & 0x33) << 2; // 3210*654 -> 103254*6
ascii_char = (ascii_char & 0xAA) >> 2 | (ascii_char & 0x55); // 103254*6 -> *0123456
codeword |= (ascii_char << bit_idx);
char_idx++;
} while (bit_idx > 11);
codeword &= 0x7FFFF800; // Trim data
codeword |= 0x80000000; // Message type
insert_BCH(BCH_code, &codeword);
codewords.push_back(codeword);
if (bit_idx != 11) {
bit_idx = 20 + bit_idx;
codeword = ascii_char << bit_idx;
} else {
bit_idx = 20 + 11;
codeword = 0;
}
} else {
codewords.push_back(POCSAG_IDLEWORD); // Batch padding
}
} else if (type == MessageType::NUMERIC_ONLY) {
if (char_idx < message_size) {
do {
bit_idx -= 4;
if (char_idx < message_size)
digit_code = get_digit_code(message[char_idx]);
else
digit_code = 3; // Space (codeword padding)
codeword |= (digit_code << bit_idx);
char_idx++;
} while (bit_idx > 11);
codeword |= 0x80000000; // Message type
insert_BCH(BCH_code, &codeword);
codewords.push_back(codeword);
bit_idx = 20 + 11;
codeword = 0;
} else {
codewords.push_back(POCSAG_IDLEWORD); // Batch padding
}
}
}
c = 0;
} while (char_idx < message_size);
}
// ----------------------------------------------------------------------------
// EccContainer
// ----------------------------------------------------------------------------
EccContainer::EccContainer() {
setup_ecc();
}
void EccContainer::setup_ecc() {
unsigned int srr = 0x3b4;
unsigned int i, n, j, k;
/* calculate all information needed to implement error correction */
// Note : this is only for 31,21 code used in pocsag & flex
// one should probably also make use of 32nd parity bit
for (i = 0; i <= 20; i++) {
ecs[i] = srr;
if ((srr & 0x01) != 0)
srr = (srr >> 1) ^ 0x3B4;
else
srr = srr >> 1;
}
/* bch holds a syndrome look-up table telling which bits to correct */
// first 5 bits hold location of first error; next 5 bits hold location
// of second error; bits 12 & 13 tell how many bits are bad
for (i = 0; i < 1024; i++) bch[i] = 0;
/* two errors in data */
for (n = 0; n <= 20; n++) {
for (i = 0; i <= 20; i++) {
j = (i << 5) + n;
k = ecs[n] ^ ecs[i];
bch[k] = j + 0x2000;
}
}
/* one error in data */
for (n = 0; n <= 20; n++) {
k = ecs[n];
j = n + (0x1f << 5);
bch[k] = j + 0x1000;
}
/* one error in data and one error in ecc portion */
for (n = 0; n <= 20; n++) {
for (i = 0; i < 10; i++) /* ecc screwed up bit */
{
k = ecs[n] ^ (1 << i);
j = n + (0x1f << 5);
bch[k] = j + 0x2000;
}
}
/* one error in ecc */
for (n = 0; n < 10; n++) {
k = 1 << n;
bch[k] = 0x3ff + 0x1000;
}
/* two errors in ecc */
for (n = 0; n < 10; n++) {
for (i = 0; i < 10; i++) {
if (i != n) {
k = (1 << n) ^ (1 << i);
bch[k] = 0x3ff + 0x2000;
}
}
}
}
int EccContainer::error_correct(uint32_t& val) {
int i, synd, errl, acc, pari, ecc, b1, b2;
errl = 0;
pari = 0;
ecc = 0;
for (i = 31; i >= 11; --i) {
if (val & (1 << i)) {
ecc = ecc ^ ecs[31 - i];
pari = pari ^ 0x01;
}
}
acc = 0;
for (i = 10; i >= 1; --i) {
acc = acc << 1;
if (val & (1 << i)) {
acc = acc ^ 0x01;
}
}
synd = ecc ^ acc;
errl = 0;
if (synd != 0) /* if nonzero syndrome we have error */
{
if (bch[synd] != 0) /* check for correctable error */
{
b1 = bch[synd] & 0x1f;
b2 = bch[synd] >> 5;
b2 = b2 & 0x1f;
if (b2 != 0x1f) {
val ^= 0x01 << (31 - b2);
ecc = ecc ^ ecs[b2];
}
if (b1 != 0x1f) {
val ^= 0x01 << (31 - b1);
ecc = ecc ^ ecs[b1];
}
errl = bch[synd] >> 12;
} else {
errl = 3;
}
if (errl == 1) pari = pari ^ 0x01;
}
if (errl == 4) errl = 3;
return errl;
}
bool pocsag_decode_batch(const POCSAGPacket& batch, POCSAGState& state) {
constexpr uint8_t codeword_max = 16;
state.output.clear();
while (state.codeword_index < codeword_max) {
auto codeword = batch[state.codeword_index];
bool is_address = (codeword & 0x80000000U) == 0;
// Error correct twice. First time to fix any errors it can,
// second time to count number of errors that couldn't be fixed.
state.ecc->error_correct(codeword);
auto error_count = state.ecc->error_correct(codeword);
switch (state.mode) {
case STATE_CLEAR:
if (is_address && codeword != POCSAG_IDLEWORD) {
state.function = (codeword >> 11) & 3;
state.address = (codeword >> 10) & 0x1FFFF8U; // 18 MSBs are transmitted
state.mode = STATE_HAVE_ADDRESS;
state.out_type = ADDRESS;
state.errors = error_count;
state.ascii_idx = 0;
state.ascii_data = 0;
} else if (codeword == POCSAG_IDLEWORD) {
state.out_type = IDLE;
}
break;
case STATE_HAVE_ADDRESS:
if (is_address) {
// Got another address, return the current state.
state.mode = STATE_CLEAR;
return true;
}
// First message codeword, complete the address.
state.address |= (state.codeword_index >> 1); // Add in the 3 LSBs (frame #).
state.mode = STATE_GETTING_MSG;
[[fallthrough]];
case STATE_GETTING_MSG:
if (is_address) {
// Codeword isn't a message, return the current state.
state.mode = STATE_CLEAR;
return true;
}
state.out_type = MESSAGE;
state.errors += error_count;
state.ascii_data |= (codeword >> 11) & 0xFFFFF; // Get 20 message bits.
state.ascii_idx += 20;
// Raw 20 bits to 7 bit reversed ASCII.
// NB: This is processed MSB first, any remaining bits are shifted
// up so a whole 7 bits are processed with the next codeword.
while (state.ascii_idx >= 7) {
state.ascii_idx -= 7;
char ascii_char = (state.ascii_data >> state.ascii_idx) & 0x7F;
// Bottom's up (reverse the bits).
ascii_char = (ascii_char & 0xF0) >> 4 | (ascii_char & 0x0F) << 4; // 01234567 -> 45670123
ascii_char = (ascii_char & 0xCC) >> 2 | (ascii_char & 0x33) << 2; // 45670123 -> 67452301
ascii_char = (ascii_char & 0xAA) >> 2 | (ascii_char & 0x55); // 67452301 -> 76543210
// Translate non-printable chars. TODO: Leave CRLF?
if (ascii_char < 32 || ascii_char > 126)
state.output += ".";
else
state.output += ascii_char;
}
state.ascii_data <<= 20; // Remaining bits are for next iteration...
break;
}
state.codeword_index++;
}
return false;
}
} /* namespace pocsag */