/* * Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc. * Copyright (C) 2020 euquiq * Copyright (C) 2023 gullradriel, Nilorea Studio Inc. * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "ui_looking_glass_app.hpp" #include "convert.hpp" #include "file_reader.hpp" #include "string_format.hpp" using namespace portapack; namespace ui { void GlassView::focus() { range_presets.focus(); } GlassView::~GlassView() { receiver_model.set_sampling_rate(3072000); // Just a hack to avoid hanging other apps receiver_model.disable(); baseband::shutdown(); } void GlassView::get_max_power(const ChannelSpectrum& spectrum, uint8_t bin, uint8_t& max_power) { if (mode == LOOKING_GLASS_SINGLEPASS) { // <20MHz spectrum mode if (bin < 120) { if (spectrum.db[SPEC_NB_BINS - 120 + bin] > max_power) max_power = spectrum.db[SPEC_NB_BINS - 120 + bin]; } else { if (spectrum.db[bin - 120] > max_power) max_power = spectrum.db[bin - 120]; } } else { // FAST or SLOW mode if (bin < 120) { if (spectrum.db[134 + bin] > max_power) max_power = spectrum.db[134 + bin]; } else { if (spectrum.db[bin - 118] > max_power) max_power = spectrum.db[bin - 118]; } } } rf::Frequency GlassView::get_freq_from_bin_pos(uint8_t pos) { rf::Frequency freq_at_pos = 0; if (mode == LOOKING_GLASS_SINGLEPASS) { // starting from the middle, minus 8 ignored bin on each side. Since pos is [-120,120] after the (pos - 120), it's divided by SCREEN_W(240)/2 => 120 freq_at_pos = f_center_ini + ((pos - 120) * ((looking_glass_range - ((16 * looking_glass_range) / SPEC_NB_BINS)) / 2)) / (SCREEN_W / 2); } else freq_at_pos = f_min + (2 * offset * each_bin_size) + (pos * looking_glass_range) / SCREEN_W; return freq_at_pos; } void GlassView::on_marker_change() { marker = get_freq_from_bin_pos(marker_pixel_index); field_marker.set_text(to_string_short_freq(marker)); plot_marker(marker_pixel_index); // Refresh marker on screen } void GlassView::retune() { // Start a new sweep. // Tune rx for this new slice directly because the model // saves to persistent memory which is slower. radio::set_tuning_frequency(f_center); chThdSleepMilliseconds(5); // stabilize freq baseband::spectrum_streaming_start(); // Do the RX } void GlassView::reset_live_view() { max_freq_hold = 0; max_freq_power = -1000; // Clear screen in peak mode. if (live_frequency_view == 2) display.fill_rectangle({{0, 108 + 16}, {SCREEN_W, SCREEN_H - (108 + 16)}}, {0, 0, 0}); } void GlassView::add_spectrum_pixel(uint8_t power) { spectrum_row[pixel_index] = spectrum_rgb3_lut[power]; // row of colors spectrum_data[pixel_index] = (live_frequency_integrate * spectrum_data[pixel_index] + power) / (live_frequency_integrate + 1); // smoothing pixel_index++; if (pixel_index == SCREEN_W) // got an entire waterfall line { if (live_frequency_view > 0) { constexpr int rssi_sample_range = SPEC_NB_BINS; constexpr float rssi_voltage_min = 0.4; constexpr float rssi_voltage_max = 2.2; constexpr float adc_voltage_max = 3.3; constexpr int raw_min = rssi_sample_range * rssi_voltage_min / adc_voltage_max; constexpr int raw_max = rssi_sample_range * rssi_voltage_max / adc_voltage_max; constexpr int raw_delta = raw_max - raw_min; const range_t y_max_range{0, 320 - (108 + 16)}; // drawing and keeping track of max freq for (uint16_t xpos = 0; xpos < SCREEN_W; xpos++) { // save max powerwull freq if (spectrum_data[xpos] > max_freq_power) { max_freq_power = spectrum_data[xpos]; max_freq_hold = get_freq_from_bin_pos(xpos); } int16_t point = y_max_range.clip(((spectrum_data[xpos] - raw_min) * (320 - (108 + 16))) / raw_delta); uint8_t color_gradient = (point * 255) / 212; // clear if not in peak view if (live_frequency_view != 2) { display.fill_rectangle({{xpos, 108 + 16}, {1, SCREEN_H - point}}, {0, 0, 0}); } display.fill_rectangle({{xpos, SCREEN_H - point}, {1, point}}, {color_gradient, 0, uint8_t(255 - color_gradient)}); } if (last_max_freq != max_freq_hold) { last_max_freq = max_freq_hold; freq_stats.set("MAX HOLD: " + to_string_short_freq(max_freq_hold)); } plot_marker(marker_pixel_index); } else { display.draw_pixels({{0, display.scroll(1)}, {SCREEN_W, 1}}, spectrum_row); // new line at top, one less var, speedier } pixel_index = 0; // Start New cascade line } } bool GlassView::process_bins(uint8_t* powerlevel) { bins_hz_size += each_bin_size; // add pixel to fulfilled bag of Hz if (bins_hz_size >= marker_pixel_step) // new pixel fullfilled { if (*powerlevel > min_color_power) add_spectrum_pixel(*powerlevel); // Pixel will represent max_power else add_spectrum_pixel(0); // Filtered out, show black *powerlevel = 0; if (!pixel_index) // Received indication that a waterfall line has been completed { bins_hz_size = 0; // Since this is an entire pixel line, we don't carry "Pixels into next bin" if (mode != LOOKING_GLASS_SINGLEPASS) { f_center = f_center_ini; retune(); } else baseband::spectrum_streaming_start(); return true; // signal a new line } bins_hz_size -= marker_pixel_step; // reset bins size, but carrying the eventual excess Hz into next pixel } return false; } // Apparently, the spectrum object returns an array of SPEC_NB_BINS (256) bins // Each having the radio signal power for its corresponding frequency slot void GlassView::on_channel_spectrum(const ChannelSpectrum& spectrum) { baseband::spectrum_streaming_stop(); // Convert bins of this spectrum slice into a representative max_power and when enough, into pixels // we actually need SCREEN_W (240) of those bins for (uint8_t bin = 0; bin < bin_length; bin++) { get_max_power(spectrum, bin, max_power); // process dc spike if enable if (bin == 119) { uint8_t next_max_power = 0; get_max_power(spectrum, bin + 1, next_max_power); for (uint8_t it = 0; it < ignore_dc; it++) { uint8_t med_max_power = (max_power + next_max_power) / 2; // due to the way process_bins works we have to keep resetting the color if (process_bins(&med_max_power) == true) return; // new line signaled, return } } // process actual bin if (process_bins(&max_power) == true) return; // new line signaled, return } if (mode != LOOKING_GLASS_SINGLEPASS) { f_center += looking_glass_step; retune(); } else baseband::spectrum_streaming_start(); } void GlassView::on_hide() { baseband::spectrum_streaming_stop(); display.scroll_disable(); } void GlassView::on_show() { display.scroll_set_area(109, 319); // Restart scroll on the correct coordinates baseband::spectrum_streaming_start(); } void GlassView::on_range_changed() { reset_live_view(); f_min = field_frequency_min.value(); f_max = field_frequency_max.value(); f_min = f_min * MHZ_DIV; // Transpose into full frequency realm f_max = f_max * MHZ_DIV; looking_glass_range = f_max - f_min; if (looking_glass_range <= LOOKING_GLASS_SLICE_WIDTH_MAX) { // if the view is done in one pass, show it like in analog_audio_app mode = LOOKING_GLASS_SINGLEPASS; offset = 2; bin_length = SCREEN_W; ignore_dc = 0; looking_glass_bandwidth = looking_glass_range; looking_glass_sampling_rate = looking_glass_bandwidth; each_bin_size = looking_glass_bandwidth / SCREEN_W; looking_glass_step = looking_glass_bandwidth; f_center_ini = f_min + (looking_glass_bandwidth / 2); // Initial center frequency for sweep } else { // view is made in multiple pass, use original bin picking mode = scan_type.selected_index_value(); looking_glass_bandwidth = LOOKING_GLASS_SLICE_WIDTH_MAX; looking_glass_sampling_rate = LOOKING_GLASS_SLICE_WIDTH_MAX; each_bin_size = LOOKING_GLASS_SLICE_WIDTH_MAX / SPEC_NB_BINS; if (mode == LOOKING_GLASS_FASTSCAN) { offset = 2; ignore_dc = 4; bin_length = SCREEN_W; } else { // if( mode == LOOKING_GLASS_SLOWSCAN ) offset = 2; bin_length = 80; ignore_dc = 0; } looking_glass_step = (bin_length + ignore_dc) * each_bin_size; f_center_ini = f_min - (offset * each_bin_size) + (looking_glass_bandwidth / 2); // Initial center frequency for sweep } search_span = looking_glass_range / MHZ_DIV; marker_pixel_step = looking_glass_range / SCREEN_W; // Each pixel value in Hz pixel_index = 0; max_power = 0; bins_hz_size = 0; on_marker_change(); update_range_field(); // set the sample rate and bandwidth receiver_model.set_sampling_rate(looking_glass_sampling_rate); receiver_model.set_baseband_bandwidth(looking_glass_bandwidth); receiver_model.set_squelch_level(0); f_center = f_center_ini; // Reset sweep into first slice baseband::set_spectrum(looking_glass_bandwidth, trigger); receiver_model.set_target_frequency(f_center); // tune rx for this slice } void GlassView::plot_marker(uint8_t pos) { uint8_t shift_y = 0; if (live_frequency_view > 0) // plot one line down when in live view { shift_y = 16; } portapack::display.fill_rectangle({0, 100 + shift_y, SCREEN_W, 8}, Color::black()); // Clear old marker and whole marker rectangle btw portapack::display.fill_rectangle({pos - 2, 100 + shift_y, 5, 3}, Color::red()); // Red marker top portapack::display.fill_rectangle({pos - 1, 103 + shift_y, 3, 3}, Color::red()); // Red marker middle portapack::display.fill_rectangle({pos, 106 + shift_y, 1, 2}, Color::red()); // Red marker bottom } void GlassView::update_min(int32_t v) { int32_t min_size = steps; if (locked_range) min_size = search_span; if (min_size < 2) min_size = 2; if (v > 7200 - min_size) { v = 7200 - min_size; } if (v > (field_frequency_max.value() - min_size)) field_frequency_max.set_value(v + min_size, false); if (locked_range) field_frequency_max.set_value(v + min_size, false); else field_frequency_min.set_value(v, false); } void GlassView::update_max(int32_t v) { int32_t min_size = steps; if (locked_range) min_size = search_span; if (min_size < 2) min_size = 2; if (v < min_size) { v = min_size; } if (v < (field_frequency_min.value() + min_size)) field_frequency_min.set_value(v - min_size, false); if (locked_range) field_frequency_min.set_value(v - min_size, false); else field_frequency_max.set_value(v, false); } void GlassView::update_range_field() { if (!locked_range) { field_range.set_style(&Styles::white); field_range.set_text(" " + to_string_dec_uint(search_span) + " "); } else { field_range.set_style(&Styles::red); field_range.set_text(">" + to_string_dec_uint(search_span) + "<"); } } GlassView::GlassView( NavigationView& nav) : nav_(nav) { baseband::run_image(portapack::spi_flash::image_tag_wideband_spectrum); add_children({&labels, &field_frequency_min, &field_frequency_max, &field_lna, &field_vga, &field_range, &steps_config, &scan_type, &view_config, &level_integration, &filter_config, &field_rf_amp, &range_presets, &field_marker, &field_trigger, &button_jump, &button_rst, &field_rx_iq_phase_cal, &freq_stats}); load_presets(); // Load available presets from TXT files (or default). preset_index = clip(preset_index, 0, presets_db.size()); field_frequency_min.set_value(f_min / MHZ_DIV); field_frequency_min.on_change = [this](int32_t v) { range_presets.set_selected_index(0); // Manual update_min(v); on_range_changed(); }; field_frequency_min.on_select = [this, &nav](NumberField& field) { auto new_view = nav_.push(field_frequency_min.value() * MHZ_DIV); new_view->on_changed = [this, &field](rf::Frequency f) { field_frequency_min.set_value(f / MHZ_DIV); }; }; field_frequency_max.set_value(f_max / MHZ_DIV); field_frequency_max.on_change = [this](int32_t v) { range_presets.set_selected_index(0); // Manual update_max(v); on_range_changed(); }; field_frequency_max.on_select = [this, &nav](NumberField& field) { auto new_view = nav_.push(field_frequency_max.value() * MHZ_DIV); new_view->on_changed = [this, &field](rf::Frequency f) { field_frequency_max.set_value(f / MHZ_DIV); }; }; steps_config.on_change = [this](size_t, OptionsField::value_t v) { field_frequency_min.set_step(v); field_frequency_max.set_step(v); steps = v; }; steps_config.set_selected_index(0); // 1 Mhz step. scan_type.on_change = [this](size_t, OptionsField::value_t v) { mode = v; on_range_changed(); }; scan_type.set_selected_index(mode); view_config.on_change = [this](size_t, OptionsField::value_t v) { reset_live_view(); // Clear between changes. live_frequency_view = v; switch (v) { case 0: // SPEC level_integration.hidden(true); freq_stats.hidden(true); button_jump.hidden(true); button_rst.hidden(true); display.scroll_set_area(109, 319); // Restart scroll on the correct coordinates. break; case 1: // LEVEL display.fill_rectangle({{0, 108}, {SCREEN_W, 24}}, {0, 0, 0}); display.scroll_disable(); level_integration.hidden(false); freq_stats.hidden(false); button_jump.hidden(false); button_rst.hidden(false); break; case 2: // PEAK default: display.fill_rectangle({{0, 108}, {SCREEN_W, 24}}, {0, 0, 0}); display.scroll_disable(); level_integration.hidden(false); freq_stats.hidden(false); button_jump.hidden(false); button_rst.hidden(false); break; } set_dirty(); }; view_config.set_selected_index(live_frequency_view); level_integration.on_change = [this](size_t, OptionsField::value_t v) { reset_live_view(); live_frequency_integrate = v; }; level_integration.set_selected_index(live_frequency_integrate); filter_config.on_change = [this](size_t ix, OptionsField::value_t v) { reset_live_view(); min_color_power = v; filter_index = ix; }; filter_config.set_selected_index(filter_index); range_presets.on_change = [this](size_t ix, OptionsField::value_t v) { preset_index = ix; if (ix == 0) return; // Don't update range for "Manual". // NB: Don't trigger updates, presets directly set the range // values without applying step or range lock. field_frequency_min.set_value(presets_db[v].min, false); field_frequency_max.set_value(presets_db[v].max, false); on_range_changed(); }; range_presets.set_selected_index(preset_index); field_marker.on_encoder_change = [this](TextField&, EncoderEvent delta) { marker_pixel_index = clip(marker_pixel_index + delta, 0, SCREEN_W); on_marker_change(); }; field_marker.on_select = [this](TextField&) { // Launch Audio with marker frequency. launch_audio(marker); }; field_trigger.on_change = [this](int32_t v) { trigger = v; baseband::set_spectrum(looking_glass_bandwidth, trigger); }; field_trigger.set_value(trigger); field_range.on_select = [this](TextField&) { locked_range = !locked_range; update_range_field(); }; button_jump.on_select = [this](Button&) { // Launch Audio with peak frequency. launch_audio(max_freq_hold); }; button_rst.on_select = [this](Button&) { reset_live_view(); }; field_rx_iq_phase_cal.set_range(0, hackrf_r9 ? 63 : 31); // max2839 has 6 bits [0..63], max2837 has 5 bits [0..31] field_rx_iq_phase_cal.set_value(get_spec_iq_phase_calibration_value()); // using accessor function of AnalogAudioView to read iq_phase_calibration_value from rx_audio.ini field_rx_iq_phase_cal.on_change = [this](int32_t v) { set_spec_iq_phase_calibration_value(v); // using accessor function of AnalogAudioView to write inside SPEC submenu, register value to max283x and save it to rx_audio.ini }; set_spec_iq_phase_calibration_value(get_spec_iq_phase_calibration_value()); // initialize iq_phase_calibration in radio display.scroll_set_area(109, 319); // trigger: // Discord User jteich: WidebandSpectrum::on_message to set the trigger value. In WidebandSpectrum::execute, // it keeps adding the output of the fft to the buffer until "trigger" number of calls are made, // at which time it pushes the buffer up with channel_spectrum.feed baseband::set_spectrum(looking_glass_bandwidth, trigger); marker_pixel_index = SCREEN_W / 2; on_range_changed(); // Force a UI update. receiver_model.set_sampling_rate(looking_glass_sampling_rate); // 20mhz receiver_model.set_baseband_bandwidth(looking_glass_bandwidth); // possible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz receiver_model.set_squelch_level(0); receiver_model.enable(); } uint8_t GlassView::get_spec_iq_phase_calibration_value() { // define accessor functions inside AnalogAudioView to read & write real iq_phase_calibration_value return iq_phase_calibration_value; } void GlassView::set_spec_iq_phase_calibration_value(uint8_t cal_value) { // define accessor functions iq_phase_calibration_value = cal_value; radio::set_rx_max283x_iq_phase_calibration(iq_phase_calibration_value); } void GlassView::load_presets() { File presets_file; auto error = presets_file.open("LOOKINGGLASS/PRESETS.TXT"); presets_db.clear(); // Add the "Manual" entry. presets_db.push_back({0, 0, "Manual"}); if (!error) { auto reader = FileLineReader(presets_file); for (const auto& line : reader) { if (line.length() == 0 || line[0] == '#') continue; auto cols = split_string(line, ','); if (cols.size() != 3) continue; preset_entry entry{}; parse_int(cols[0], entry.min); parse_int(cols[1], entry.max); entry.label = trimr(cols[2]); if (entry.min == 0 || entry.max == 0 || entry.min >= entry.max) continue; // Invalid line. presets_db.emplace_back(std::move(entry)); } } populate_presets(); } void GlassView::populate_presets() { using option_t = std::pair; using options_t = std::vector; options_t entries; for (const auto& preset : presets_db) entries.emplace_back(preset.label, entries.size()); range_presets.set_options(std::move(entries)); } void GlassView::launch_audio(rf::Frequency center_freq) { receiver_model.set_target_frequency(center_freq); auto settings = receiver_model.settings(); settings.frequency_step = MHZ_DIV; // Preset a 1 MHz frequency step into RX -> AUDIO nav_.replace(settings); // Jump into audio view } } // namespace ui