/* * Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc. * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "string_format.hpp" using namespace std::literals; /* This takes a pointer to the end of a buffer * and fills it backwards towards the front. * The return value 'q' is a pointer to the start. * TODO: use std::array for all this. */ template static char* to_string_dec_uint_internal( char* p, Int n) { *p = 0; auto q = p; do { *(--q) = n % 10 + '0'; n /= 10; } while (n != 0); return q; } static char* to_string_dec_uint_pad_internal( char* const term, const uint32_t n, const int32_t l, const char fill) { auto q = to_string_dec_uint_internal(term, n); // Fill with padding if needed. // TODO: use std::array instead. There's no // bounds checks on any of this! if (fill) { while ((term - q) < l) { *(--q) = fill; } } return q; } static char* to_string_dec_uint_internal(uint64_t n, StringFormatBuffer& buffer, size_t& length) { auto end = &buffer.back(); auto start = to_string_dec_uint_internal(end, n); length = end - start; return start; } char* to_string_dec_uint(uint64_t n, StringFormatBuffer& buffer, size_t& length) { return to_string_dec_uint_internal(n, buffer, length); } char* to_string_dec_int(int64_t n, StringFormatBuffer& buffer, size_t& length) { bool negative = n < 0; auto start = to_string_dec_uint(negative ? -n : n, buffer, length); if (negative) { *(--start) = '-'; ++length; } return start; } std::string to_string_dec_int(int64_t n) { StringFormatBuffer b{}; size_t len{}; char* str = to_string_dec_int(n, b, len); return std::string(str, len); } std::string to_string_dec_uint(uint64_t n) { StringFormatBuffer b{}; size_t len{}; char* str = to_string_dec_uint(n, b, len); return std::string(str, len); } std::string to_string_bin( const uint32_t n, const uint8_t l) { char p[33]; for (uint8_t c = 0; c < l; c++) { if (n & (1 << (l - 1 - c))) p[c] = '1'; else p[c] = '0'; } p[l] = 0; return p; } std::string to_string_dec_uint( const uint32_t n, const int32_t l, const char fill) { char p[16]; auto term = p + sizeof(p) - 1; auto q = to_string_dec_uint_pad_internal(term, n, l, fill); // Right justify. // (This code is redundant and won't do anything if a fill character was specified) while ((term - q) < l) { *(--q) = ' '; } return q; } std::string to_string_dec_int( const int32_t n, const int32_t l, const char fill) { const size_t negative = (n < 0) ? 1 : 0; uint32_t n_abs = negative ? -n : n; char p[16]; auto term = p + sizeof(p) - 1; auto q = to_string_dec_uint_pad_internal(term, n_abs, l - negative, fill); // Add sign. if (negative) { *(--q) = '-'; } // Right justify. // (This code is redundant and won't do anything if a fill character was specified) while ((term - q) < l) { *(--q) = ' '; } return q; } std::string to_string_decimal(float decimal, int8_t precision) { double integer_part; double fractional_part; std::string result; fractional_part = modf(decimal, &integer_part) * pow(10, precision); if (fractional_part < 0) { fractional_part = -fractional_part; } result = to_string_dec_int(integer_part) + "." + to_string_dec_uint(fractional_part, precision, '0'); return result; } // right-justified frequency in Hz, always 10 characters std::string to_string_freq(const uint64_t f) { std::string final_str{""}; if (f < 1000000) final_str = to_string_dec_int(f, 10, ' '); else final_str = to_string_dec_int(f / 1000000, 4) + to_string_dec_int(f % 1000000, 6, '0'); return final_str; } // right-justified frequency in MHz, rounded to 4 decimal places, always 9 characters std::string to_string_short_freq(const uint64_t f) { auto final_str = to_string_dec_int(f / 1000000, 4) + "." + to_string_dec_int(((f + 50) / 100) % 10000, 4, '0'); return final_str; } // non-justified non-padded frequency in MHz, rounded to specified number of decimal places std::string to_string_rounded_freq(const uint64_t f, int8_t precision) { std::string final_str{""}; static constexpr uint32_t pow10[7] = { 1, 10, 100, 1000, 10000, 100000, 1000000, }; if (precision < 1) { final_str = to_string_dec_uint(f / 1000000); } else { if (precision > 6) precision = 6; uint32_t divisor = pow10[6 - precision]; final_str = to_string_dec_uint(f / 1000000) + "." + to_string_dec_int(((f + (divisor / 2)) / divisor) % pow10[precision], precision, '0'); } return final_str; } std::string to_string_time_ms(const uint32_t ms) { std::string final_str{""}; if (ms < 1000) { final_str = to_string_dec_uint(ms) + "ms"; } else { auto seconds = ms / 1000; if (seconds >= 60) final_str = to_string_dec_uint(seconds / 60) + "m"; return final_str + to_string_dec_uint(seconds % 60) + "s"; } return final_str; } static char* to_string_hex_internal(char* ptr, uint64_t value, uint8_t length) { if (length == 0) return ptr; *(--ptr) = uint_to_char(value & 0xF, 16); return to_string_hex_internal(ptr, value >> 4, length - 1); } std::string to_string_hex(uint64_t value, int32_t length) { constexpr uint8_t buffer_length = 33; char buffer[buffer_length]; char* ptr = &buffer[buffer_length - 1]; *ptr = '\0'; length = std::min(buffer_length - 1, length); return to_string_hex_internal(ptr, value, length); } std::string to_string_hex_array(uint8_t* array, int32_t length) { std::string str_return; str_return.reserve(length); for (uint8_t i = 0; i < length; i++) str_return += to_string_hex(array[i], 2); return str_return; } std::string to_string_datetime(const rtc::RTC& value, const TimeFormat format) { std::string string{""}; if (format == YMDHMS) { string += to_string_dec_uint(value.year(), 4) + "-" + to_string_dec_uint(value.month(), 2, '0') + "-" + to_string_dec_uint(value.day(), 2, '0') + " "; } string += to_string_dec_uint(value.hour(), 2, '0') + ":" + to_string_dec_uint(value.minute(), 2, '0'); if ((format == YMDHMS) || (format == HMS)) string += ":" + to_string_dec_uint(value.second(), 2, '0'); return string; } std::string to_string_timestamp(const rtc::RTC& value) { return to_string_dec_uint(value.year(), 4, '0') + to_string_dec_uint(value.month(), 2, '0') + to_string_dec_uint(value.day(), 2, '0') + to_string_dec_uint(value.hour(), 2, '0') + to_string_dec_uint(value.minute(), 2, '0') + to_string_dec_uint(value.second(), 2, '0'); } std::string to_string_FAT_timestamp(const FATTimestamp& timestamp) { return to_string_dec_uint((timestamp.FAT_date >> 9) + 1980) + "-" + to_string_dec_uint((timestamp.FAT_date >> 5) & 0xF, 2, '0') + "-" + to_string_dec_uint((timestamp.FAT_date & 0x1F), 2, '0') + " " + to_string_dec_uint((timestamp.FAT_time >> 11), 2, '0') + ":" + to_string_dec_uint((timestamp.FAT_time >> 5) & 0x3F, 2, '0'); } std::string to_string_file_size(uint32_t file_size) { static const std::string suffix[5] = {"B", "kB", "MB", "GB", "??"}; size_t suffix_index = 0; while (file_size >= 1024) { file_size /= 1024; suffix_index++; } if (suffix_index > 4) suffix_index = 4; return to_string_dec_uint(file_size) + suffix[suffix_index]; } std::string unit_auto_scale(double n, const uint32_t base_unit, uint32_t precision) { const uint32_t powers_of_ten[5] = {1, 10, 100, 1000, 10000}; std::string string{""}; uint32_t prefix_index = base_unit; double integer_part; double fractional_part; precision = std::min((uint32_t)4, precision); while (n > 1000) { n /= 1000.0; prefix_index++; } fractional_part = modf(n, &integer_part) * powers_of_ten[precision]; if (fractional_part < 0) fractional_part = -fractional_part; string = to_string_dec_int(integer_part); if (precision) string += '.' + to_string_dec_uint(fractional_part, precision, '0'); if (prefix_index != 3) string += unit_prefix[prefix_index]; return string; } double get_decimals(double num, int16_t mult, bool round) { num -= int(num); // keep decimals only num *= mult; // Shift decimals into integers if (!round) return num; int16_t intnum = int(num); // Round it up if necessary num -= intnum; // Get decimal part if (num > .5) intnum++; // Round up return intnum; } static const char* whitespace_str = " \t\r\n"; std::string trim(std::string_view str) { auto first = str.find_first_not_of(whitespace_str); if (first == std::string::npos) return {}; auto last = str.find_last_not_of(whitespace_str); return std::string{str.substr(first, last - first + 1)}; } std::string trimr(std::string_view str) { size_t last = str.find_last_not_of(whitespace_str); return std::string{last != std::string::npos ? str.substr(0, last + 1) : ""}; } std::string truncate(std::string_view str, size_t length) { return std::string{str.length() <= length ? str : str.substr(0, length)}; } uint8_t char_to_uint(char c, uint8_t radix) { uint8_t v = 0; if (c >= '0' && c <= '9') v = c - '0'; else if (c >= 'A' && c <= 'F') v = c - 'A' + 10; // A is dec: 10 else if (c >= 'a' && c <= 'f') v = c - 'a' + 10; // A is dec: 10 return v < radix ? v : 0; } char uint_to_char(uint8_t val, uint8_t radix) { if (val >= radix) return 0; if (val < 10) return '0' + val; else return 'A' + val - 10; // A is dec: 10 }