/* * Copyright 2018-2022 Great Scott Gadgets * Copyright 2018 Jared Boone * * This file is part of HackRF. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "portapack.h" #include "hackrf_core.h" #include "gpio_lpc.h" #include static void portapack_sleep_milliseconds(const uint32_t milliseconds) { /* NOTE: Naively assumes 204 MHz instruction cycle clock and five instructions per count */ delay(milliseconds * 40800); } // clang-format off static struct gpio_t gpio_io_stbx = GPIO(5, 0); /* P2_0 */ static struct gpio_t gpio_addr = GPIO(5, 1); /* P2_1 */ __attribute__((unused)) static struct gpio_t gpio_lcd_te = GPIO(5, 3); /* P2_3 */ __attribute__((unused)) static struct gpio_t gpio_unused = GPIO(5, 7); /* P2_8 */ static struct gpio_t gpio_lcd_rdx = GPIO(5, 4); /* P2_4 */ static struct gpio_t gpio_lcd_wrx = GPIO(1, 10); /* P2_9 */ static struct gpio_t gpio_dir = GPIO(1, 13); /* P2_13 */ // clang-format on typedef struct portapack_if_t { gpio_t gpio_dir; gpio_t gpio_lcd_rdx; gpio_t gpio_lcd_wrx; gpio_t gpio_io_stbx; gpio_t gpio_addr; gpio_port_t* const gpio_port_data; uint8_t io_reg; } portapack_if_t; static portapack_if_t portapack_if = { .gpio_dir = &gpio_dir, .gpio_lcd_rdx = &gpio_lcd_rdx, .gpio_lcd_wrx = &gpio_lcd_wrx, .gpio_io_stbx = &gpio_io_stbx, .gpio_addr = &gpio_addr, .gpio_port_data = GPIO_LPC_PORT(3), .io_reg = 0x03, }; /* NOTE: Code below assumes the shift value is "8". */ #define GPIO_DATA_SHIFT (8) static const uint32_t gpio_data_mask = 0xFFU << GPIO_DATA_SHIFT; static void portapack_data_mask_set() { portapack_if.gpio_port_data->mask = ~gpio_data_mask; } static void portapack_data_write_low(const uint32_t value) { portapack_if.gpio_port_data->mpin = (value << GPIO_DATA_SHIFT); } static void portapack_data_write_high(const uint32_t value) { /* NOTE: Assumes no other bits in the port are masked. */ /* NOTE: Assumes that bits 15 through 8 are masked. */ portapack_if.gpio_port_data->mpin = value; } static void portapack_dir_read() { portapack_if.gpio_port_data->dir &= ~gpio_data_mask; gpio_set(portapack_if.gpio_dir); } static void portapack_dir_write() { gpio_clear(portapack_if.gpio_dir); portapack_if.gpio_port_data->dir |= gpio_data_mask; /* TODO: Manipulating DIR[3] makes me queasy. The RFFC5072 DATA pin * is also on port 3, and switches direction periodically... * Time to resort to bit-banding to enforce atomicity? But then, how * to change direction on eight bits efficiently? Or do I care, since * the PortaPack data bus shouldn't change direction too frequently? */ } __attribute__((unused)) static void portapack_lcd_rd_assert() { gpio_clear(portapack_if.gpio_lcd_rdx); } static void portapack_lcd_rd_deassert() { gpio_set(portapack_if.gpio_lcd_rdx); } static void portapack_lcd_wr_assert() { gpio_clear(portapack_if.gpio_lcd_wrx); } static void portapack_lcd_wr_deassert() { gpio_set(portapack_if.gpio_lcd_wrx); } static void portapack_io_stb_assert() { gpio_clear(portapack_if.gpio_io_stbx); } static void portapack_io_stb_deassert() { gpio_set(portapack_if.gpio_io_stbx); } static void portapack_addr(const bool value) { gpio_write(portapack_if.gpio_addr, value); } static void portapack_lcd_command(const uint32_t value) { portapack_data_write_high(0); /* Drive high byte (with zero -- don't care) */ portapack_dir_write(); /* Turn around data bus, MCU->CPLD */ portapack_addr(0); /* Indicate command */ __asm__("nop"); __asm__("nop"); __asm__("nop"); portapack_lcd_wr_assert(); /* Latch high byte */ portapack_data_write_low(value); /* Drive low byte (pass-through) */ __asm__("nop"); __asm__("nop"); __asm__("nop"); portapack_lcd_wr_deassert(); /* Complete write operation */ portapack_addr(1); /* Set up for data phase (most likely after a command) */ } static void portapack_lcd_write_data(const uint32_t value) { // NOTE: Assumes and DIR=0 and ADDR=1 from command phase. portapack_data_write_high(value); /* Drive high byte */ __asm__("nop"); portapack_lcd_wr_assert(); /* Latch high byte */ portapack_data_write_low(value); /* Drive low byte (pass-through) */ __asm__("nop"); __asm__("nop"); __asm__("nop"); portapack_lcd_wr_deassert(); /* Complete write operation */ } static void portapack_io_write(const bool address, const uint_fast16_t value) { portapack_data_write_low(value); portapack_dir_write(); portapack_addr(address); __asm__("nop"); __asm__("nop"); __asm__("nop"); portapack_io_stb_assert(); __asm__("nop"); __asm__("nop"); __asm__("nop"); portapack_io_stb_deassert(); } static void portapack_if_init() { portapack_data_mask_set(); portapack_data_write_high(0); portapack_dir_read(); portapack_lcd_rd_deassert(); portapack_lcd_wr_deassert(); portapack_io_stb_deassert(); portapack_addr(0); gpio_output(portapack_if.gpio_dir); gpio_output(portapack_if.gpio_lcd_rdx); gpio_output(portapack_if.gpio_lcd_wrx); gpio_output(portapack_if.gpio_io_stbx); gpio_output(portapack_if.gpio_addr); /* gpio_input(portapack_if.gpio_rot_a); */ /* gpio_input(portapack_if.gpio_rot_b); */ scu_pinmux(SCU_PINMUX_PP_D0, SCU_CONF_FUNCTION0 | SCU_GPIO_PDN); scu_pinmux(SCU_PINMUX_PP_D1, SCU_CONF_FUNCTION0 | SCU_GPIO_PDN); scu_pinmux(SCU_PINMUX_PP_D2, SCU_CONF_FUNCTION0 | SCU_GPIO_PDN); scu_pinmux(SCU_PINMUX_PP_D3, SCU_CONF_FUNCTION0 | SCU_GPIO_PDN); scu_pinmux(SCU_PINMUX_PP_D4, SCU_CONF_FUNCTION0 | SCU_GPIO_PDN); scu_pinmux(SCU_PINMUX_PP_D5, SCU_CONF_FUNCTION0 | SCU_GPIO_PDN); scu_pinmux(SCU_PINMUX_PP_D6, SCU_CONF_FUNCTION0 | SCU_GPIO_PDN); scu_pinmux(SCU_PINMUX_PP_D7, SCU_CONF_FUNCTION0 | SCU_GPIO_PDN); scu_pinmux(SCU_PINMUX_PP_DIR, SCU_CONF_FUNCTION0 | SCU_GPIO_NOPULL); scu_pinmux(SCU_PINMUX_PP_LCD_RDX, SCU_CONF_FUNCTION4 | SCU_GPIO_NOPULL); scu_pinmux(SCU_PINMUX_PP_LCD_WRX, SCU_CONF_FUNCTION0 | SCU_GPIO_NOPULL); scu_pinmux(SCU_PINMUX_PP_IO_STBX, SCU_CONF_FUNCTION4 | SCU_GPIO_NOPULL); scu_pinmux(SCU_PINMUX_PP_ADDR, SCU_CONF_FUNCTION4 | SCU_GPIO_NOPULL); /* scu_pinmux(SCU_PINMUX_PP_LCD_TE, SCU_CONF_FUNCTION4 | SCU_GPIO_NOPULL); */ /* scu_pinmux(SCU_PINMUX_PP_UNUSED, SCU_CONF_FUNCTION4 | SCU_GPIO_NOPULL); */ } static void portapack_lcd_reset_state(const bool active) { portapack_if.io_reg = (portapack_if.io_reg & 0xfe) | (active ? (1 << 0) : 0); portapack_io_write(1, portapack_if.io_reg); } static void portapack_lcd_data_write_command_and_data( const uint_fast8_t command, const uint8_t* data, const size_t data_count) { portapack_lcd_command(command); for (size_t i = 0; i < data_count; i++) { portapack_lcd_write_data(data[i]); } } static void portapack_lcd_sleep_out() { const uint8_t cmd_11[] = {}; portapack_lcd_data_write_command_and_data(0x11, cmd_11, ARRAY_SIZEOF(cmd_11)); // "It will be necessary to wait 120msec after sending Sleep Out // command (when in Sleep In Mode) before Sleep In command can be // sent." portapack_sleep_milliseconds(120); } static void portapack_lcd_display_on() { const uint8_t cmd_29[] = {}; portapack_lcd_data_write_command_and_data(0x29, cmd_29, ARRAY_SIZEOF(cmd_29)); } static void portapack_lcd_ramwr_start() { const uint8_t cmd_2c[] = {}; portapack_lcd_data_write_command_and_data(0x2c, cmd_2c, ARRAY_SIZEOF(cmd_2c)); } static void portapack_lcd_set( const uint_fast8_t command, const uint_fast16_t start, const uint_fast16_t end) { const uint8_t data[] = {(start >> 8), (start & 0xff), (end >> 8), (end & 0xff)}; portapack_lcd_data_write_command_and_data(command, data, ARRAY_SIZEOF(data)); } static void portapack_lcd_caset( const uint_fast16_t start_column, const uint_fast16_t end_column) { portapack_lcd_set(0x2a, start_column, end_column); } static void portapack_lcd_paset( const uint_fast16_t start_page, const uint_fast16_t end_page) { portapack_lcd_set(0x2b, start_page, end_page); } static void portapack_lcd_start_ram_write(const ui_rect_t rect) { portapack_lcd_caset(rect.point.x, rect.point.x + rect.size.width - 1); portapack_lcd_paset(rect.point.y, rect.point.y + rect.size.height - 1); portapack_lcd_ramwr_start(); } static void portapack_lcd_write_pixel(const ui_color_t pixel) { portapack_lcd_write_data(pixel.v); } static void portapack_lcd_write_pixels_color(const ui_color_t c, size_t n) { while (n--) { portapack_lcd_write_data(c.v); } } static void portapack_lcd_wake() { portapack_lcd_sleep_out(); portapack_lcd_display_on(); } static void portapack_lcd_reset() { portapack_lcd_reset_state(false); portapack_sleep_milliseconds(1); portapack_lcd_reset_state(true); portapack_sleep_milliseconds(10); portapack_lcd_reset_state(false); portapack_sleep_milliseconds(120); } static void portapack_lcd_init() { // LCDs are configured for IM[2:0] = 001 // 8080-I system, 16-bit parallel bus // // 0x3a: DBI[2:0] = 101 // MDT[1:0] = XX (if not in 18-bit mode, right?) // Power control B // 0 // PCEQ=1, DRV_ena=0, Power control=3 const uint8_t cmd_cf[] = {0x00, 0xD9, 0x30}; portapack_lcd_data_write_command_and_data(0xCF, cmd_cf, ARRAY_SIZEOF(cmd_cf)); // Power on sequence control const uint8_t cmd_ed[] = {0x64, 0x03, 0x12, 0x81}; portapack_lcd_data_write_command_and_data(0xED, cmd_ed, ARRAY_SIZEOF(cmd_ed)); // Driver timing control A const uint8_t cmd_e8[] = {0x85, 0x10, 0x78}; portapack_lcd_data_write_command_and_data(0xE8, cmd_e8, ARRAY_SIZEOF(cmd_e8)); // Power control A const uint8_t cmd_cb[] = {0x39, 0x2C, 0x00, 0x34, 0x02}; portapack_lcd_data_write_command_and_data(0xCB, cmd_cb, ARRAY_SIZEOF(cmd_cb)); // Pump ratio control const uint8_t cmd_f7[] = {0x20}; portapack_lcd_data_write_command_and_data(0xF7, cmd_f7, ARRAY_SIZEOF(cmd_f7)); // Driver timing control B const uint8_t cmd_ea[] = {0x00, 0x00}; portapack_lcd_data_write_command_and_data(0xEA, cmd_ea, ARRAY_SIZEOF(cmd_ea)); const uint8_t cmd_b1[] = {0x00, 0x1B}; portapack_lcd_data_write_command_and_data(0xB1, cmd_b1, ARRAY_SIZEOF(cmd_b1)); // Blanking Porch Control // VFP = 0b0000010 = 2 (number of HSYNC of vertical front porch) // VBP = 0b0000010 = 2 (number of HSYNC of vertical back porch) // HFP = 0b0001010 = 10 (number of DOTCLOCK of horizontal front porch) // HBP = 0b0010100 = 20 (number of DOTCLOCK of horizontal back porch) const uint8_t cmd_b5[] = {0x02, 0x02, 0x0a, 0x14}; portapack_lcd_data_write_command_and_data(0xB5, cmd_b5, ARRAY_SIZEOF(cmd_b5)); // Display Function Control // PT[1:0] = 0b10 // PTG[1:0] = 0b10 // ISC[3:0] = 0b0010 (scan cycle interval of gate driver: 5 frames) // SM = 0 (gate driver pin arrangement in combination with GS) // SS = 1 (source output scan direction S720 -> S1) // GS = 0 (gate output scan direction G1 -> G320) // REV = 1 (normally white) // NL = 0b100111 (default) // PCDIV = 0b000000 (default?) const uint8_t cmd_b6[] = {0x0A, 0xA2, 0x27, 0x00}; portapack_lcd_data_write_command_and_data(0xB6, cmd_b6, ARRAY_SIZEOF(cmd_b6)); // Power Control 1 //VRH[5:0] const uint8_t cmd_c0[] = {0x1B}; portapack_lcd_data_write_command_and_data(0xC0, cmd_c0, ARRAY_SIZEOF(cmd_c0)); // Power Control 2 //SAP[2:0];BT[3:0] const uint8_t cmd_c1[] = {0x12}; portapack_lcd_data_write_command_and_data(0xC1, cmd_c1, ARRAY_SIZEOF(cmd_c1)); // VCOM Control 1 const uint8_t cmd_c5[] = {0x32, 0x3C}; portapack_lcd_data_write_command_and_data(0xC5, cmd_c5, ARRAY_SIZEOF(cmd_c5)); // VCOM Control 2 const uint8_t cmd_c7[] = {0x9B}; portapack_lcd_data_write_command_and_data(0xC7, cmd_c7, ARRAY_SIZEOF(cmd_c7)); // Memory Access Control // Invert X and Y memory access order, so upper-left of // screen is (0,0) when writing to display. const uint8_t cmd_36[] = { (1 << 7) | // MY=1 (1 << 6) | // MX=1 (0 << 5) | // MV=0 (1 << 4) | // ML=1: reverse vertical refresh to simplify scrolling logic (1 << 3) // BGR=1: For Kingtech LCD, BGR filter. }; portapack_lcd_data_write_command_and_data(0x36, cmd_36, ARRAY_SIZEOF(cmd_36)); // COLMOD: Pixel Format Set // DPI=101 (16 bits/pixel), DBI=101 (16 bits/pixel) const uint8_t cmd_3a[] = {0x55}; portapack_lcd_data_write_command_and_data(0x3A, cmd_3a, ARRAY_SIZEOF(cmd_3a)); //portapack_lcd_data_write_command_and_data(0xF6, { 0x01, 0x30 }); // WEMODE=1 (reset column and page number on overflow) // MDT[1:0] // EPF[1:0]=00 (use channel MSB for LSB) // RIM=0 (If COLMOD[6:4]=101 (65k color), 16-bit RGB interface (1 transfer/pixel)) // RM=0 (system interface/VSYNC interface) // DM[1:0]=00 (internal clock operation) // ENDIAN=0 (doesn't matter with 16-bit interface) const uint8_t cmd_f6[] = {0x01, 0x30, 0x00}; portapack_lcd_data_write_command_and_data(0xF6, cmd_f6, ARRAY_SIZEOF(cmd_f6)); // 3Gamma Function Disable const uint8_t cmd_f2[] = {0x00}; portapack_lcd_data_write_command_and_data(0xF2, cmd_f2, ARRAY_SIZEOF(cmd_f2)); // Gamma curve selected const uint8_t cmd_26[] = {0x01}; portapack_lcd_data_write_command_and_data(0x26, cmd_26, ARRAY_SIZEOF(cmd_26)); // Set Gamma const uint8_t cmd_e0[] = { 0x0F, 0x1D, 0x19, 0x0E, 0x10, 0x07, 0x4C, 0x63, 0x3F, 0x03, 0x0D, 0x00, 0x26, 0x24, 0x04}; portapack_lcd_data_write_command_and_data(0xE0, cmd_e0, ARRAY_SIZEOF(cmd_e0)); // Set Gamma const uint8_t cmd_e1[] = { 0x00, 0x1C, 0x1F, 0x02, 0x0F, 0x03, 0x35, 0x25, 0x47, 0x04, 0x0C, 0x0B, 0x29, 0x2F, 0x05}; portapack_lcd_data_write_command_and_data(0xE1, cmd_e1, ARRAY_SIZEOF(cmd_e1)); portapack_lcd_wake(); // Turn on Tearing Effect Line (TE) output signal. const uint8_t cmd_35[] = {0b00000000}; portapack_lcd_data_write_command_and_data(0x35, cmd_35, ARRAY_SIZEOF(cmd_35)); } void portapack_backlight(const bool on) { portapack_if.io_reg = (portapack_if.io_reg & 0x7f) | (on ? (1 << 7) : 0); portapack_io_write(1, portapack_if.io_reg); } void portapack_reference_oscillator(const bool on) { const uint8_t mask = 1 << 6; portapack_if.io_reg = (portapack_if.io_reg & ~mask) | (on ? mask : 0); portapack_io_write(1, portapack_if.io_reg); } void portapack_fill_rectangle(const ui_rect_t rect, const ui_color_t color) { portapack_lcd_start_ram_write(rect); portapack_lcd_write_pixels_color(color, rect.size.width * rect.size.height); } void portapack_clear_display(const ui_color_t color) { const ui_rect_t rect_screen = {{0, 0}, {240, 320}}; portapack_fill_rectangle(rect_screen, color); } void portapack_draw_bitmap( const ui_point_t point, const ui_bitmap_t bitmap, const ui_color_t foreground, const ui_color_t background) { const ui_rect_t rect = {.point = point, .size = bitmap.size}; portapack_lcd_start_ram_write(rect); const size_t count = bitmap.size.width * bitmap.size.height; for (size_t i = 0; i < count; i++) { const uint8_t pixel = bitmap.data[i >> 3] & (1U << (i & 0x7)); portapack_lcd_write_pixel(pixel ? foreground : background); } } ui_bitmap_t portapack_font_glyph(const ui_font_t* const font, const char c) { if (c >= font->c_start) { const uint_fast8_t index = c - font->c_start; if (index < font->c_count) { const ui_bitmap_t bitmap = { .size = font->glyph_size, .data = &font->data[index * font->data_stride]}; return bitmap; } } const ui_bitmap_t bitmap = { .size = font->glyph_size, .data = font->data, }; return bitmap; } static bool jtag_pp_tck(const bool tms_value) { gpio_write(jtag_cpld.gpio->gpio_pp_tms, tms_value); // 8 ns TMS/TDI to TCK setup __asm__("nop"); __asm__("nop"); __asm__("nop"); gpio_set(jtag_cpld.gpio->gpio_tck); // 15 ns TCK to TMS/TDI hold time // 20 ns TCK high time __asm__("nop"); __asm__("nop"); __asm__("nop"); __asm__("nop"); __asm__("nop"); gpio_clear(jtag_cpld.gpio->gpio_tck); // 20 ns TCK low time // 25 ns TCK falling edge to TDO valid __asm__("nop"); __asm__("nop"); __asm__("nop"); __asm__("nop"); __asm__("nop"); __asm__("nop"); __asm__("nop"); return gpio_read(jtag_cpld.gpio->gpio_pp_tdo); } static uint32_t jtag_pp_shift(const uint32_t tms_bits, const size_t count) { uint32_t result = 0; size_t bit_in_index = count - 1; size_t bit_out_index = 0; while (bit_out_index < count) { const uint32_t tdo = jtag_pp_tck((tms_bits >> bit_in_index) & 1) & 1; result |= (tdo << bit_out_index); bit_in_index--; bit_out_index++; } return result; } static uint32_t jtag_pp_idcode(void) { cpld_jtag_take(&jtag_cpld); /* TODO: Check if PortaPack TMS is floating or driven by an external device. */ gpio_output(jtag_cpld.gpio->gpio_pp_tms); /* Test-Logic/Reset -> Run-Test/Idle -> Select-DR/Scan -> Capture-DR */ jtag_pp_shift(0b11111010, 8); /* Shift-DR */ const uint32_t idcode = jtag_pp_shift(0, 32); /* Exit1-DR -> Update-DR -> Run-Test/Idle -> ... -> Test-Logic/Reset */ jtag_pp_shift(0b11011111, 8); cpld_jtag_release(&jtag_cpld); return idcode; } static bool portapack_detect(void) { const uint32_t idcode = jtag_pp_idcode(); return idcode == 0x00025610 || idcode == 0x020A50DD; } static const portapack_t portapack_instance = {}; static const portapack_t* portapack_pointer = NULL; const portapack_t* portapack(void) { return portapack_pointer; } void portapack_init(void) { if (portapack_detect()) { portapack_if_init(); portapack_lcd_reset(); portapack_lcd_init(); portapack_pointer = &portapack_instance; } else { portapack_pointer = NULL; } }