#ifndef __FPROTO_ANSONIC_H__ #define __FPROTO_ANSONIC_H__ #include "subghzdbase.hpp" #define ANSONICDIP_PATTERN "%c%c%c%c%c%c%c%c%c%c" #define ANSONICCNT_TO_DIP(dip) \ (dip & 0x0800 ? '1' : '0'), (dip & 0x0400 ? '1' : '0'), (dip & 0x0200 ? '1' : '0'), \ (dip & 0x0100 ? '1' : '0'), (dip & 0x0080 ? '1' : '0'), (dip & 0x0040 ? '1' : '0'), \ (dip & 0x0020 ? '1' : '0'), (dip & 0x0010 ? '1' : '0'), (dip & 0x0001 ? '1' : '0'), \ (dip & 0x0008 ? '1' : '0') typedef enum { AnsonicDecoderStepReset = 0, AnsonicDecoderStepFoundStartBit, AnsonicDecoderStepSaveDuration, AnsonicDecoderStepCheckDuration, } AnsonicDecoderStep; class FProtoSubGhzDAnsonic : public FProtoSubGhzDBase { public: FProtoSubGhzDAnsonic() { sensorType = FPS_ANSONIC; modulation = FPM_FM; } void feed(bool level, uint32_t duration) { switch (parser_step) { case AnsonicDecoderStepReset: if ((!level) && (DURATION_DIFF(duration, te_short * 35) < te_delta * 35)) { // Found header Ansonic parser_step = AnsonicDecoderStepFoundStartBit; } break; case AnsonicDecoderStepFoundStartBit: if (!level) { break; } else if ( DURATION_DIFF(duration, te_short) < te_delta) { // Found start bit Ansonic parser_step = AnsonicDecoderStepSaveDuration; decode_data = 0; decode_count_bit = 0; } else { parser_step = AnsonicDecoderStepReset; } break; case AnsonicDecoderStepSaveDuration: if (!level) { // save interval if (duration >= (te_short * 4)) { parser_step = AnsonicDecoderStepFoundStartBit; if (decode_count_bit >= min_count_bit_for_found) { serial = 0x0; btn = 0x0; data = decode_data; data_count_bit = decode_count_bit; if (callback) callback(this); } break; } te_last = duration; parser_step = AnsonicDecoderStepCheckDuration; } else { parser_step = AnsonicDecoderStepReset; } break; case AnsonicDecoderStepCheckDuration: if (level) { if ((DURATION_DIFF(te_last, te_short) < te_delta) && (DURATION_DIFF(duration, te_long) < te_delta)) { subghz_protocol_blocks_add_bit(1); parser_step = AnsonicDecoderStepSaveDuration; } else if ( (DURATION_DIFF(te_last, te_long) < te_delta) && (DURATION_DIFF(duration, te_short) < te_delta)) { subghz_protocol_blocks_add_bit(0); parser_step = AnsonicDecoderStepSaveDuration; } else parser_step = AnsonicDecoderStepReset; } else { parser_step = AnsonicDecoderStepReset; } break; } } void subghz_protocol_ansonic_check_remote_controller() { /* * 12345678(10) k 9 * AAA => 10101010 1 01 0 * * 1...10 - DIP * k- KEY */ cnt = data & 0xFFF; btn = ((data >> 1) & 0x3); } void get_string(std::string& output) { subghz_protocol_ansonic_check_remote_controller(); /* output = to_string_dec_uint(data_count_bit) + " bit\r\n"; output += "Key: " + to_string_hex((uint32_t)(data & 0xFFFFFFFF)) + "\r\n"; output += "BTN: " + to_string_dec_uint(btn) + "\r\n"; output += "DIP: " + ANSONICCNT_TO_DIP(cnt) + "\r\n";*/ } protected: uint32_t te_short = 555; uint32_t te_long = 1111; uint32_t te_delta = 120; uint32_t min_count_bit_for_found = 12; uint32_t crc = 0; }; #endif