/* * Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc. * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "max2837.hpp" #include "hackrf_hal.hpp" #include "hackrf_gpio.hpp" using namespace hackrf::one; #include "ch.h" #include "hal.h" #include namespace max2837 { using namespace max283x; namespace lna { using namespace max283x::lna; constexpr std::array lookup_8db_steps{ 0b111, 0b011, 0b110, 0b010, 0b100, 0b000, 0b000, 0b000}; static uint_fast8_t gain_ordinal(const int8_t db) { const auto db_sat = gain_db_range.clip(db); return lna::lookup_8db_steps[(db_sat >> 3) & 7]; } } /* namespace lna */ namespace vga { using namespace max283x::vga; static uint_fast8_t gain_ordinal(const int8_t db) { const auto db_sat = gain_db_range.clip(db); return ((db_sat >> 1) & 0b11111) ^ 0b11111; } } /* namespace vga */ namespace tx { using namespace max283x::tx; static uint_fast8_t gain_ordinal(const int8_t db) { const auto db_sat = gain_db_range.clip(db); uint8_t value = db_sat & 0x0f; value = (db_sat >= 16) ? (value | 0x20) : value; value = (db_sat >= 32) ? (value | 0x10) : value; return (value & 0b111111) ^ 0b111111; } } /* namespace tx */ namespace filter { using namespace max283x::filter; static uint_fast8_t bandwidth_ordinal(const uint32_t bandwidth) { /* Determine filter setting that will provide bandwidth greater than or * equal to requested bandwidth. */ return std::lower_bound(bandwidths.cbegin(), bandwidths.cend(), bandwidth) - bandwidths.cbegin(); } } /* namespace filter */ /* Empirical testing indicates about 25us is necessary to get a valid * temperature sense conversion from the ADC. */ constexpr float seconds_for_temperature_sense_adc_conversion = 30.0e-6; constexpr halrtcnt_t ticks_for_temperature_sense_adc_conversion = (base_m4_clk_f * seconds_for_temperature_sense_adc_conversion + 1); constexpr uint32_t reference_frequency = max283x_reference_f; constexpr uint32_t pll_factor = 1.0 / (4.0 / 3.0 / reference_frequency) + 0.5; void MAX2837::init() { set_mode(Mode::Shutdown); gpio_max283x_enable.output(); gpio_max2837_rxenable.output(); gpio_max2837_txenable.output(); _map.r.tx_gain.TXVGA_GAIN_SPI_EN = 1; _map.r.tx_gain.TXVGA_GAIN_MSB_SPI_EN = 1; _map.r.tx_gain.TXVGA_GAIN_SPI = 0x00; _map.r.lpf_3_vga_1.VGAMUX_enable = 1; _map.r.lpf_3_vga_1.VGA_EN = 1; _map.r.hpfsm_3.HPC_STOP = 1; /* 1kHz */ _map.r.rx_top_rx_bias.LNAgain_SPI_EN = 1; /* control LNA gain from SPI */ _map.r.rxrf_2.L = 0b000; _map.r.rx_top_rx_bias.VGAgain_SPI_EN = 1; /* control VGA gain from SPI */ _map.r.vga_2.VGA = 0b01010; _map.r.lpf_3_vga_1.BUFF_VCM = 0b00; /* TODO: Check values out of ADC */ _map.r.lpf_1.LPF_EN = 1; /* Enable low-pass filter */ _map.r.lpf_1.ModeCtrl = 0b01; /* Rx LPF */ _map.r.lpf_1.FT = 0b0000; /* 1,75MHz LPF */ _map.r.spi_en.EN_SPI = 1; /* enable chip functions when ENABLE pin set */ _map.r.lo_gen.LOGEN_2GM = 0; #if 0 _map.r.rxrf_1.LNA_EN = 1; _map.r.rxrf_1.Mixer_EN = 1; _map.r.rxrf_1.RxLO_EN = 1; _map.r.rx_top.DOUT_DRVH = 0; /* slow down DOUT edges */ _map.r.hpfsm_4.DOUT_CSB_SEL = 0; /* DOUT not tri-stated, is independent of CSB */ _map.r.xtal_cfg.XTAL_CLKOUT_EN = 0; /* CLKOUT pin disabled. (Seems to have no effect.) */ #endif _map.r.vga_3_rx_top.RSSI_EN_SPIenables = 1; _map.r.vga_3_rx_top.RSSI_MODE = 1; /* RSSI independent of RXHP */ _dirty.set(); flush(); set_mode(Mode::Standby); } void MAX2837::set_tx_LO_iq_phase_calibration(const size_t v) { Mode saved_mode = get_mode(); /* TX IQ phase deg CAL adj (+4 ...-4) in 32 steps (5 bits), 00000 = +4deg (Q lags I by 94degs, default), 01111 = +0deg, 11111 = -4deg (Q lags I by 86degs) */ // TX calibration , Logic pins , ENABLE, RXENABLE, TXENABLE = 1,0,1 (5dec), and Reg address 16, D1 (CAL mode 1):DO (CHIP ENABLE 1) set_mode(Mode::Tx_Calibration); // write to ram 3 LOGIC Pins . gpio_max283x_enable.output(); gpio_max2837_rxenable.output(); gpio_max2837_txenable.output(); _map.r.spi_en.CAL_SPI = 1; // Register Settings reg address 16, D1 (CAL mode 1) _map.r.spi_en.EN_SPI = 1; // Register Settings reg address 16, DO (CHIP ENABLE 1) flush_one(Register::SPI_EN); _map.r.tx_lo_iq.TXLO_IQ_SPI_EN = 1; // reg 30 D5, TX LO I/Q Phase SPI Adjust. Active when Address 30 D5 (TXLO_IQ_SPI_EN) = 1. _map.r.tx_lo_iq.TXLO_IQ_SPI = v; // reg 30 D4:D0, TX LO I/Q Phase SPI Adjust. flush_one(Register::TX_LO_IQ); // Exit Calibration mode, Go back to reg 16, D1:D0 , Out of CALIBRATION , back to default conditions, but keep CS activated. _map.r.spi_en.CAL_SPI = 0; // Register Settings reg address 16, D1 (0 = Normal operation (default) _map.r.spi_en.EN_SPI = 1; // Register Settings reg address 16, DO (1 = Chip select enable ) flush_one(Register::SPI_EN); set_mode(saved_mode); // restore original mode } enum class Mask { // There are class Mask ,and class mode with same names, but they are not same. Enable = 0b001, RxEnable = 0b010, TxEnable = 0b100, Shutdown = 0b000, Standby = Enable, Receive = Enable | RxEnable, Transmit = Enable | TxEnable, Rx_calibration = Enable | RxEnable, // sets the same 3 x logic pins to the Receive operating mode. Tx_calibration = Enable | TxEnable, // sets the same 3 x logic pins to the Transmit operating mode. }; Mask mode_mask(const Mode mode) { // based on enum Mode cases, we set up the correct 3 logic PINS . switch (mode) { case Mode::Standby: return Mask::Standby; case Mode::Receive: return Mask::Receive; case Mode::Transmit: return Mask::Transmit; case Mode::Rx_Calibration: // Let's add those two CAL logic pin settings- Rx and Tx calibration modes. return Mask::Rx_calibration; // same logic pins as Receive mode = Enable | RxEnable, (the difference is in Reg add 16 D1:DO) case Mode::Tx_Calibration: // Let's add this CAL Tx calibration mode = Transmit. return Mask::Tx_calibration; // same logic pins as Transmit = Enable | TxEnable,(the difference is in Reg add 16 D1:DO) default: return Mask::Shutdown; } } void MAX2837::set_mode(const Mode mode) { // We set up the 3 Logic Pins ENABLE, RXENABLE, TXENABLE accordingly to the max2837 mode case, that we want to set up . _mode = mode; Mask mask = mode_mask(mode); gpio_max283x_enable.write(toUType(mask) & toUType(Mask::Enable)); gpio_max2837_rxenable.write(toUType(mask) & toUType(Mask::RxEnable)); gpio_max2837_txenable.write(toUType(mask) & toUType(Mask::TxEnable)); } Mode MAX2837::get_mode() { return _mode; } void MAX2837::flush() { if (_dirty) { for (size_t n = 0; n < reg_count; n++) { if (_dirty[n]) { write(n, _map.w[n]); } } _dirty.clear(); } } void MAX2837::flush_one(const Register reg) { const auto reg_num = toUType(reg); write(reg_num, _map.w[reg_num]); _dirty.clear(reg_num); } void MAX2837::write(const address_t reg_num, const reg_t value) { uint16_t t = (0U << 15) | (reg_num << 10) | (value & 0x3ffU); _target.transfer(&t, 1); } reg_t MAX2837::read(const address_t reg_num) { uint16_t t = (1U << 15) | (reg_num << 10); _target.transfer(&t, 1U); return t & 0x3ffU; } void MAX2837::write(const Register reg, const reg_t value) { write(toUType(reg), value); } reg_t MAX2837::read(const Register reg) { return read(toUType(reg)); } void MAX2837::set_tx_vga_gain(const int_fast8_t db) { _map.r.tx_gain.TXVGA_GAIN_SPI = tx::gain_ordinal(db); _dirty[Register::TX_GAIN] = 1; flush(); } void MAX2837::set_lna_gain(const int_fast8_t db) { _map.r.rxrf_2.L = lna::gain_ordinal(db); _dirty[Register::RXRF_2] = 1; flush(); } void MAX2837::set_vga_gain(const int_fast8_t db) { _map.r.vga_2.VGA = vga::gain_ordinal(db); _dirty[Register::VGA_2] = 1; flush(); } void MAX2837::set_lpf_rf_bandwidth_rx(const uint32_t bandwidth_minimum) { _map.r.lpf_1.ModeCtrl = 0b01; /* Address reg 2, D3-D2, Set mode lowpass filter block to Rx LPF . Active when Address 6 D<9> = 1 */ _map.r.lpf_1.FT = filter::bandwidth_ordinal(bandwidth_minimum); flush_one(Register::LPF_1); _map.r.vga_3_rx_top.LPF_MODE_SEL = 1; /* Address 6 reg, D9 bit:LPF mode mux, LPF_MODE_SEL 0 = Normal operation, 1 = Operating mode is programmed Address 2 D3:D2*/ flush_one(Register::VGA_3_RX_TOP); _map.r.vga_3_rx_top.LPF_MODE_SEL = 0; /* Leave LPF_MODE_SEL 0 = Normal operation */ flush_one(Register::VGA_3_RX_TOP); } void MAX2837::set_lpf_rf_bandwidth_tx(const uint32_t bandwidth_minimum) { _map.r.lpf_1.ModeCtrl = 0b10; /* Address 2 reg, D3-D2, Set mode lowpass filter block to Tx LPF . Active when Address 6 D<9> = 1 */ _map.r.lpf_1.FT = filter::bandwidth_ordinal(bandwidth_minimum); flush_one(Register::LPF_1); _map.r.vga_3_rx_top.LPF_MODE_SEL = 1; /* Address 6 reg, D9 bit:LPF mode mux, LPF_MODE_SEL 0 = Normal operation, 1 = Operating mode is programmed Address 2 D3:D2*/ flush_one(Register::VGA_3_RX_TOP); _map.r.vga_3_rx_top.LPF_MODE_SEL = 0; /* Leave LPF_MODE_SEL 0 = Normal operation */ flush_one(Register::VGA_3_RX_TOP); } bool MAX2837::set_frequency(const rf::Frequency lo_frequency) { /* TODO: This is a sad implementation. Refactor. */ if (lo::band[0].contains(lo_frequency)) { _map.r.syn_int_div.LOGEN_BSW = 0b00; /* 2300 - 2399.99MHz */ _map.r.rxrf_1.LNAband = 0; /* 2.3 - 2.5GHz */ } else if (lo::band[1].contains(lo_frequency)) { _map.r.syn_int_div.LOGEN_BSW = 0b01; /* 2400 - 2499.99MHz */ _map.r.rxrf_1.LNAband = 0; /* 2.3 - 2.5GHz */ } else if (lo::band[2].contains(lo_frequency)) { _map.r.syn_int_div.LOGEN_BSW = 0b10; /* 2500 - 2599.99MHz */ _map.r.rxrf_1.LNAband = 1; /* 2.5 - 2.7GHz */ } else if (lo::band[3].contains(lo_frequency)) { _map.r.syn_int_div.LOGEN_BSW = 0b11; /* 2600 - 2700Hz */ _map.r.rxrf_1.LNAband = 1; /* 2.5 - 2.7GHz */ } else { return false; } _dirty[Register::SYN_INT_DIV] = 1; _dirty[Register::RXRF_1] = 1; const uint64_t div_q20 = (lo_frequency * (1 << 20)) / pll_factor; _map.r.syn_int_div.SYN_INTDIV = div_q20 >> 20; _dirty[Register::SYN_INT_DIV] = 1; _map.r.syn_fr_div_2.SYN_FRDIV_19_10 = (div_q20 >> 10) & 0x3ff; _dirty[Register::SYN_FR_DIV_2] = 1; /* flush to commit high FRDIV first, as low FRDIV commits the change */ flush(); _map.r.syn_fr_div_1.SYN_FRDIV_9_0 = (div_q20 & 0x3ff); _dirty[Register::SYN_FR_DIV_1] = 1; flush(); return true; } /* void MAX2837::set_rx_lo_iq_calibration(const size_t v) { // Original code , rewritten below _map.r.rx_top_rx_bias.RX_IQERR_SPI_EN = 1; _dirty[Register::RX_TOP_RX_BIAS] = 1; _map.r.rxrf_2.iqerr_trim = v; _dirty[Register::RXRF_2] = 1; flush(); } */ void MAX2837::set_rx_LO_iq_phase_calibration(const size_t v) { /* RX IQ phase deg CAL adj (+4 ...-4) in 32 steps (5 bits), 00000 = +4deg (Q lags I by 94degs, default), 01111 = +0deg, 11111 = -4deg (Q lags I by 86degs) */ // RX calibration , Logic pins , ENABLE, RXENABLE, TXENABLE = 1,1,0 (3dec), and Reg address 16, D1 (CAL mode 1):DO (CHIP ENABLE 1) set_mode(Mode::Rx_Calibration); // write to ram 3 LOGIC Pins . gpio_max283x_enable.output(); gpio_max2837_rxenable.output(); gpio_max2837_txenable.output(); _map.r.spi_en.CAL_SPI = 1; // Register Settings reg address 16, D1 (CAL mode 1) _map.r.spi_en.EN_SPI = 1; // Register Settings reg address 16, DO (CHIP ENABLE 1) flush_one(Register::SPI_EN); _map.r.rx_top_rx_bias.RX_IQERR_SPI_EN = 1; // reg 8 D9, RX LO IQ Phase calibration SPI control. Active when Address 8 D<9> = 1. flush_one(Register::RX_TOP_RX_BIAS); _map.r.rxrf_2.iqerr_trim = v; // reg 1 D9:D5, RX LO I/Q Phase SPI 5 bits Adjust flush_one(Register::RXRF_2); // Exit Calibration mode, Go back to reg 16, D1:D0 , Out of CALIBRATION , back to default conditions, but keep CS activated. _map.r.spi_en.CAL_SPI = 0; // Register Settings reg address 16, D1 (0 = Normal operation (default) _map.r.spi_en.EN_SPI = 1; // Register Settings reg address 16, DO (1 = Chip select enable ) flush_one(Register::SPI_EN); } void MAX2837::set_rx_bias_trim(const size_t v) { _map.r.rx_top_rx_bias.EN_Bias_Trim = 1; _map.r.rx_top_rx_bias.BIAS_TRIM_SPI = v; _dirty[Register::RX_TOP_RX_BIAS] = 1; flush(); } void MAX2837::set_vco_bias(const size_t v) { _map.r.vco_cfg.VCO_BIAS_SPI_EN = 1; _map.r.vco_cfg.VCO_BIAS_SPI = v; _dirty[Register::VCO_CFG] = 1; flush(); } void MAX2837::set_rx_buff_vcm(const size_t v) { _map.r.lpf_3_vga_1.BUFF_VCM = v; _dirty[Register::LPF_3_VGA_1] = 1; flush(); } int8_t MAX2837::temp_sense() { if (!_map.r.rx_top.ts_en) { _map.r.rx_top.ts_en = 1; flush_one(Register::RX_TOP); chThdSleepMilliseconds(1); } _map.r.rx_top.ts_adc_trigger = 1; flush_one(Register::RX_TOP); halPolledDelay(ticks_for_temperature_sense_adc_conversion); /* * Conversion to degrees C determined by testing - does not match data sheet. */ reg_t value = read(Register::TEMP_SENSE) & 0x1F; _map.r.rx_top.ts_adc_trigger = 0; flush_one(Register::RX_TOP); return std::min(127, (int)(value * 4.31 - 40)); // reg value is 0 to 31; possible return range is -40 C to 127 C } } // namespace max2837