/* * Copyright (C) 2013 Jared Boone, ShareBrained Technology, Inc. * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifndef __DSP_FFT_H__ #define __DSP_FFT_H__ #include #include #include #include #include #include #include "dsp_types.hpp" #include "complex.hpp" #include "hal.h" #include "utility.hpp" #include "sine_table_int8.hpp" namespace std { /* https://github.com/AE9RB/fftbench/blob/master/cxlr.hpp * Nice trick from AE9RB (David Turnbull) to get compiler to produce simpler * fma (fused multiply-accumulate) instead of worrying about NaN handling */ inline complex operator*(const complex& v1, const complex& v2) { return complex { v1.real() * v2.real() - v1.imag() * v2.imag(), v1.real() * v2.imag() + v1.imag() * v2.real() }; } } /* namespace std */ template void fft_swap(const buffer_c16_t src, std::array& dst) { static_assert(power_of_two(N), "only defined for N == power of two"); for(size_t i=0; i> (32 - log_2(N)); const auto s = src.p[i]; dst[i_rev] = { static_cast(s.real()), static_cast(s.imag()) }; } } template void fft_swap(const std::array& src, std::array& dst) { static_assert(power_of_two(N), "only defined for N == power of two"); for(size_t i=0; i> (32 - log_2(N)); const auto s = src[i]; dst[i_rev] = { static_cast(s.real()), static_cast(s.imag()) }; } } template void fft_swap(const std::array& src, std::array& dst) { static_assert(power_of_two(N), "only defined for N == power of two"); for(size_t i=0; i> (32 - log_2(N)); dst[i_rev] = src[i]; } } template void fft_swap_in_place(std::array& data) { static_assert(power_of_two(N), "only defined for N == power of two"); for(size_t i=0; i> (32 - log_2(N)); std::swap(data[i], data[i_rev]); } } /* http://beige.ucs.indiana.edu/B673/node14.html */ /* http://www.drdobbs.com/cpp/a-simple-and-efficient-fft-implementatio/199500857?pgno=3 */ template void fft_c_preswapped(std::array& data, const size_t from, const size_t to) { static_assert(power_of_two(N), "only defined for N == power of two"); constexpr auto K = log_2(N); if ((to > K) || (from > K)) return; constexpr size_t K_max = 8; static_assert(K <= K_max, "No FFT twiddle factors for K > 8"); static constexpr std::array, K_max> wp_table { { { -2.0f, 0.0f }, // 2 { -1.0f, -1.0f }, // 4 { -0.2928932188134524756f, -0.7071067811865475244f }, // 8 { -0.076120467488713243872f, -0.38268343236508977173f }, // 16 { -0.019214719596769550874f, -0.19509032201612826785f }, // 32 { -0.0048152733278031137552f, -0.098017140329560601994f }, // 64 { -0.0012045437948276072852f, -0.049067674327418014255f }, // 128 { -0.00030118130379577988423f, -0.024541228522912288032f }, // 256 } }; /* Provide data to this function, pre-swapped. */ for(size_t k = from; k < to; k++) { const size_t mmax = 1 << k; const auto wp = wp_table[k]; T w { 1.0f, 0.0f }; for(size_t m = 0; m < mmax; ++m) { for(size_t i = m; i < N; i += mmax * 2) { const size_t j = i + mmax; const T temp = w * data[j]; data[j] = data[i] - temp; data[i] += temp; } w += w * wp; } } } /* ifft(v,N): [0] If N==1 then return. [1] For k = 0 to N/2-1, let ve[k] = v[2*k] [2] Compute ifft(ve, N/2); [3] For k = 0 to N/2-1, let vo[k] = v[2*k+1] [4] Compute ifft(vo, N/2); [5] For m = 0 to N/2-1, do [6] through [9] [6] Let w.real() = cos(2*PI*m/N) [7] Let w.imag() = sin(2*PI*m/N) [8] Let v[m] = ve[m] + w*vo[m] [9] Let v[m+N/2] = ve[m] - w*vo[m] */ template void ifft( T *v, int n, T *tmp ) { if(n>1) { int k,m; T z, w, *vo, *ve; ve = tmp; vo = tmp+n/2; for(k=0; k