portapack-mayhem/firmware/baseband/proc_ble_tx.cpp
Netro 8479d2edf0
BLE Comm WIP (#1578)
* Initial BLE Comm commit.
* SCAN_RSP MAC was reversed.
* Added Auto Channel Hop.
* Improvements to Tx to better handle timers.
* Auto channel and more work on timers.
* more advertisement numbers.
2023-11-16 14:46:45 +01:00

412 lines
13 KiB
C++

/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
* Copyright (C) 2016 Furrtek
* Copyright (C) 2023 TJ Baginski
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "proc_ble_tx.hpp"
#include "portapack_shared_memory.hpp"
#include "sine_table_int8.hpp"
#include "event_m4.hpp"
#include <cstdint>
#define new_way
int BTLETxProcessor::gen_sample_from_phy_bit(char* bit, char* sample, int num_bit) {
int num_sample = (num_bit * SAMPLE_PER_SYMBOL) + (LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL);
int8_t* tmp_phy_bit_over_sampling_int8 = (int8_t*)tmp_phy_bit_over_sampling;
int i, j;
for (i = 0; i < (LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL - 1); i++) {
tmp_phy_bit_over_sampling_int8[i] = 0;
}
for (i = (LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL - 1 + num_bit * SAMPLE_PER_SYMBOL); i < (2 * LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL - 2 + num_bit * SAMPLE_PER_SYMBOL); i++) {
tmp_phy_bit_over_sampling_int8[i] = 0;
}
for (i = 0; i < (num_bit * SAMPLE_PER_SYMBOL); i++) {
if (i % SAMPLE_PER_SYMBOL == 0) {
tmp_phy_bit_over_sampling_int8[i + (LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL - 1)] = (bit[i / SAMPLE_PER_SYMBOL]) * 2 - 1;
} else {
tmp_phy_bit_over_sampling_int8[i + (LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL - 1)] = 0;
}
}
int16_t tmp = 0;
sample[0] = cos_table_int8[tmp];
sample[1] = sin_table_int8[tmp];
int len_conv_result = num_sample - 1;
for (i = 0; i < len_conv_result; i++) {
int16_t acc = 0;
for (j = 3; j < (LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL - 4); j++) {
acc = acc + gauss_coef_int8[(LEN_GAUSS_FILTER * SAMPLE_PER_SYMBOL) - j - 1] * tmp_phy_bit_over_sampling_int8[i + j];
}
tmp = (tmp + acc) & 1023;
sample[(i + 1) * 2 + 0] = cos_table_int8[tmp];
sample[(i + 1) * 2 + 1] = sin_table_int8[tmp];
}
return (num_sample);
}
void BTLETxProcessor::octet_hex_to_bit(char* hex, char* bit) {
char tmp_hex[3];
tmp_hex[0] = hex[0];
tmp_hex[1] = hex[1];
tmp_hex[2] = 0;
int n = strtol(tmp_hex, NULL, 16);
bit[0] = 0x01 & (n >> 0);
bit[1] = 0x01 & (n >> 1);
bit[2] = 0x01 & (n >> 2);
bit[3] = 0x01 & (n >> 3);
bit[4] = 0x01 & (n >> 4);
bit[5] = 0x01 & (n >> 5);
bit[6] = 0x01 & (n >> 6);
bit[7] = 0x01 & (n >> 7);
}
int BTLETxProcessor::convert_hex_to_bit(char* hex, char* bit, int stream_flip, int octet_limit) {
int num_hex_orig = strlen(hex);
int i, num_hex;
num_hex = num_hex_orig;
for (i = 0; i < num_hex_orig; i++) {
if (!((hex[i] >= 48 && hex[i] <= 57) || (hex[i] >= 65 && hex[i] <= 70) || (hex[i] >= 97 && hex[i] <= 102))) // not a hex
num_hex--;
}
if (num_hex % 2 != 0) {
return (-1);
}
if (num_hex > (octet_limit * 2)) {
return (-1);
}
if (num_hex <= 1) { // NULL data
return (-1);
}
char tmp_str[max_char];
if (stream_flip == 1) {
strcpy(tmp_str, hex);
for (i = 0; i < num_hex; i = i + 2) {
hex[num_hex - i - 2] = tmp_str[i];
hex[num_hex - i - 1] = tmp_str[i + 1];
}
}
int num_bit = num_hex * 4;
int j;
for (i = 0; i < num_hex; i = i + 2) {
j = i * 4;
octet_hex_to_bit(hex + i, bit + j);
}
return (num_bit);
}
void BTLETxProcessor::crc24(char* bit_in, int num_bit, char* init_hex, char* crc_result) {
char bit_store[24], bit_store_update[24];
int i;
convert_hex_to_bit(init_hex, bit_store, 0, 3);
for (i = 0; i < num_bit; i++) {
char new_bit = (bit_store[23] + bit_in[i]) % 2;
bit_store_update[0] = new_bit;
bit_store_update[1] = (bit_store[0] + new_bit) % 2;
bit_store_update[2] = bit_store[1];
bit_store_update[3] = (bit_store[2] + new_bit) % 2;
bit_store_update[4] = (bit_store[3] + new_bit) % 2;
bit_store_update[5] = bit_store[4];
bit_store_update[6] = (bit_store[5] + new_bit) % 2;
bit_store_update[7] = bit_store[6];
bit_store_update[8] = bit_store[7];
bit_store_update[9] = (bit_store[8] + new_bit) % 2;
bit_store_update[10] = (bit_store[9] + new_bit) % 2;
memcpy(bit_store_update + 11, bit_store + 10, 13);
memcpy(bit_store, bit_store_update, 24);
}
for (i = 0; i < 24; i++) {
crc_result[i] = bit_store[23 - i];
}
}
void BTLETxProcessor::scramble(char* bit_in, int num_bit, int channel_number, char* bit_out) {
char bit_store[7], bit_store_update[7];
int i;
bit_store[0] = 1;
bit_store[1] = 0x01 & (channel_number >> 5);
bit_store[2] = 0x01 & (channel_number >> 4);
bit_store[3] = 0x01 & (channel_number >> 3);
bit_store[4] = 0x01 & (channel_number >> 2);
bit_store[5] = 0x01 & (channel_number >> 1);
bit_store[6] = 0x01 & (channel_number >> 0);
for (i = 0; i < num_bit; i++) {
bit_out[i] = (bit_store[6] + bit_in[i]) % 2;
bit_store_update[0] = bit_store[6];
bit_store_update[1] = bit_store[0];
bit_store_update[2] = bit_store[1];
bit_store_update[3] = bit_store[2];
bit_store_update[4] = (bit_store[3] + bit_store[6]) % 2;
bit_store_update[5] = bit_store[4];
bit_store_update[6] = bit_store[5];
memcpy(bit_store, bit_store_update, 7);
}
}
void BTLETxProcessor::disp_bit_in_hex(char* bit, int num_bit) {
int i, a;
for (i = 0; i < num_bit; i = i + 8) {
a = bit[i] + bit[i + 1] * 2 + bit[i + 2] * 4 + bit[i + 3] * 8 + bit[i + 4] * 16 + bit[i + 5] * 32 + bit[i + 6] * 64 + bit[i + 7] * 128;
data_message.is_data = true;
data_message.value = (uint8_t)a;
shared_memory.application_queue.push(data_message);
}
}
void BTLETxProcessor::crc24_and_scramble_to_gen_phy_bit(char* crc_init_hex, PKT_INFO* pkt) {
crc24(pkt->info_bit + 5 * 8, pkt->num_info_bit - 5 * 8, crc_init_hex, pkt->info_bit + pkt->num_info_bit);
// disp_bit_in_hex(pkt->info_bit, pkt->num_info_bit + 3*8);
scramble(pkt->info_bit + 5 * 8, pkt->num_info_bit - 5 * 8 + 24, pkt->channel_number, pkt->phy_bit + 5 * 8);
memcpy(pkt->phy_bit, pkt->info_bit, 5 * 8);
pkt->num_phy_bit = pkt->num_info_bit + 24;
// disp_bit_in_hex(pkt->phy_bit, pkt->num_phy_bit);
}
void BTLETxProcessor::fill_adv_pdu_header(PKT_INFO* pkt, int txadd, int rxadd, int payload_len, char* bit_out) {
if (pkt->pkt_type == ADV_IND || pkt->pkt_type == IBEACON) {
bit_out[3] = 0;
bit_out[2] = 0;
bit_out[1] = 0;
bit_out[0] = 0;
} else if (pkt->pkt_type == ADV_DIRECT_IND) {
bit_out[3] = 0;
bit_out[2] = 0;
bit_out[1] = 0;
bit_out[0] = 1;
} else if (pkt->pkt_type == ADV_NONCONN_IND || pkt->pkt_type == DISCOVERY) {
bit_out[3] = 0;
bit_out[2] = 0;
bit_out[1] = 1;
bit_out[0] = 0;
} else if (pkt->pkt_type == SCAN_REQ) {
bit_out[3] = 0;
bit_out[2] = 0;
bit_out[1] = 1;
bit_out[0] = 1;
} else if (pkt->pkt_type == SCAN_RSP) {
bit_out[3] = 0;
bit_out[2] = 1;
bit_out[1] = 0;
bit_out[0] = 0;
} else if (pkt->pkt_type == CONNECT_REQ) {
bit_out[3] = 0;
bit_out[2] = 1;
bit_out[1] = 0;
bit_out[0] = 1;
} else if (pkt->pkt_type == ADV_SCAN_IND) {
bit_out[3] = 0;
bit_out[2] = 1;
bit_out[1] = 1;
bit_out[0] = 0;
} else {
bit_out[3] = 1;
bit_out[2] = 1;
bit_out[1] = 1;
bit_out[0] = 1;
}
bit_out[4] = 0;
bit_out[5] = 0;
bit_out[6] = txadd;
bit_out[7] = rxadd;
bit_out[8] = 0x01 & (payload_len >> 0);
bit_out[9] = 0x01 & (payload_len >> 1);
bit_out[10] = 0x01 & (payload_len >> 2);
bit_out[11] = 0x01 & (payload_len >> 3);
bit_out[12] = 0x01 & (payload_len >> 4);
bit_out[13] = 0x01 & (payload_len >> 5);
bit_out[14] = 0;
bit_out[15] = 0;
}
int BTLETxProcessor::calculate_sample_for_ADV(PKT_INFO* pkt) {
pkt->num_info_bit = 0;
// gen preamble and access address
const char* AA = "AA";
const char* AAValue = "D6BE898E";
pkt->num_info_bit = pkt->num_info_bit + convert_hex_to_bit((char*)AA, pkt->info_bit, 0, 1);
pkt->num_info_bit = pkt->num_info_bit + convert_hex_to_bit((char*)AAValue, pkt->info_bit + pkt->num_info_bit, 0, 4);
// get txadd and rxadd
int txadd = 0, rxadd = 0;
pkt->num_info_bit = pkt->num_info_bit + 16; // 16 is header length
// get AdvA and AdvData
pkt->num_info_bit = pkt->num_info_bit + convert_hex_to_bit(macAddress, pkt->info_bit + pkt->num_info_bit, 1, 6);
pkt->num_info_bit = pkt->num_info_bit + convert_hex_to_bit(advertisementData, pkt->info_bit + pkt->num_info_bit, 0, 31);
int payload_len = (pkt->num_info_bit / 8) - 7;
fill_adv_pdu_header(pkt, txadd, rxadd, payload_len, pkt->info_bit + 5 * 8);
const char* checksumInit = "555555";
crc24_and_scramble_to_gen_phy_bit((char*)checksumInit, pkt);
#ifdef new_way
pkt->num_phy_sample = gen_sample_from_phy_bit(pkt->phy_bit, pkt->phy_sample, pkt->num_phy_bit);
#endif
// disp_bit_in_hex(pkt->phy_sample, pkt->num_phy_sample);
return (0);
}
int BTLETxProcessor::calculate_sample_from_pkt_type(PKT_INFO* pkt) {
// Todo: Handle other Enum values.
// if (packetType == ADV_IND);
if (calculate_sample_for_ADV(pkt) == -1) {
return (-1);
}
return (0);
}
int BTLETxProcessor::calculate_pkt_info(PKT_INFO* pkt) {
if (calculate_sample_from_pkt_type(pkt) == -1) {
return (-1);
}
return (0);
}
void BTLETxProcessor::execute(const buffer_c8_t& buffer) {
int8_t re, im;
// This is called at 4M/2048 = 1953Hz
for (size_t i = 0; i < buffer.count; i++) {
if (configured) {
// This is going to loop through each sample bit and push it to the output buffer.
if (sample_count > length) {
configured = false;
sample_count = 0;
txprogress_message.done = true;
shared_memory.application_queue.push(txprogress_message);
} else {
// Real and imaginary was already calculated in gen_sample_from_phy_bit.
// It was processed from each data bit, run through a Gaussian Filter, and then ran through sin and cos table to get each IQ bit.
re = (int8_t)packets.phy_sample[sample_count++];
im = (int8_t)packets.phy_sample[sample_count++];
buffer.p[i] = {re, im};
if (progress_count >= progress_notice) {
progress_count = 0;
txprogress_message.progress++;
txprogress_message.done = false;
shared_memory.application_queue.push(txprogress_message);
} else {
progress_count++;
}
}
} else {
re = 0;
im = 0;
buffer.p[i] = {re, im};
}
}
}
void BTLETxProcessor::on_message(const Message* const message) {
if (message->id == Message::ID::BTLETxConfigure) {
configure(*reinterpret_cast<const BTLETxConfigureMessage*>(message));
}
}
void BTLETxProcessor::configure(const BTLETxConfigureMessage& message) {
channel_number = message.channel_number;
packetType = (PKT_TYPE)message.pduType;
memcpy(macAddress, message.macAddress, sizeof(macAddress));
memcpy(advertisementData, message.advertisementData, sizeof(advertisementData));
packets.channel_number = channel_number;
packets.pkt_type = packetType;
// Calculates the samples based on the BLE packet data and generates IQ values into an array to be sent out.
calculate_pkt_info(&packets);
#ifdef new_way
// This is because each sample contains I and Q, but packet.num_phy_samples just returns the total samples.
length = (uint32_t)(packets.num_phy_sample * 2);
#else
length = (uint32_t)packets.num_phy_bit;
#endif
// Starting at sample_count 0 since packets.num_phy_sample contains every sample needed to be sent out.
sample_count = 0;
progress_count = 0;
progress_notice = 64;
txprogress_message.progress = 0;
txprogress_message.done = false;
configured = true;
}
int main() {
EventDispatcher event_dispatcher{std::make_unique<BTLETxProcessor>()};
event_dispatcher.run();
return 0;
}