portapack-mayhem/firmware/application/apps/ui_looking_glass_app.cpp
Totoo ced8012783
Theme system (#2164)
* Themes instead of Styles
* Colors changed to theme colors
* Reworked style management
* Theme settings app
* warn, menu dual set
* Added Aqua style
2024-05-27 21:02:52 +02:00

625 lines
23 KiB
C++

/*
* Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2020 euquiq
* Copyright (C) 2023 gullradriel, Nilorea Studio Inc.
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "ui_looking_glass_app.hpp"
#include "convert.hpp"
#include "file_reader.hpp"
#include "string_format.hpp"
#include "audio.hpp"
#include "file_path.hpp"
using namespace portapack;
namespace ui {
void GlassView::focus() {
range_presets.focus();
}
GlassView::~GlassView() {
audio::output::stop();
receiver_model.set_sampling_rate(3072000); // Just a hack to avoid hanging other apps
receiver_model.disable();
baseband::shutdown();
}
// Function to map the value from one range to another
int32_t GlassView::map(int32_t value, int32_t fromLow, int32_t fromHigh, int32_t toLow, int32_t toHigh) {
return toLow + (value - fromLow) * (toHigh - toLow) / (fromHigh - fromLow);
}
void GlassView::update_display_beep() {
if (beep_enabled) {
button_beep_squelch.set_style(Theme::getInstance()->fg_green);
// bip-XXdb
button_beep_squelch.set_text("bip" + to_string_dec_int(beep_squelch, 3) + "db");
receiver_model.set_headphone_volume(receiver_model.headphone_volume()); // WM8731 hack.
} else {
button_beep_squelch.set_style(Theme::getInstance()->bg_darkest);
button_beep_squelch.set_text("bip OFF ");
}
}
void GlassView::manage_beep_audio() {
if (beep_enabled) {
audio::set_rate(audio::Rate::Hz_24000);
audio::output::start();
} else {
baseband::request_beep_stop();
audio::output::stop();
}
}
void GlassView::get_max_power(const ChannelSpectrum& spectrum, uint8_t bin, uint8_t& max_power) {
if (mode == LOOKING_GLASS_SINGLEPASS) {
// <20MHz spectrum mode
if (bin < 120) {
if (spectrum.db[SPEC_NB_BINS - 120 + bin] > max_power)
max_power = spectrum.db[SPEC_NB_BINS - 120 + bin];
} else {
if (spectrum.db[bin - 120] > max_power)
max_power = spectrum.db[bin - 120];
}
} else {
// FAST or SLOW mode
if (bin < 120) {
if (spectrum.db[134 + bin] > max_power)
max_power = spectrum.db[134 + bin];
} else {
if (spectrum.db[bin - 118] > max_power)
max_power = spectrum.db[bin - 118];
}
}
}
rf::Frequency GlassView::get_freq_from_bin_pos(uint8_t pos) {
rf::Frequency freq_at_pos = 0;
if (mode == LOOKING_GLASS_SINGLEPASS) {
// starting from the middle, minus 8 ignored bin on each side. Since pos is [-120,120] after the (pos - 120), it's divided by SCREEN_W(240)/2 => 120
freq_at_pos = f_center_ini + ((pos - 120) * ((looking_glass_range - ((16 * looking_glass_range) / SPEC_NB_BINS)) / 2)) / (SCREEN_W / 2);
} else
freq_at_pos = f_min + (2 * offset * each_bin_size) + (pos * looking_glass_range) / SCREEN_W;
return freq_at_pos;
}
void GlassView::on_marker_change() {
marker = get_freq_from_bin_pos(marker_pixel_index);
field_marker.set_text(to_string_short_freq(marker));
plot_marker(marker_pixel_index); // Refresh marker on screen
}
void GlassView::retune() {
// Start a new sweep.
// Tune rx for this new slice directly because the model
// saves to persistent memory which is slower.
radio::set_tuning_frequency(f_center);
chThdSleepMilliseconds(5); // stabilize freq
baseband::spectrum_streaming_start(); // Do the RX
}
void GlassView::reset_live_view() {
max_freq_hold = 0;
max_freq_power = -1000;
// Clear screen in peak mode.
if (live_frequency_view == 2)
display.fill_rectangle({{0, 108 + 16}, {SCREEN_W, SCREEN_H - (108 + 16)}}, {0, 0, 0});
}
void GlassView::add_spectrum_pixel(uint8_t power) {
spectrum_row[pixel_index] = spectrum_rgb3_lut[power]; // row of colors
spectrum_data[pixel_index] = (live_frequency_integrate * spectrum_data[pixel_index] + power) / (live_frequency_integrate + 1); // smoothing
pixel_index++;
if (pixel_index == SCREEN_W) // got an entire waterfall line
{
if (live_frequency_view > 0) {
constexpr int rssi_sample_range = SPEC_NB_BINS;
constexpr float rssi_voltage_min = 0.4;
constexpr float rssi_voltage_max = 2.2;
constexpr float adc_voltage_max = 3.3;
constexpr int raw_min = rssi_sample_range * rssi_voltage_min / adc_voltage_max;
constexpr int raw_max = rssi_sample_range * rssi_voltage_max / adc_voltage_max;
constexpr int raw_delta = raw_max - raw_min;
const range_t<int> y_max_range{0, 320 - (108 + 16)};
// drawing and keeping track of max freq
for (uint16_t xpos = 0; xpos < SCREEN_W; xpos++) {
// save max powerwull freq
if (spectrum_data[xpos] > max_freq_power) {
max_freq_power = spectrum_data[xpos];
max_freq_hold = get_freq_from_bin_pos(xpos);
}
int16_t point = y_max_range.clip(((spectrum_data[xpos] - raw_min) * (320 - (108 + 16))) / raw_delta);
uint8_t color_gradient = (point * 255) / 212;
// clear if not in peak view
if (live_frequency_view != 2) {
display.fill_rectangle({{xpos, 108 + 16}, {1, SCREEN_H - point}}, {0, 0, 0});
}
display.fill_rectangle({{xpos, SCREEN_H - point}, {1, point}}, {color_gradient, 0, uint8_t(255 - color_gradient)});
}
if (last_max_freq != max_freq_hold) {
last_max_freq = max_freq_hold;
freq_stats.set("MAX HOLD: " + to_string_short_freq(max_freq_hold));
}
plot_marker(marker_pixel_index);
} else {
display.draw_pixels({{0, display.scroll(1)}, {SCREEN_W, 1}}, spectrum_row); // new line at top, one less var, speedier
}
pixel_index = 0; // Start New cascade line
}
}
bool GlassView::process_bins(uint8_t* powerlevel) {
bins_hz_size += each_bin_size; // add pixel to fulfilled bag of Hz
if (bins_hz_size >= marker_pixel_step) // new pixel fullfilled
{
if (*powerlevel > min_color_power)
add_spectrum_pixel(*powerlevel); // Pixel will represent max_power
else
add_spectrum_pixel(0); // Filtered out, show black
*powerlevel = 0;
if (!pixel_index) // Received indication that a waterfall line has been completed
{
bins_hz_size = 0; // Since this is an entire pixel line, we don't carry "Pixels into next bin"
if (mode != LOOKING_GLASS_SINGLEPASS) {
f_center = f_center_ini;
retune();
} else
baseband::spectrum_streaming_start();
return true; // signal a new line
}
bins_hz_size -= marker_pixel_step; // reset bins size, but carrying the eventual excess Hz into next pixel
}
return false;
}
// Apparently, the spectrum object returns an array of SPEC_NB_BINS (256) bins
// Each having the radio signal power for its corresponding frequency slot
void GlassView::on_channel_spectrum(const ChannelSpectrum& spectrum) {
baseband::spectrum_streaming_stop();
// Convert bins of this spectrum slice into a representative max_power and when enough, into pixels
// we actually need SCREEN_W (240) of those bins
for (uint8_t bin = 0; bin < bin_length; bin++) {
get_max_power(spectrum, bin, max_power);
if (max_power > range_max_power)
range_max_power = max_power;
// process dc spike if enable
if (bin == 119) {
uint8_t next_max_power = 0;
get_max_power(spectrum, bin + 1, next_max_power);
for (uint8_t it = 0; it < ignore_dc; it++) {
uint8_t med_max_power = (max_power + next_max_power) / 2; // due to the way process_bins works we have to keep resetting the color
if (process_bins(&med_max_power) == true)
return; // new line signaled, return
}
}
// process actual bin
if (process_bins(&max_power)) {
int8_t power = map(range_max_power, 0, 255, -100, 20);
if (power >= beep_squelch) {
baseband::request_audio_beep(map(range_max_power, 0, 256, 400, 2600), 24000, 250);
}
range_max_power = 0;
return; // new line signaled, return
}
}
if (mode != LOOKING_GLASS_SINGLEPASS) {
f_center += looking_glass_step;
retune();
} else {
baseband::spectrum_streaming_start();
}
}
void GlassView::on_hide() {
baseband::spectrum_streaming_stop();
display.scroll_disable();
}
void GlassView::on_show() {
display.scroll_set_area(109, 319); // Restart scroll on the correct coordinates
baseband::spectrum_streaming_start();
}
void GlassView::on_range_changed() {
reset_live_view();
f_min = field_frequency_min.value();
f_max = field_frequency_max.value();
f_min = f_min * MHZ_DIV; // Transpose into full frequency realm
f_max = f_max * MHZ_DIV;
looking_glass_range = f_max - f_min;
if (looking_glass_range <= LOOKING_GLASS_SLICE_WIDTH_MAX) {
// if the view is done in one pass, show it like in analog_audio_app
mode = LOOKING_GLASS_SINGLEPASS;
offset = 2;
bin_length = SCREEN_W;
ignore_dc = 0;
looking_glass_bandwidth = looking_glass_range;
looking_glass_sampling_rate = looking_glass_bandwidth;
each_bin_size = looking_glass_bandwidth / SCREEN_W;
looking_glass_step = looking_glass_bandwidth;
f_center_ini = f_min + (looking_glass_bandwidth / 2); // Initial center frequency for sweep
} else {
// view is made in multiple pass, use original bin picking
mode = scan_type.selected_index_value();
looking_glass_bandwidth = LOOKING_GLASS_SLICE_WIDTH_MAX;
looking_glass_sampling_rate = LOOKING_GLASS_SLICE_WIDTH_MAX;
each_bin_size = LOOKING_GLASS_SLICE_WIDTH_MAX / SPEC_NB_BINS;
if (mode == LOOKING_GLASS_FASTSCAN) {
offset = 2;
ignore_dc = 4;
bin_length = SCREEN_W;
} else { // if( mode == LOOKING_GLASS_SLOWSCAN )
offset = 2;
bin_length = 80;
ignore_dc = 0;
}
looking_glass_step = (bin_length + ignore_dc) * each_bin_size;
f_center_ini = f_min - (offset * each_bin_size) + (looking_glass_bandwidth / 2); // Initial center frequency for sweep
}
search_span = looking_glass_range / MHZ_DIV;
marker_pixel_step = looking_glass_range / SCREEN_W; // Each pixel value in Hz
pixel_index = 0;
max_power = 0;
bins_hz_size = 0;
on_marker_change();
update_range_field();
// set the sample rate and bandwidth
receiver_model.set_sampling_rate(looking_glass_sampling_rate);
receiver_model.set_baseband_bandwidth(looking_glass_bandwidth);
receiver_model.set_squelch_level(0);
f_center = f_center_ini; // Reset sweep into first slice
baseband::set_spectrum(looking_glass_bandwidth, trigger);
receiver_model.set_target_frequency(f_center); // tune rx for this slice
}
void GlassView::plot_marker(uint8_t pos) {
uint8_t shift_y = 0;
if (live_frequency_view > 0) // plot one line down when in live view
{
shift_y = 16;
}
portapack::display.fill_rectangle({0, 100 + shift_y, SCREEN_W, 8}, Theme::getInstance()->bg_darkest->background); // Clear old marker and whole marker rectangle btw
portapack::display.fill_rectangle({pos - 2, 100 + shift_y, 5, 3}, Theme::getInstance()->fg_red->foreground); // Red marker top
portapack::display.fill_rectangle({pos - 1, 103 + shift_y, 3, 3}, Theme::getInstance()->fg_red->foreground); // Red marker middle
portapack::display.fill_rectangle({pos, 106 + shift_y, 1, 2}, Theme::getInstance()->fg_red->foreground); // Red marker bottom
}
void GlassView::update_min(int32_t v) {
int32_t min_size = steps;
if (locked_range)
min_size = search_span;
if (min_size < 2)
min_size = 2;
if (v > 7200 - min_size) {
v = 7200 - min_size;
}
if (v > (field_frequency_max.value() - min_size))
field_frequency_max.set_value(v + min_size, false);
if (locked_range)
field_frequency_max.set_value(v + min_size, false);
else
field_frequency_min.set_value(v, false);
}
void GlassView::update_max(int32_t v) {
int32_t min_size = steps;
if (locked_range)
min_size = search_span;
if (min_size < 2)
min_size = 2;
if (v < min_size) {
v = min_size;
}
if (v < (field_frequency_min.value() + min_size))
field_frequency_min.set_value(v - min_size, false);
if (locked_range)
field_frequency_min.set_value(v - min_size, false);
else
field_frequency_max.set_value(v, false);
}
void GlassView::update_range_field() {
if (!locked_range) {
field_range.set_style(Theme::getInstance()->bg_darkest);
field_range.set_text(" " + to_string_dec_uint(search_span) + " ");
} else {
field_range.set_style(Theme::getInstance()->fg_red);
field_range.set_text(">" + to_string_dec_uint(search_span) + "<");
}
}
GlassView::GlassView(
NavigationView& nav)
: nav_(nav) {
baseband::run_image(portapack::spi_flash::image_tag_wideband_spectrum);
add_children({&labels,
&field_frequency_min,
&field_frequency_max,
&field_lna,
&field_vga,
&field_range,
//&steps_config,
&scan_type,
&view_config,
&level_integration,
&field_volume,
&filter_config,
&field_rf_amp,
&range_presets,
&button_beep_squelch,
&field_marker,
&field_trigger,
&button_jump,
&button_rst,
&field_rx_iq_phase_cal,
&freq_stats});
load_presets(); // Load available presets from TXT files (or default).
preset_index = clip<uint8_t>(preset_index, 0, presets_db.size());
field_frequency_min.set_value(f_min / MHZ_DIV);
field_frequency_min.on_change = [this](int32_t v) {
range_presets.set_selected_index(0); // Manual
update_min(v);
on_range_changed();
};
field_frequency_min.on_select = [this, &nav](NumberField& field) {
auto new_view = nav_.push<FrequencyKeypadView>(field_frequency_min.value() * MHZ_DIV);
new_view->on_changed = [this, &field](rf::Frequency f) {
field_frequency_min.set_value(f / MHZ_DIV);
};
};
field_frequency_max.set_value(f_max / MHZ_DIV);
field_frequency_max.on_change = [this](int32_t v) {
range_presets.set_selected_index(0); // Manual
update_max(v);
on_range_changed();
};
field_frequency_max.on_select = [this, &nav](NumberField& field) {
auto new_view = nav_.push<FrequencyKeypadView>(field_frequency_max.value() * MHZ_DIV);
new_view->on_changed = [this, &field](rf::Frequency f) {
field_frequency_max.set_value(f / MHZ_DIV);
};
};
/*steps_config.on_change = [this](size_t, OptionsField::value_t v) {
field_frequency_min.set_step(v);
field_frequency_max.set_step(v);
steps = v;
};
steps_config.set_selected_index(0); // 1 Mhz step.*/
scan_type.on_change = [this](size_t, OptionsField::value_t v) {
mode = v;
on_range_changed();
};
scan_type.set_selected_index(mode);
view_config.on_change = [this](size_t, OptionsField::value_t v) {
reset_live_view(); // Clear between changes.
live_frequency_view = v;
switch (v) {
case 0: // SPEC
level_integration.hidden(true);
freq_stats.hidden(true);
button_jump.hidden(true);
button_rst.hidden(true);
display.scroll_set_area(109, 319); // Restart scroll on the correct coordinates.
break;
case 1: // LEVEL
display.fill_rectangle({{0, 108}, {SCREEN_W, 24}}, {0, 0, 0});
display.scroll_disable();
level_integration.hidden(false);
freq_stats.hidden(false);
button_jump.hidden(false);
button_rst.hidden(false);
break;
case 2: // PEAK
default:
display.fill_rectangle({{0, 108}, {SCREEN_W, 24}}, {0, 0, 0});
display.scroll_disable();
level_integration.hidden(false);
freq_stats.hidden(false);
button_jump.hidden(false);
button_rst.hidden(false);
break;
}
set_dirty();
};
view_config.set_selected_index(live_frequency_view);
level_integration.on_change = [this](size_t, OptionsField::value_t v) {
reset_live_view();
live_frequency_integrate = v;
};
level_integration.set_selected_index(live_frequency_integrate);
filter_config.on_change = [this](size_t ix, OptionsField::value_t v) {
reset_live_view();
min_color_power = v;
filter_index = ix;
};
filter_config.set_selected_index(filter_index);
range_presets.on_change = [this](size_t ix, OptionsField::value_t v) {
preset_index = ix;
if (ix == 0) return; // Don't update range for "Manual".
// NB: Don't trigger updates, presets directly set the range
// values without applying step or range lock.
field_frequency_min.set_value(presets_db[v].min, false);
field_frequency_max.set_value(presets_db[v].max, false);
on_range_changed();
};
range_presets.set_selected_index(preset_index);
field_marker.on_encoder_change = [this](TextField&, EncoderEvent delta) {
marker_pixel_index = clip<uint8_t>(marker_pixel_index + delta, 0, SCREEN_W);
on_marker_change();
};
field_marker.on_select = [this](TextField&) {
// Launch Audio with marker frequency.
launch_audio(marker);
};
field_trigger.on_change = [this](int32_t v) {
trigger = v;
baseband::set_spectrum(looking_glass_bandwidth, trigger);
};
field_trigger.set_value(trigger);
field_range.on_select = [this](TextField&) {
locked_range = !locked_range;
update_range_field();
};
button_jump.on_select = [this](Button&) {
// Launch Audio with peak frequency.
launch_audio(max_freq_hold);
};
button_rst.on_select = [this](Button&) {
reset_live_view();
};
field_rx_iq_phase_cal.set_range(0, hackrf_r9 ? 63 : 31); // max2839 has 6 bits [0..63], max2837 has 5 bits [0..31]
field_rx_iq_phase_cal.set_value(get_spec_iq_phase_calibration_value()); // using accessor function of AnalogAudioView to read iq_phase_calibration_value from rx_audio.ini
field_rx_iq_phase_cal.on_change = [this](int32_t v) {
set_spec_iq_phase_calibration_value(v); // using accessor function of AnalogAudioView to write inside SPEC submenu, register value to max283x and save it to rx_audio.ini
};
set_spec_iq_phase_calibration_value(get_spec_iq_phase_calibration_value()); // initialize iq_phase_calibration in radio
display.scroll_set_area(109, 319);
// trigger:
// Discord User jteich: WidebandSpectrum::on_message to set the trigger value. In WidebandSpectrum::execute,
// it keeps adding the output of the fft to the buffer until "trigger" number of calls are made,
// at which time it pushes the buffer up with channel_spectrum.feed
baseband::set_spectrum(looking_glass_bandwidth, trigger);
marker_pixel_index = SCREEN_W / 2;
on_range_changed(); // Force a UI update.
receiver_model.set_sampling_rate(looking_glass_sampling_rate); // 20mhz
receiver_model.set_baseband_bandwidth(looking_glass_bandwidth); // possible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz
receiver_model.set_squelch_level(0);
receiver_model.enable();
button_beep_squelch.on_select = [this](ButtonWithEncoder& button) {
(void)button;
beep_enabled = 1 - beep_enabled;
manage_beep_audio();
update_display_beep();
};
button_beep_squelch.on_change = [this]() {
int new_beep_squelch = beep_squelch + button_beep_squelch.get_encoder_delta();
if (new_beep_squelch < -99)
new_beep_squelch = -99;
if (new_beep_squelch > 20)
new_beep_squelch = 20;
beep_squelch = new_beep_squelch;
button_beep_squelch.set_encoder_delta(0);
update_display_beep();
};
manage_beep_audio();
update_display_beep();
}
uint8_t GlassView::get_spec_iq_phase_calibration_value() { // define accessor functions inside AnalogAudioView to read & write real iq_phase_calibration_value
return iq_phase_calibration_value;
}
void GlassView::set_spec_iq_phase_calibration_value(uint8_t cal_value) { // define accessor functions
iq_phase_calibration_value = cal_value;
radio::set_rx_max283x_iq_phase_calibration(iq_phase_calibration_value);
}
void GlassView::load_presets() {
File presets_file;
auto error = presets_file.open(looking_glass_dir / u"PRESETS.TXT");
presets_db.clear();
// Add the "Manual" entry.
presets_db.push_back({0, 0, "Manual"});
if (!error) {
auto reader = FileLineReader(presets_file);
for (const auto& line : reader) {
if (line.length() == 0 || line[0] == '#')
continue;
auto cols = split_string(line, ',');
if (cols.size() != 3)
continue;
preset_entry entry{};
parse_int(cols[0], entry.min);
parse_int(cols[1], entry.max);
entry.label = trimr(cols[2]);
if (entry.min == 0 || entry.max == 0 || entry.min >= entry.max)
continue; // Invalid line.
presets_db.emplace_back(std::move(entry));
}
}
populate_presets();
}
void GlassView::populate_presets() {
using option_t = std::pair<std::string, int32_t>;
using options_t = std::vector<option_t>;
options_t entries;
for (const auto& preset : presets_db)
entries.emplace_back(preset.label, entries.size());
range_presets.set_options(std::move(entries));
}
void GlassView::launch_audio(rf::Frequency center_freq) {
receiver_model.set_target_frequency(center_freq);
auto settings = receiver_model.settings();
settings.frequency_step = MHZ_DIV; // Preset a 1 MHz frequency step into RX -> AUDIO
nav_.replace<AnalogAudioView>(settings); // Jump into audio view
}
} // namespace ui