/* * Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc. * Copyright (C) 2017 Furrtek * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "ui_subghzd.hpp" #include "audio.hpp" #include "baseband_api.hpp" #include "string_format.hpp" #include "file_path.hpp" #include "portapack_persistent_memory.hpp" using namespace portapack; using namespace ui; namespace ui { std::string SubGhzDRecentEntry::to_csv() { std::string csv = ";"; csv += SubGhzDView::getSensorTypeName((FPROTO_SUBGHZD_SENSOR)sensorType); csv += ";" + to_string_dec_uint(bits) + ";"; csv += to_string_hex(data, 64 / 4); return csv; } void SubGhzDLogger::log_data(SubGhzDRecentEntry& data) { log_file.write_entry(data.to_csv()); } void SubGhzDRecentEntryDetailView::update_data() { // process protocol data parseProtocol(); // set text elements text_type.set(SubGhzDView::getSensorTypeName((FPROTO_SUBGHZD_SENSOR)entry_.sensorType)); text_id.set("0x" + to_string_hex(serial)); if (entry_.bits > 0) console.writeln("Bits: " + to_string_dec_uint(entry_.bits)); if (btn != SD_NO_BTN) console.writeln("Btn: " + to_string_dec_uint(btn)); if (cnt != SD_NO_CNT) console.writeln("Cnt: " + to_string_dec_uint(cnt)); if (entry_.data != 0) console.writeln("Data: " + to_string_hex(entry_.data)); } SubGhzDRecentEntryDetailView::SubGhzDRecentEntryDetailView(NavigationView& nav, const SubGhzDRecentEntry& entry) : nav_{nav}, entry_{entry} { add_children({&button_done, &text_type, &text_id, &console, &labels}); button_done.on_select = [&nav](const ui::Button&) { nav.pop(); }; update_data(); } void SubGhzDRecentEntryDetailView::focus() { button_done.focus(); } void SubGhzDView::focus() { field_frequency.focus(); } SubGhzDView::SubGhzDView(NavigationView& nav) : nav_{nav} { add_children({&rssi, &field_rf_amp, &field_lna, &field_vga, &field_frequency, &button_clear_list, &check_log, &recent_entries_view}); baseband::run_image(portapack::spi_flash::image_tag_subghzd); logger = std::make_unique(); button_clear_list.on_select = [this](Button&) { recent.clear(); recent_entries_view.set_dirty(); }; field_frequency.set_step(10000); check_log.on_select = [this](Checkbox&, bool v) { logging = v; if (logger && logging) { logger->append(logs_dir.string() + "/SUBGHZDLOG_" + to_string_timestamp(rtc_time::now()) + ".CSV"); logger->write_header(); } }; check_log.set_value(logging); const Rect content_rect{0, header_height, screen_width, screen_height - header_height}; recent_entries_view.set_parent_rect(content_rect); recent_entries_view.on_select = [this](const SubGhzDRecentEntry& entry) { nav_.push(entry); }; baseband::set_subghzd_config(0, receiver_model.sampling_rate()); // 0=am receiver_model.enable(); signal_token_tick_second = rtc_time::signal_tick_second += [this]() { on_tick_second(); }; } void SubGhzDView::on_tick_second() { for (auto& entry : recent) { entry.inc_age(1); } recent_entries_view.set_dirty(); } void SubGhzDView::on_data(const SubGhzDDataMessage* data) { SubGhzDRecentEntry key{data->sensorType, data->data, data->bits}; if (logger && logging) { logger->log_data(key); } auto matching_recent = find(recent, key.key()); if (matching_recent != std::end(recent)) { // Found within. Move to front of list, increment counter. (*matching_recent).reset_age(); recent.push_front(*matching_recent); recent.erase(matching_recent); } else { recent.emplace_front(key); truncate_entries(recent, 64); } recent_entries_view.set_dirty(); } SubGhzDView::~SubGhzDView() { rtc_time::signal_tick_second -= signal_token_tick_second; receiver_model.disable(); baseband::shutdown(); } const char* SubGhzDView::getSensorTypeName(FPROTO_SUBGHZD_SENSOR type) { switch (type) { case FPS_PRINCETON: return "Princeton"; case FPS_BETT: return "Bett"; case FPS_CAME: return "Came"; case FPS_PRASTEL: return "Prastel"; case FPS_AIRFORCE: return "Airforce"; case FPS_CAMEATOMO: return "Came Atomo"; case FPS_CAMETWEE: return "Came Twee"; case FPS_CHAMBCODE: return "Chamb Code"; case FPS_CLEMSA: return "Clemsa"; case FPS_DOITRAND: return "Doitrand"; case FPS_DOOYA: return "Dooya"; case FPS_FAAC: return "Faac"; case FPS_GATETX: return "Gate TX"; case FPS_HOLTEK: return "Holtek"; case FPS_HOLTEKHT12X: return "Holtek HT12X"; case FPS_HONEYWELL: return "Honeywell"; case FPS_HONEYWELLWDB: return "Honeywell Wdb"; case FPS_HORMANN: return "Hormann"; case FPS_IDO: return "Ido 11x"; case FPS_INTERTECHNOV3: return "InterTehcno v3"; case FPS_KEELOQ: return "KeeLoq"; case FPS_KINGGATESSTYLO4K: return "Kinggate Stylo4K"; case FPS_LINEAR: return "Linear"; case FPS_LINEARDELTA3: return "Linear Delta3"; case FPS_MAGELLAN: return "Magellan"; case FPS_MARANTEC: return "Marantec"; case FPS_MASTERCODE: return "Mastercode"; case FPS_MEGACODE: return "Megacode"; case FPS_NERORADIO: return "Nero Radio"; case FPS_NERO_SKETCH: return "Nero Sketch"; case FPS_NICEFLO: return "Nice Flo"; case FPS_NICEFLORS: return "Nice Flor S"; case FPS_PHOENIXV2: return "Phoenix V2"; case FPS_POWERSMART: return "PowerSmart"; case FPS_SECPLUSV1: return "SecPlus V1"; case FPS_SECPLUSV2: return "SecPlus V2"; case FPS_SMC5326: return "SMC5326"; case FPS_STARLINE: return "Star Line"; case FPS_X10: return "X10"; case FPS_LEGRAND: return "Legrand"; case FPS_SOMIFY_KEYTIS: return "Somify Keytis"; case FPS_SOMIFY_TELIS: return "Somify Telis"; case FPS_GANGQI: return "GangQi"; case FPS_MARANTEC24: return "Marantec24"; case FPS_Invalid: default: return "Unknown"; } } std::string SubGhzDView::pad_string_with_spaces(int snakes) { std::string paddedStr(snakes, ' '); return paddedStr; } void SubGhzDView::on_freqchg(int64_t freq) { field_frequency.set_value(freq); } template <> void RecentEntriesTable::draw( const Entry& entry, const Rect& target_rect, Painter& painter, const Style& style) { std::string line{}; line.reserve(30); line = SubGhzDView::getSensorTypeName((FPROTO_SUBGHZD_SENSOR)entry.sensorType); line = line + " " + to_string_hex(entry.data << 32); if (line.length() < 19) { line += SubGhzDView::pad_string_with_spaces(19 - line.length()); } else { line = truncate(line, 19); } std::string ageStr = to_string_dec_uint(entry.age); std::string bitsStr = to_string_dec_uint(entry.bits); line += SubGhzDView::pad_string_with_spaces(5 - bitsStr.length()) + bitsStr; line += SubGhzDView::pad_string_with_spaces(4 - ageStr.length()) + ageStr; line.resize(target_rect.width() / 8, ' '); painter.draw_string(target_rect.location(), style, line); } // decoder helper functions void atomo_decrypt(uint8_t* buff) { buff[0] = (buff[0] ^ 5) & 0x7F; uint8_t tmpB = (-buff[0]) & 0x7F; uint8_t bitCnt = 8; while (bitCnt < 59) { if ((tmpB & 0x18) && (((tmpB / 8) & 3) != 3)) { tmpB = ((tmpB << 1) & 0xFF) | 1; } else { tmpB = (tmpB << 1) & 0xFF; } if (tmpB & 0x80) { buff[bitCnt / 8] ^= (0x80 >> (bitCnt & 7)); } bitCnt++; } } const uint32_t came_twee_magic_numbers_xor[15] = { 0x0E0E0E00, 0x1D1D1D11, 0x2C2C2C22, 0x3B3B3B33, 0x4A4A4A44, 0x59595955, 0x68686866, 0x77777777, 0x86868688, 0x95959599, 0xA4A4A4AA, 0xB3B3B3BB, 0xC2C2C2CC, 0xD1D1D1DD, 0xE0E0E0EE, }; // to save some byte of fw space, these will be inline. unreadeable? yes. needs a tons of free space? certanly. so sorry for this. void SubGhzDRecentEntryDetailView::parseProtocol() { btn = SD_NO_BTN; cnt = SD_NO_CNT; serial = 0; if (entry_.sensorType == FPS_Invalid) return; if (entry_.sensorType == FPS_BETT) { return; // needs dip pattern output. } if (entry_.sensorType == FPS_AIRFORCE || entry_.sensorType == FPS_PRASTEL || entry_.sensorType == FPS_CAME) { return; // nothing } if (entry_.sensorType == FPS_CAMEATOMO) { entry_.data ^= 0xFFFFFFFFFFFFFFFF; entry_.data <<= 4; uint8_t pack[8] = {}; pack[0] = (entry_.data >> 56); pack[1] = ((entry_.data >> 48) & 0xFF); pack[2] = ((entry_.data >> 40) & 0xFF); pack[3] = ((entry_.data >> 32) & 0xFF); pack[4] = ((entry_.data >> 24) & 0xFF); pack[5] = ((entry_.data >> 16) & 0xFF); pack[6] = ((entry_.data >> 8) & 0xFF); pack[7] = (entry_.data & 0xFF); atomo_decrypt(pack); // cnt_2 = pack[0]; cnt = (uint16_t)pack[1] << 8 | pack[2]; serial = (uint32_t)(pack[3]) << 24 | pack[4] << 16 | pack[5] << 8 | pack[6]; uint8_t btn_decode = (pack[7] >> 4); if (btn_decode == 0x0) { btn = 0x1; } else if (btn_decode == 0x2) { btn = 0x2; } else if (btn_decode == 0x4) { btn = 0x3; } else if (btn_decode == 0x6) { btn = 0x4; } return; } if (entry_.sensorType == FPS_CAMETWEE) { uint8_t cnt_parcel = (uint8_t)(entry_.data & 0xF); uint32_t data = (uint32_t)(entry_.data & 0x0FFFFFFFF); data = (data ^ came_twee_magic_numbers_xor[cnt_parcel]); serial = data; data /= 4; btn = (data >> 4) & 0x0F; data >>= 16; data = (uint16_t)FProtoGeneral::subghz_protocol_blocks_reverse_key(data, 16); cnt = data >> 6; return; } if (entry_.sensorType == FPS_CHAMBCODE) { return; // nothing } if (entry_.sensorType == FPS_CLEMSA) { serial = (entry_.data >> 2) & 0xFFFF; btn = (entry_.data & 0x03); return; } if (entry_.sensorType == FPS_DOITRAND) { cnt = (entry_.data >> 24) | ((entry_.data >> 15) & 0x1); btn = ((entry_.data >> 18) & 0x3); return; } if (entry_.sensorType == FPS_DOOYA) { serial = (entry_.data >> 16); if ((entry_.data >> 12) & 0x0F) { cnt = (entry_.data >> 8) & 0x0F; } else { cnt = 0xff; } btn = entry_.data & 0xFF; return; } if (entry_.sensorType == FPS_FAAC) { // stripped down a lot. uint32_t code_fix = entry_.data >> 32; uint32_t code_hop = entry_.data & 0xFFFFFFFF; // uint32_t decrypt = 0; // uint64_t man; uint8_t data_tmp = 0; uint8_t data_prg[8]; data_prg[0] = (code_hop & 0xFF); data_prg[1] = ((code_hop >> 8) & 0xFF); data_prg[2] = ((code_hop >> 16) & 0xFF); data_prg[3] = (code_hop >> 24); data_prg[4] = (code_fix & 0xFF); data_prg[5] = ((code_fix >> 8) & 0xFF); data_prg[6] = ((code_fix >> 16) & 0xFF); data_prg[7] = (code_fix >> 24); if (((data_prg[7] == 0x52) && (data_prg[6] == 0x0F) && (data_prg[0] == 0x00))) { // ProgMode ON for (uint8_t i = data_prg[1] & 0xF; i != 0; i--) { data_tmp = data_prg[2]; data_prg[2] = data_prg[2] >> 1 | (data_prg[3] & 1) << 7; data_prg[3] = data_prg[3] >> 1 | (data_prg[4] & 1) << 7; data_prg[4] = data_prg[4] >> 1 | (data_prg[5] & 1) << 7; data_prg[5] = data_prg[5] >> 1 | (data_tmp & 1) << 7; } data_prg[2] ^= data_prg[1]; data_prg[3] ^= data_prg[1]; data_prg[4] ^= data_prg[1]; data_prg[5] ^= data_prg[1]; seed = data_prg[5] << 24 | data_prg[4] << 16 | data_prg[3] << 8 | data_prg[2]; // uint32_t dec_prg_1 = data_prg[7] << 24 | data_prg[6] << 16 | data_prg[5] << 8 | data_prg[4]; // uint32_t dec_prg_2 = data_prg[3] << 24 | data_prg[2] << 16 | data_prg[1] << 8 | data_prg[0]; // entry_.data_2 = (uint64_t)dec_prg_1 << 32 | dec_prg_2; cnt = data_prg[1]; } else { if (code_fix != 0x0) { serial = code_fix >> 4; btn = code_fix & 0xF; } } return; } if (entry_.sensorType == FPS_GATETX) { uint32_t code_found_reverse = FProtoGeneral::subghz_protocol_blocks_reverse_key(entry_.data, entry_.bits); serial = (code_found_reverse & 0xFF) << 12 | ((code_found_reverse >> 8) & 0xFF) << 4 | ((code_found_reverse >> 20) & 0x0F); btn = ((code_found_reverse >> 16) & 0x0F); return; } if (entry_.sensorType == FPS_HOLTEK) { if ((entry_.data & 0xF000000000) == 0x5000000000) { serial = FProtoGeneral::subghz_protocol_blocks_reverse_key((entry_.data >> 16) & 0xFFFFF, 20); uint16_t btn_ = entry_.data & 0xFFFF; if ((btn_ & 0xf) != 0xA) { btn = 0x1 << 4 | (btn_ & 0xF); } else if (((btn_ >> 4) & 0xF) != 0xA) { btn = 0x2 << 4 | ((btn_ >> 4) & 0xF); } else if (((btn_ >> 8) & 0xF) != 0xA) { btn = 0x3 << 4 | ((btn_ >> 8) & 0xF); } else if (((btn_ >> 12) & 0xF) != 0xA) { btn = 0x4 << 4 | ((btn_ >> 12) & 0xF); } else { btn = 0; } } else { serial = 0; btn = 0; cnt = 0; } return; } if (entry_.sensorType == FPS_HOLTEKHT12X) { btn = entry_.data & 0x0F; cnt = (entry_.data >> 4) & 0xFF; return; } if (entry_.sensorType == FPS_HONEYWELL) { serial = (entry_.data >> 24) & 0xFFFFF; btn = (entry_.data >> 16) & 0xFF; // not exactly button, but can contain btn data too. cnt = (entry_.data >> 44) & 0xF; /* uint8_t contact = (entry_.databtn & 0x80) >> 7; uint8_t tamper = (entry_.databtn & 0x40) >> 6; uint8_t reed = (entry_.databtn & 0x20) >> 5; uint8_t alarm = (entry_.databtn & 0x10) >> 4; uint8_t battery_low = (entry_.databtn & 0x08) >> 3; uint8_t heartbeat = (entry_.databtn & 0x04) >> 2; */ return; } if (entry_.sensorType == FPS_HONEYWELLWDB) { serial = (entry_.data >> 28) & 0xFFFFF; // enabled, when we'll have extra fields and free fw space /* switch ((entry_.data >> 20) & 0x3) { case 0x02: device_type = "Doorbell"; break; case 0x01: device_type = "PIR-Motion"; break; default: device_type = "Unknown"; break; } switch ((entry_.data >> 16) & 0x3) { case 0x00: alert = "Normal"; break; case 0x01: case 0x02: alert = "High"; break; case 0x03: alert = "Full"; break; default: alert = "Unknown"; break; } secret_knock = (uint8_t)((entry_.data >> 4) & 0x1); relay = (uint8_t)((entry_.data >> 3) & 0x1); lowbat = (uint8_t)((entry_.data >> 1) & 0x1);*/ return; } if (entry_.sensorType == FPS_HORMANN) { btn = (entry_.data >> 8) & 0xF; return; } /* if (entry_.sensorType == FPS_HORMANNBISECURE) { //fm not implemented serial = 0; for (uint8_t i = 1; i < 5; i++) { serial = serial << 8 | ((uint8_t*)(&entry_.data))[i]; } } */ if (entry_.sensorType == FPS_IDO) { uint64_t code_found_reverse = FProtoGeneral::subghz_protocol_blocks_reverse_key(entry_.data, entry_.bits); uint32_t code_fix = code_found_reverse & 0xFFFFFF; serial = code_fix & 0xFFFFF; btn = (code_fix >> 20) & 0x0F; return; } if (entry_.sensorType == FPS_INTERTECHNOV3) { if (entry_.bits == 32) { serial = (entry_.data >> 6) & 0x3FFFFFF; if ((entry_.data >> 5) & 0x1) { cnt = 1 << 5; } else { cnt = (~entry_.data & 0xF); } btn = (entry_.data >> 4) & 0x1; } else if (entry_.bits == 36) { serial = (entry_.data >> 10) & 0x3FFFFFF; if ((entry_.data >> 9) & 0x1) { cnt = 1 << 5; } else { cnt = (~(entry_.data >> 4) & 0xF); } btn = (entry_.data) & 0xF; } else { serial = 0; cnt = 0; btn = 0; } return; } if (entry_.sensorType == FPS_KEELOQ) { // too many sub protocol versions, skipping. maybe in future when we'll have much more fw space return; } /* fm not implemented if (entry_.sensorType == FPS_KIA) { serial = (uint32_t)((entry_.data >> 12) & 0x0FFFFFFF); btn = (entry_.data >> 8) & 0x0F; cnt = (entry_.data >> 40) & 0xFFFF; return; } */ if (entry_.sensorType == FPS_KINGGATESSTYLO4K) { uint64_t fix = FProtoGeneral::subghz_protocol_blocks_reverse_key(entry_.data, 53); btn = (fix >> 17) & 0x0F; serial = ((fix >> 5) & 0xFFFF0000) | (fix & 0xFFFF); return; } if (entry_.sensorType == FPS_LEGRAND) { return; // nothing } if (entry_.sensorType == FPS_LINEAR || entry_.sensorType == FPS_LINEARDELTA3) { return; // nothing } if (entry_.sensorType == FPS_MAGELLAN) { uint64_t data_rev = FProtoGeneral::subghz_protocol_blocks_reverse_key(entry_.data >> 8, 24); serial = data_rev & 0xFFFF; btn = (data_rev >> 16) & 0xFF; return; } if (entry_.sensorType == FPS_MARANTEC) { btn = (entry_.data >> 16) & 0xF; serial = ((entry_.data >> 12) & 0xFFFFFF00) | ((entry_.data >> 8) & 0xFF); return; } if (entry_.sensorType == FPS_MASTERCODE) { serial = (entry_.data >> 4) & 0xFFFF; btn = (entry_.data >> 2 & 0x03); return; } if (entry_.sensorType == FPS_MEGACODE) { if ((entry_.data >> 23) == 1) { serial = (entry_.data >> 3) & 0xFFFF; btn = entry_.data & 0b111; cnt = (entry_.data >> 19) & 0b1111; } else { serial = 0; btn = 0; cnt = 0; } return; } if (entry_.sensorType == FPS_NERORADIO) { return; // nothing } if (entry_.sensorType == FPS_NERO_SKETCH) { return; // nothing } if (entry_.sensorType == FPS_NICEFLO || entry_.sensorType == FPS_NICEFLORS) { return; // nothing, and can't } if (entry_.sensorType == FPS_PHOENIXV2) { uint64_t data_rev = FProtoGeneral::subghz_protocol_blocks_reverse_key(entry_.data, entry_.bits + 4); serial = data_rev & 0xFFFFFFFF; cnt = (data_rev >> 40) & 0xFFFF; btn = (data_rev >> 32) & 0xF; return; } if (entry_.sensorType == FPS_POWERSMART) { btn = ((entry_.data >> 54) & 0x02) | ((entry_.data >> 40) & 0x1); serial = ((entry_.data >> 33) & 0x3FFF00) | ((entry_.data >> 32) & 0xFF); cnt = ((entry_.data >> 49) & 0x3F); return; } if (entry_.sensorType == FPS_PRINCETON) { serial = entry_.data >> 4; btn = entry_.data & 0xF; return; } if (entry_.sensorType == FPS_SECPLUSV1) { uint32_t fixed = (entry_.data >> 32) & 0xFFFFFFFF; cnt = entry_.data & 0xFFFFFFFF; btn = fixed % 3; // uint8_t id0 = (fixed / 3) % 3; uint8_t id1 = (fixed / 9) % 3; // uint16_t pin = 0; if (id1 == 0) { // (fixed // 3**3) % (3**7) 3^3=27 3^73=72187 serial = (fixed / 27) % 2187; // pin = (fixed // 3**10) % (3**9) 3^10=59049 3^9=19683 // pin = (fixed / 59049) % 19683; /* if (pin <= 9999) { furi_string_cat_printf(output, " pin:%d", pin); } else if (pin <= 11029) { furi_string_cat_printf(output, " pin:enter"); } */ } else { // id = fixed / 27; serial = fixed / 27; } } if (entry_.sensorType == FPS_SECPLUSV2) { return; // fw space saver } if (entry_.sensorType == FPS_SMC5326) { return; // dip pattern output needed. skipping } if (entry_.sensorType == FPS_STARLINE) { uint64_t key = FProtoGeneral::subghz_protocol_blocks_reverse_key(entry_.data, entry_.bits); uint32_t key_fix = key >> 32; serial = key_fix & 0x00FFFFFF; btn = key_fix >> 24; return; } if (entry_.sensorType == FPS_X10) { serial = (entry_.data & 0xF0000000) >> (24 + 4); btn = (((entry_.data & 0x07000000) >> 24) | ((entry_.data & 0xF800) >> 8)); return; } if (entry_.sensorType == FPS_SOMIFY_KEYTIS) { uint64_t dataa = entry_.data ^ (entry_.data >> 8); btn = (dataa >> 48) & 0xF; cnt = (dataa >> 24) & 0xFFFF; serial = dataa & 0xFFFFFF; return; } if (entry_.sensorType == FPS_SOMIFY_TELIS) { uint64_t dataa = entry_.data ^ (entry_.data >> 8); btn = (dataa >> 44) & 0xF; // ctrl cnt = (dataa >> 24) & 0xFFFF; // rolling code serial = dataa & 0xFFFFFF; // address} return; } if (entry_.sensorType == FPS_GANGQI) { btn = 0; // parser needs some time i think in flipper side. cnt = (uint8_t)(entry_.data >> 32); serial = (entry_.data & 0xFFFFFFFF); return; } if (entry_.sensorType == FPS_MARANTEC24) { serial = (entry_.data >> 4); btn = entry_.data & 0xf; return; } } } // namespace ui