/* * Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc. * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "receiver_model.hpp" #include "baseband_api.hpp" #include "portapack_persistent_memory.hpp" #include "hackrf_gpio.hpp" #include "portapack.hpp" #include "radio.hpp" #include "audio.hpp" #include "dsp_fir_taps.hpp" #include "dsp_iir.hpp" #include "dsp_iir_config.hpp" #include "utility.hpp" using namespace hackrf::one; using namespace portapack; namespace { static constexpr std::array am_configs{{ // we config here all the non COMMON parameters to each AM modulation type in RX. {taps_9k0_decim_2, taps_9k0_dsb_channel, AMConfigureMessage::Modulation::DSB}, // AM DSB-C BW 9khz (+-4k5) commercial EU bandwidth . {taps_6k0_decim_2, taps_6k0_dsb_channel, AMConfigureMessage::Modulation::DSB}, // AM DSB-C BW 6khz (+-3k0) narrow AM , ham equipments. {taps_6k0_decim_2, taps_2k8_usb_channel, AMConfigureMessage::Modulation::SSB}, // SSB USB BW 2K8 (+ 2K8) {taps_6k0_decim_2, taps_2k8_lsb_channel, AMConfigureMessage::Modulation::SSB}, // SSB LSB BW 2K8 (- 2K8) {taps_6k0_decim_2, taps_0k7_usb_channel, AMConfigureMessage::Modulation::SSB}, // SSB USB BW 0K7 (+ 0K7) used to get audio tone from CW Morse, assuming tx shifted +700hz aprox }}; static constexpr std::array nbfm_configs{{ {taps_4k25_decim_0, taps_4k25_decim_1, taps_4k25_channel, 2500}, {taps_11k0_decim_0, taps_11k0_decim_1, taps_11k0_channel, 2500}, {taps_16k0_decim_0, taps_16k0_decim_1, taps_16k0_channel, 5000}, }}; static constexpr std::array wfm_configs{{ {taps_200k_wfm_decim_0, taps_200k_wfm_decim_1}, {taps_180k_wfm_decim_0, taps_180k_wfm_decim_1}, {taps_40k_wfm_decim_0, taps_40k_wfm_decim_1}, }}; } /* namespace */ rf::Frequency ReceiverModel::target_frequency() const { return persistent_memory::target_frequency(); } void ReceiverModel::set_target_frequency(rf::Frequency f) { persistent_memory::set_target_frequency(f); update_tuning_frequency(); } rf::Frequency ReceiverModel::frequency_step() const { return frequency_step_; } void ReceiverModel::set_frequency_step(rf::Frequency f) { frequency_step_ = f; } void ReceiverModel::set_antenna_bias() { update_antenna_bias(); } bool ReceiverModel::rf_amp() const { return rf_amp_; } void ReceiverModel::set_rf_amp(bool enabled) { rf_amp_ = enabled; update_rf_amp(); } int32_t ReceiverModel::lna() const { return lna_gain_db_; } void ReceiverModel::set_lna(int32_t v_db) { lna_gain_db_ = v_db; update_lna(); } uint32_t ReceiverModel::baseband_bandwidth() const { return baseband_bandwidth_; } void ReceiverModel::set_baseband_bandwidth(uint32_t v) { baseband_bandwidth_ = v; update_baseband_bandwidth(); } int32_t ReceiverModel::vga() const { return vga_gain_db_; } void ReceiverModel::set_vga(int32_t v_db) { vga_gain_db_ = v_db; update_vga(); } uint32_t ReceiverModel::sampling_rate() const { return sampling_rate_; } void ReceiverModel::set_sampling_rate(uint32_t v) { sampling_rate_ = v; update_sampling_rate(); } ReceiverModel::Mode ReceiverModel::modulation() const { return mode_; } void ReceiverModel::set_modulation(const Mode v) { mode_ = v; update_modulation(); } volume_t ReceiverModel::headphone_volume() const { return persistent_memory::headphone_volume(); } void ReceiverModel::set_headphone_volume(volume_t v) { persistent_memory::set_headphone_volume(v); update_headphone_volume(); } uint8_t ReceiverModel::normalized_headphone_volume() const { auto db = (headphone_volume() - audio::headphone::volume_range().max).decibel(); return clip(db + 99, 0, 99); } void ReceiverModel::set_normalized_headphone_volume(uint8_t v) { // TODO: Linear map instead to ensure 0 is minimal value or fix volume_range_t::normalize. v = clip(v, 0, 99); auto new_volume = volume_t::decibel(v - 99) + audio::headphone::volume_range().max; set_headphone_volume(new_volume); } uint8_t ReceiverModel::squelch_level() const { return squelch_level_; } void ReceiverModel::set_squelch_level(uint8_t v) { squelch_level_ = v; update_modulation(); } void ReceiverModel::enable() { enabled_ = true; radio::set_direction(rf::Direction::Receive); update_tuning_frequency(); update_antenna_bias(); update_rf_amp(); update_lna(); update_vga(); update_baseband_bandwidth(); update_sampling_rate(); update_modulation(); // TODO: maybe not the perfect place for this, but it's reasonable. update_headphone_volume(); led_rx.on(); } void ReceiverModel::disable() { enabled_ = false; // TODO: Responsibility for enabling/disabling the radio is muddy. // Some happens in ReceiverModel, some inside radio namespace. radio::disable(); led_rx.off(); } int32_t ReceiverModel::tuning_offset() { if ((modulation() == Mode::SpectrumAnalysis)) { return 0; } else { return -(sampling_rate() / 4); } } void ReceiverModel::update_tuning_frequency() { // TODO: use positive offset if freq < offset. radio::set_tuning_frequency(target_frequency() + tuning_offset()); } void ReceiverModel::update_antenna_bias() { if (enabled_) radio::set_antenna_bias(portapack::get_antenna_bias()); } void ReceiverModel::update_rf_amp() { radio::set_rf_amp(rf_amp_); } void ReceiverModel::update_lna() { radio::set_lna_gain(lna_gain_db_); } void ReceiverModel::update_baseband_bandwidth() { radio::set_baseband_filter_bandwidth(baseband_bandwidth_); } void ReceiverModel::update_vga() { radio::set_vga_gain(vga_gain_db_); } void ReceiverModel::set_am_configuration(const size_t n) { if (n < am_configs.size()) { am_config_index = n; update_modulation(); } } void ReceiverModel::set_nbfm_configuration(const size_t n) { if (n < nbfm_configs.size()) { nbfm_config_index = n; update_modulation(); } } void ReceiverModel::set_wfm_configuration(const size_t n) { if (n < wfm_configs.size()) { wfm_config_index = n; update_modulation(); } } void ReceiverModel::set_configuration_without_init( const Mode new_mode, const rf::Frequency new_frequency_step, const size_t new_am_config_index, const size_t new_nbfm_config_index, const size_t new_wfm_config_index, uint8_t new_squelch_level) { mode_ = new_mode; frequency_step_ = new_frequency_step; am_config_index = new_am_config_index; nbfm_config_index = new_nbfm_config_index; wfm_config_index = new_wfm_config_index; squelch_level_ = new_squelch_level; } void ReceiverModel::configure_from_app_settings( const app_settings::AppSettings& settings) { baseband_bandwidth_ = settings.baseband_bandwidth; sampling_rate_ = settings.sampling_rate; lna_gain_db_ = settings.lna; vga_gain_db_ = settings.vga; rf_amp_ = settings.rx_amp; squelch_level_ = settings.squelch; } void ReceiverModel::update_sampling_rate() { // TODO: Move more low-level radio control stuff to M4. It'll enable tighter // synchronization for things like wideband (sweeping) spectrum analysis, and // protocols that need quick RX/TX turn-around. // Disabling baseband while changing sampling rates seems like a good idea... radio::set_baseband_rate(sampling_rate()); update_tuning_frequency(); } void ReceiverModel::update_headphone_volume() { audio::headphone::set_volume(headphone_volume()); } void ReceiverModel::update_modulation() { switch (modulation()) { default: case Mode::AMAudio: update_am_configuration(); break; case Mode::NarrowbandFMAudio: update_nbfm_configuration(); break; case Mode::WidebandFMAudio: update_wfm_configuration(); break; case Mode::SpectrumAnalysis: case Mode::Capture: break; } } size_t ReceiverModel::am_configuration() const { return am_config_index; } void ReceiverModel::update_am_configuration() { am_configs[am_config_index].apply(); } size_t ReceiverModel::nbfm_configuration() const { return nbfm_config_index; } void ReceiverModel::update_nbfm_configuration() { nbfm_configs[nbfm_config_index].apply(squelch_level_); } size_t ReceiverModel::wfm_configuration() const { return wfm_config_index; } void ReceiverModel::update_wfm_configuration() { wfm_configs[wfm_config_index].apply(); }