/* * Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc. * Copyright (C) 2023 Great Scott Gadgets * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "max2839.hpp" #include "hackrf_hal.hpp" #include "hackrf_gpio.hpp" using namespace hackrf::one; #include "ch.h" #include "hal.h" #include namespace max2839 { namespace lna { using namespace max283x::lna; constexpr std::array lookup_8db_steps{ 0b11, 0b11, 0b10, 0b10, 0b01, 0b00, 0b00, 0b00}; static uint_fast8_t gain_ordinal(const int8_t db) { const auto db_sat = gain_db_range.clip(db); return lna::lookup_8db_steps[(db_sat >> 3) & 7]; } } /* namespace lna */ namespace vga { using namespace max283x::vga; constexpr range_t gain_db_range_internal{0, 63}; static uint_fast8_t gain_ordinal(const int8_t db) { const auto db_sat = gain_db_range_internal.clip(db); return (db_sat & 0b111111) ^ 0b111111; } } /* namespace vga */ namespace tx { using namespace max283x::tx; static uint_fast8_t gain_ordinal(const int8_t db) { const auto db_sat = gain_db_range.clip(db); return 47 - db_sat; } } /* namespace tx */ namespace filter { using namespace max283x::filter; static uint_fast8_t bandwidth_ordinal(const uint32_t bandwidth) { /* Determine filter setting that will provide bandwidth greater than or * equal to requested bandwidth. */ return std::lower_bound(bandwidths.cbegin(), bandwidths.cend(), bandwidth) - bandwidths.cbegin(); } } /* namespace filter */ /* Empirical testing indicates about 25us is necessary to get a valid * temperature sense conversion from the ADC. */ constexpr float seconds_for_temperature_sense_adc_conversion = 30.0e-6; constexpr halrtcnt_t ticks_for_temperature_sense_adc_conversion = (base_m4_clk_f * seconds_for_temperature_sense_adc_conversion + 1); constexpr uint32_t reference_frequency = max283x_reference_f; constexpr uint32_t pll_factor = 1.0 / (4.0 / 3.0 / reference_frequency) + 0.5; static int_fast8_t requested_rx_lna_gain = 0; static int_fast8_t requested_rx_vga_gain = 0; void MAX2839::init() { set_mode(Mode::Shutdown); gpio_max283x_enable.output(); gpio_max2839_rxtx.output(); _map.r.rxrf_1.MIMOmode = 1; /* enable RXINB */ _map.r.pa_drv.TXVGA_GAIN_SPI_EN = 1; _map.r.tx_gain.TXVGA_GAIN_SPI = 0x00; _map.r.hpfsm_3.HPC_STOP = 1; /* 1kHz */ _map.r.rxrf_2.LNAgain_SPI_EN = 1; /* control LNA gain from SPI */ _map.r.lpf_vga_1.L = 0b000; _map.r.lpf_vga_2.L = 0b000; _map.r.rx_top_1.VGAgain_SPI_EN = 1; /* control VGA gain from SPI */ _map.r.lpf_vga_1.VGA = 0b000000; _map.r.lpf_vga_2.VGA = 0b010101; _map.r.lpf_vga_2.BUFF_VCM = 0b11; /* maximum RX output common-mode voltage */ _map.r.lpf_vga_1.ModeCtrl = 0b01; /* Rx LPF */ _map.r.lpf.FT = 0b0000; /* 1.75 MHz LPF */ _map.r.spi_en.EN_SPI = 1; /* enable chip functions when ENABLE pin set */ _map.r.lo_gen.LOGEN_2GM = 0; _map.r.rssi_vga.RSSI_MODE = 1; /* RSSI independent of RXHP */ /* * There are two LNA band settings, but we only use one of them. * Switching to the other one doesn't make the overall spectrum any * flatter but adds a surprise step in the middle. */ _map.r.rxrf_1.LNAband = 0; /* 2.3 - 2.5GHz */ _dirty.set(); flush(); set_mode(Mode::Standby); } void MAX2839::set_tx_LO_iq_phase_calibration(const size_t v) { Mode saved_mode = get_mode(); /* IQ phase deg CAL adj (+4 ...-4) This IC in 64 steps (6 bits), 000000 = +4deg (Q lags I by 94degs, default), 011111 = +0deg, 111111 = -4deg (Q lags I by 86degs) */ // TX calibration , 2 x Logic pins , ENABLE, RXENABLE = 1,0, (2dec), and Reg address 16, D1 (CAL mode 1):DO (CHIP ENABLE 1) set_mode(Mode::Tx_Calibration); // write to ram 3 LOGIC Pins . gpio_max283x_enable.output(); // max2839 has only 2 x pins + regs to decide mode. gpio_max2839_rxtx.output(); // Here is combined rx & tx pin in one port. _map.r.spi_en.CAL_SPI = 1; // Register Settings reg address 16, D1 (CAL mode 1) _map.r.spi_en.EN_SPI = 1; // Register Settings reg address 16, DO (CHIP ENABLE 1) flush_one(Register::SPI_EN); _map.r.pa_drv.TXLO_IQ_SPI_EN = 1; // reg 27 D6, TX LO I/Q Phase SPI Adjust. Active when Address 27 D6 (TXLO_IQ_SPI_EN) = 1. _map.r.pa_drv.TXLO_IQ_SPI = v; // reg 27 D5:D0 6 bits, TX LO I/Q Phase SPI Adjust. flush_one(Register::PA_DRV); // Exit Calibration mode, Go back to reg 16, D1:D0 , Out of CALIBRATION , back to default conditions, but keep CS activated. _map.r.spi_en.CAL_SPI = 0; // Register Settings reg address 16, D1 (0 = Normal operation (default) _map.r.spi_en.EN_SPI = 1; // Register Settings reg address 16, DO (1 = Chip select enable ) flush_one(Register::SPI_EN); set_mode(saved_mode); // restore original mode } enum class Mask { Enable = 0b01, RxTx = 0b10, Shutdown = 0b00, Standby = RxTx, Receive = Enable | RxTx, Transmit = Enable, Rx_calibration = Enable | RxTx, // sets the same 2 x logic pins to the Receive operating mode. Tx_calibration = Enable, // sets the same 2 x logic pins to the Transmit operating mode. }; Mask mode_mask(const Mode mode) { switch (mode) { case Mode::Standby: return Mask::Standby; case Mode::Receive: return Mask::Receive; case Mode::Transmit: return Mask::Transmit; case Mode::Rx_Calibration: // Let's add this not used previously Rx calibration mode. return Mask::Rx_calibration; // same logic pins as Receive mode = Enable | RxTx, ,(the difference is in Regs ) case Mode::Tx_Calibration: // Let's add this not used previously Tx calibration mode. return Mask::Tx_calibration; // same logic pins as Transmit = Enable , (the difference is in Reg add 16 D1:DO) default: return Mask::Shutdown; } } void MAX2839::set_mode(const Mode mode) { _mode = mode; Mask mask = mode_mask(mode); gpio_max283x_enable.write(toUType(mask) & toUType(Mask::Enable)); gpio_max2839_rxtx.write(toUType(mask) & toUType(Mask::RxTx)); } Mode MAX2839::get_mode() { return _mode; } void MAX2839::flush() { if (_dirty) { for (size_t n = 0; n < reg_count; n++) { if (_dirty[n]) { write(n, _map.w[n]); } } _dirty.clear(); } } void MAX2839::flush_one(const Register reg) { const auto reg_num = toUType(reg); write(reg_num, _map.w[reg_num]); _dirty.clear(reg_num); } void MAX2839::write(const address_t reg_num, const reg_t value) { uint16_t t = (0U << 15) | (reg_num << 10) | (value & 0x3ffU); _target.transfer(&t, 1); } reg_t MAX2839::read(const address_t reg_num) { uint16_t t = (1U << 15) | (reg_num << 10); _target.transfer(&t, 1U); return t & 0x3ffU; } void MAX2839::write(const Register reg, const reg_t value) { write(toUType(reg), value); } reg_t MAX2839::read(const Register reg) { return read(toUType(reg)); } void MAX2839::set_tx_vga_gain(const int_fast8_t db) { _map.r.tx_gain.TXVGA_GAIN_SPI = tx::gain_ordinal(db); _dirty[Register::TX_GAIN] = 1; flush(); } /* * MAX2839 gain rain ranges differ slightly from MAX2837's but are close * enough that it makes sense to emulate MAX2837 gain ranges for a consistent * user experience. */ void MAX2839::configure_rx_gain() { /* Apply MAX2837 restrictions to requested gain settings. */ int_fast8_t lna_gain = lna::gain_db_range.clip(requested_rx_lna_gain); lna_gain &= 0x38; int_fast8_t vga_gain = vga::gain_db_range.clip(requested_rx_vga_gain); vga_gain &= 0x3e; /* * MAX2839 has lower full-scale RX output voltage than MAX2837, so we * adjust the VGA (baseband) gain to compensate. */ vga_gain += 3; /* * If that adjustment puts VGA gain out of range, use LNA gain to * compensate. MAX2839 VGA gain can be any number from 0 through 63. */ if (vga_gain > 63) { if (lna_gain <= 32) { vga_gain -= 8; lna_gain += 8; } else { vga_gain = 63; } } /* * MAX2839 lacks max-24 dB (16 dB) and max-40 dB (0 dB) LNA gain * settings, so we use VGA gain to compensate. */ if (lna_gain == 0) { lna_gain = 8; vga_gain = (vga_gain >= 8) ? vga_gain - 8 : 0; } if (lna_gain == 16) { if (vga_gain > 32) { vga_gain -= 8; lna_gain += 8; } else { vga_gain += 8; lna_gain -= 8; } } _map.r.lpf_vga_2.L = lna::gain_ordinal(lna_gain); _dirty[Register::RXRF_2] = 1; _map.r.lpf_vga_2.VGA = vga::gain_ordinal(vga_gain); _dirty[Register::LPF_VGA_2] = 1; flush(); } void MAX2839::set_lna_gain(const int_fast8_t db) { requested_rx_lna_gain = db; configure_rx_gain(); } void MAX2839::set_vga_gain(const int_fast8_t db) { requested_rx_vga_gain = db; configure_rx_gain(); } void MAX2839::set_lpf_rf_bandwidth_rx(const uint32_t bandwidth_minimum) { _map.r.lpf_vga_1.ModeCtrl = 0b01; /* Address reg 5, D9-D8, Set mode lowpass filter block to Rx LPF . Active when Address 8 D<2> = 1 */ flush_one(Register::LPF_VGA_1); _map.r.rx_top_1.LPF_MODE_SEL = 1; /* Address 8 reg, D2 bit:LPF mode mux, LPF_MODE_SEL 0 = Normal operation, 1 = Operating mode is programmed Address 5 D<9:8> */ flush_one(Register::RX_TOP_1); _map.r.lpf.FT = filter::bandwidth_ordinal(bandwidth_minimum); flush_one(Register::LPF); _map.r.rx_top_1.LPF_MODE_SEL = 0; /* Address 8 reg, D2 bit:LPF mode mux, LPF_MODE_SEL 0 = Normal operation, 1 = Operating mode is programmed Address 5 D<9:8> */ flush_one(Register::RX_TOP_1); /* Leave LPF_MODE_SEL 0 = Normal operation */ } void MAX2839::set_lpf_rf_bandwidth_tx(const uint32_t bandwidth_minimum) { _map.r.lpf_vga_1.ModeCtrl = 0b10; /* Address reg 5, D9-D8, Set mode lowpass filter block to Tx LPF . Active when Address 8 D<2> = 1 */ flush_one(Register::LPF_VGA_1); _map.r.rx_top_1.LPF_MODE_SEL = 1; /* Address 8 reg, D2 bit:LPF mode mux, LPF_MODE_SEL 0 = Normal operation, 1 = Operating mode is programmed Address 5 D<9:8> */ flush_one(Register::RX_TOP_1); _map.r.lpf.FT = filter::bandwidth_ordinal(bandwidth_minimum); flush_one(Register::LPF); _map.r.rx_top_1.LPF_MODE_SEL = 0; /* Address 8 reg, D2 bit:LPF mode mux, LPF_MODE_SEL 0 = Normal operation, 1 = Operating mode is programmed Address 5 D<9:8> */ flush_one(Register::RX_TOP_1); /* Leave LPF_MODE_SEL 0 = Normal operation */ } bool MAX2839::set_frequency(const rf::Frequency lo_frequency) { /* TODO: This is a sad implementation. Refactor. */ if (lo::band[0].contains(lo_frequency)) { _map.r.syn_int_div.LOGEN_BSW = 0b00; /* 2300 - 2399.99MHz */ } else if (lo::band[1].contains(lo_frequency)) { _map.r.syn_int_div.LOGEN_BSW = 0b01; /* 2400 - 2499.99MHz */ } else if (lo::band[2].contains(lo_frequency)) { _map.r.syn_int_div.LOGEN_BSW = 0b10; /* 2500 - 2599.99MHz */ } else if (lo::band[3].contains(lo_frequency)) { _map.r.syn_int_div.LOGEN_BSW = 0b11; /* 2600 - 2700Hz */ } else { return false; } _dirty[Register::SYN_INT_DIV] = 1; const uint64_t div_q20 = (lo_frequency * (1 << 20)) / pll_factor; _map.r.syn_int_div.SYN_INTDIV = div_q20 >> 20; _dirty[Register::SYN_INT_DIV] = 1; _map.r.syn_fr_div_2.SYN_FRDIV_19_10 = (div_q20 >> 10) & 0x3ff; _dirty[Register::SYN_FR_DIV_2] = 1; /* flush to commit high FRDIV first, as low FRDIV commits the change */ flush(); _map.r.syn_fr_div_1.SYN_FRDIV_9_0 = (div_q20 & 0x3ff); _dirty[Register::SYN_FR_DIV_1] = 1; flush(); return true; } /* void MAX2839::set_rx_LO_iq_phase_calibration(const size_t v) { // Original code , rewritten below _map.r.rxrf_2.RX_IQERR_SPI_EN = 1; _dirty[Register::RXRF_2] = 1; _map.r.rxrf_1.iqerr_trim = v; _dirty[Register::RXRF_1] = 1; flush(); }*/ void MAX2839::set_rx_LO_iq_phase_calibration(const size_t v) { /* RX IQ phase deg CAL adj (+4 ...-4) in 64 steps (6 bits), 000000 = +4deg (Q lags I by 94degs, default), 011111 = +0deg, 111111 = -4deg (Q lags I by 86degs) */ // RX calibration , Logic pins , ENABLE, RXENABLE, TXENABLE = 1,1,0 (3dec), and Reg address 16, D1 (CAL mode 1):DO (CHIP ENABLE 1) set_mode(Mode::Rx_Calibration); // write to ram 3 LOGIC Pins . gpio_max283x_enable.output(); // max2839 has only 2 x pins + regs to decide mode. gpio_max2839_rxtx.output(); // Here is combined rx & tx pin in one port. _map.r.spi_en.CAL_SPI = 1; // Register Settings reg address 16, D1 (CAL mode 1) _map.r.spi_en.EN_SPI = 1; // Register Settings reg address 16, DO (CHIP ENABLE 1) flush_one(Register::SPI_EN); _map.r.rxrf_2.RX_IQERR_SPI_EN = 1; // reg 2 D<2> = 1, RX LO IQ calibration SPI control. Active when Address 2 D<2> = 1. _dirty[Register::RXRF_2] = 1; _map.r.rxrf_1.iqerr_trim = v; _dirty[Register::RXRF_1] = 1; flush(); _map.r.spi_en.CAL_SPI = 0; // Register Settings reg address 16, D1 (CAL mode 1) _map.r.spi_en.EN_SPI = 1; // Register Settings reg address 16, DO (CHIP ENABLE 1) flush_one(Register::SPI_EN); } void MAX2839::set_rx_buff_vcm(const size_t v) { _map.r.lpf_vga_2.BUFF_VCM = v; _dirty[Register::LPF_VGA_2] = 1; flush(); } int8_t MAX2839::temp_sense() { if (!_map.r.rx_top_2.ts_en) { _map.r.rx_top_2.ts_en = 1; flush_one(Register::RX_TOP_2); chThdSleepMilliseconds(1); } _map.r.rx_top_2.ts_adc_trigger = 1; flush_one(Register::RX_TOP_2); halPolledDelay(ticks_for_temperature_sense_adc_conversion); /* * Conversion to degrees C determined by testing - does not match data sheet. */ reg_t value = read(Register::TEMP_SENSE) & 0x1F; _map.r.rx_top_2.ts_adc_trigger = 0; flush_one(Register::RX_TOP_2); return std::min(127, (int)(value * 4.31 - 40)); // reg value is 0 to 31; possible return range is -40 C to 127 C } } // namespace max2839