/* * Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc. * Copyright (C) 2016 Furrtek * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "ui_closecall.hpp" #include "msgpack.hpp" #include "time.hpp" #include "event_m0.hpp" #include "portapack.hpp" #include "baseband_api.hpp" #include "string_format.hpp" #include #include #include using namespace portapack; namespace ui { void CloseCallView::focus() { button_exit.focus(); } CloseCallView::~CloseCallView() { time::signal_tick_second -= signal_token_tick_second; receiver_model.disable(); baseband::shutdown(); } void CloseCallView::do_detection() { uint8_t xmax = 0; int64_t imax = 0; uint16_t iraw = 0, c; uint8_t power; rf::Frequency freq_low, freq_high; mean /= (CC_BIN_NB * slices_max); // Find max value over threshold from all slices for (c = 0; c < slices_max; c++) { power = slicemax_db[c]; if (power >= min_threshold) { if ((power - min_threshold >= mean) && (power > xmax)) { xmax = power; imax = slicemax_idx[c] + (c * CC_BIN_NB); iraw = slicemax_idx[c]; } } } // e-Message POCSAG FR: // 466.025 MHz - 466.05 MHz - 466.075 MHz - 466.175 MHz - 466.20625 MHz - 466.23125 MHz // 25 25 100 31 25 // Catches: // 466.000 // 466.021 21 // 466.042 21 // 466.148 106 // 466.169 21 // 466.190 21 // Lock / release if ((imax >= last_channel - 2) && (imax <= last_channel + 2) && imax) { // Staying around the same frequency (+/- 25.4kHz) if (detect_counter >= (5 / slices_max)) { if ((imax != locked_imax) || (!locked)) { std::string finalstr; // 236 steps = 3.072MHz // Resolution = 13.1kHz if (locked) { resolved_frequency = (resolved_frequency + slice_start + (CC_BIN_WIDTH * (imax - 118))) / 2; // Mean } else { resolved_frequency = slice_start + (CC_BIN_WIDTH * (imax - 118)); // Init if ((resolved_frequency >= f_min) && (resolved_frequency <= f_max)) { // Correct according to DC spike mask width (8 for now) if (iraw > 118) resolved_frequency -= (4 * CC_BIN_WIDTH); else resolved_frequency += (4 * CC_BIN_WIDTH); text_infos.set("Locked !"); big_display.set_style(&style_locked); big_display.set(resolved_frequency); // Approximation/error display freq_low = (resolved_frequency - 6000) / 1000; freq_high = (resolved_frequency + 6000) / 1000; finalstr = "~12kHz: " + to_string_dec_uint(freq_low / 1000) + "." + to_string_dec_uint(freq_low % 1000); finalstr += "/" + to_string_dec_uint(freq_high / 1000) + "." + to_string_dec_uint(freq_high % 1000); text_precision.set(finalstr); locked = true; locked_imax = imax; } } //text_debug.set(to_string_dec_int(CC_BIN_WIDTH * (imax - 118))); } release_counter = 0; } else { detect_counter++; } } else { detect_counter = 0; if (locked) { if (release_counter == 6) { locked = false; text_infos.set("Lost"); big_display.set_style(&style_grey); big_display.set(resolved_frequency); } else { release_counter++; } } } last_channel = imax; scan_counter++; portapack::display.fill_rectangle({last_pos, 90, 1, 13}, Color::black()); last_pos = (ui::Coord)(iraw); portapack::display.fill_rectangle({last_pos, 90, 1, 13}, Color::red()); } void CloseCallView::on_channel_spectrum(const ChannelSpectrum& spectrum) { uint8_t xmax = 0; uint16_t imax = 0; uint8_t threshold; size_t i, m; baseband::spectrum_streaming_stop(); // Draw spectrum line (for debug), 2 black pixels left and right std::array pixel_row; for(i = 0; i < 118; i++) { const auto pixel_color = spectrum_rgb3_lut[spectrum.db[256 - 120 + i]]; // 136~253 in 2~119 pixel_row[i + 2] = pixel_color; } for(i = 122; i < 240; i++) { const auto pixel_color = spectrum_rgb3_lut[spectrum.db[i - 120]]; // 2~119 in 120~237 pixel_row[i - 2] = pixel_color; } display.draw_pixels( { { 0, 96 + slices_counter * 4 }, { pixel_row.size(), 1 } }, pixel_row ); // Find max for this slice: // Check if left of slice needs to be trimmed (masked) //if (slices_counter == 0) // i = slice_trim; //else i = 0; for ( ; i < 118; i++) { threshold = spectrum.db[256 - 120 + i]; // 128+8 = 136~254 if (threshold > xmax) { xmax = threshold; imax = i; } } // Check if right of slice needs to be trimmed (masked) if (slices_counter == (slices_max - 1)) m = 240 - slice_trim; else m = 240; for (i = 122 ; i < m; i++) { threshold = spectrum.db[i - 120]; // 240-120 = 120 -> +8 = 128 if (threshold > xmax) { // (0~2) 2~120 (120~136) 136~254 (254~256) xmax = threshold; imax = i - 4; } } slicemax_db[slices_counter] = xmax; slicemax_idx[slices_counter] = imax; // Add to mean for (i = 136; i < 254; i++) mean += spectrum.db[i]; for (i = 2; i < 120; i++) mean += spectrum.db[i]; // Slice update if (slicing) { if (slices_counter >= (slices_max - 1)) { do_detection(); mean = 0; slices_counter = 0; } else { slices_counter++; } slice_frequency = slice_start + (slices_counter * CC_SLICE_WIDTH); receiver_model.set_tuning_frequency(slice_frequency); } else { do_detection(); } baseband::spectrum_streaming_start(); } void CloseCallView::on_show() { baseband::spectrum_streaming_start(); } void CloseCallView::on_hide() { baseband::spectrum_streaming_stop(); } void CloseCallView::on_range_changed() { rf::Frequency slices_span; rf::Frequency resolved_frequency; int64_t offset; f_max = field_frequency_max.value(); f_min = field_frequency_min.value(); scan_span = abs(f_max - f_min); if (scan_span > CC_SLICE_WIDTH) { // ex: 100~115 (15): 102.5(97.5~107.5) -> 112.5(107.5~117.5) = 2.5 lost left and right slices_max = (scan_span + CC_SLICE_WIDTH - 1) / CC_SLICE_WIDTH; slices_span = slices_max * CC_SLICE_WIDTH; offset = ((scan_span - slices_span) / 2) + (CC_SLICE_WIDTH / 2); slice_start = std::min(f_min, f_max) + offset; slice_trim = 0; slicing = true; // Todo: trims } else { slice_frequency = (f_max + f_min) / 2; slice_start = slice_frequency; receiver_model.set_tuning_frequency(slice_frequency); //resolved_frequency = (CC_SLICE_WIDTH - scan_span) / 2; // Trim frequency span (for both sides) //resolved_frequency /= CC_BIN_WIDTH; // Convert to bin span //slice_trim = resolved_frequency; //portapack::display.fill_rectangle({0, 97, 240, 4}, Color::black()); //portapack::display.fill_rectangle({0, 97, slice_trim, 4}, Color::orange()); //portapack::display.fill_rectangle({240 - slice_trim, 97, slice_trim, 4}, Color::orange()); slices_max = 1; slices_counter = 0; slicing = false; } /* f_min = field_frequency_min.value(); scan_span = 3000000; slice_frequency = (f_min + 1500000); slice_start = slice_frequency; receiver_model.set_tuning_frequency(slice_frequency); slice_trim = 0; slices_max = 1; slices_counter = 0; slicing = false; field_frequency_max.set_value(f_min + 3000000); */ text_slices.set(to_string_dec_int(slices_max)); slices_counter = 0; } void CloseCallView::on_lna_changed(int32_t v_db) { receiver_model.set_lna(v_db); } void CloseCallView::on_vga_changed(int32_t v_db) { receiver_model.set_vga(v_db); } void CloseCallView::on_tick_second() { // Update scan rate indication text_rate.set(to_string_dec_uint(scan_counter, 3)); scan_counter = 0; } CloseCallView::CloseCallView( NavigationView& nav ) { baseband::run_image(portapack::spi_flash::image_tag_closecall); add_children({ { &text_labels_a, &text_labels_b, &text_labels_c, &field_frequency_min, &field_frequency_max, &field_lna, &field_vga, &field_threshold, &text_slices, &text_rate, &text_mhz, &text_infos, &text_precision, &text_debug, &big_display, &button_exit } }); text_labels_a.set_style(&style_grey); text_labels_b.set_style(&style_grey); text_labels_c.set_style(&style_grey); text_slices.set_style(&style_grey); text_rate.set_style(&style_grey); text_mhz.set_style(&style_grey); big_display.set_style(&style_grey); // DEBUG receiver_model.set_tuning_frequency(464400000); field_threshold.set_value(80); field_threshold.on_change = [this](int32_t v) { min_threshold = v; }; field_frequency_min.set_value(receiver_model.tuning_frequency()); field_frequency_min.set_step(100000); field_frequency_min.on_change = [this](rf::Frequency f) { (void)f; this->on_range_changed(); }; field_frequency_min.on_edit = [this, &nav]() { auto new_view = nav.push(receiver_model.tuning_frequency()); new_view->on_changed = [this](rf::Frequency f) { //this->on_range_changed(); this->field_frequency_min.set_value(f); }; }; field_frequency_max.set_value(receiver_model.tuning_frequency() + 2000000); field_frequency_max.set_step(100000); field_frequency_max.on_change = [this](rf::Frequency f) { (void)f; this->on_range_changed(); }; field_frequency_max.on_edit = [this, &nav]() { auto new_view = nav.push(receiver_model.tuning_frequency()); new_view->on_changed = [this](rf::Frequency f) { //this->on_range_changed(); this->field_frequency_max.set_value(f); }; }; field_lna.set_value(receiver_model.lna()); field_lna.on_change = [this](int32_t v) { this->on_lna_changed(v); }; field_vga.set_value(receiver_model.vga()); field_vga.on_change = [this](int32_t v_db) { this->on_vga_changed(v_db); }; on_range_changed(); button_exit.on_select = [&nav](Button&){ nav.pop(); }; signal_token_tick_second = time::signal_tick_second += [this]() { this->on_tick_second(); }; receiver_model.set_modulation(ReceiverModel::Mode::SpectrumAnalysis); receiver_model.set_sampling_rate(3072000); receiver_model.set_baseband_bandwidth(2500000); receiver_model.enable(); } } /* namespace ui */