/* * Copyright (C) 2013 Jared Boone, ShareBrained Technology, Inc. * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifndef __DSP_FFT_H__ #define __DSP_FFT_H__ #include #include #include #include #include #include #include "dsp_types.hpp" #include "complex.hpp" #include "hal.h" namespace std { /* https://github.com/AE9RB/fftbench/blob/master/cxlr.hpp * Nice trick from AE9RB (David Turnbull) to get compiler to produce simpler * fma (fused multiply-accumulate) instead of worrying about NaN handling */ inline complex operator*(const complex& v1, const complex& v2) { return complex { v1.real() * v2.real() - v1.imag() * v2.imag(), v1.real() * v2.imag() + v1.imag() * v2.real() }; } } /* namespace std */ constexpr bool power_of_two(const size_t n) { return (n & (n - 1)) == 0; } constexpr size_t log_2(const size_t n, const size_t p = 0) { return (n <= 1) ? p : log_2(n / 2, p + 1); } template void fft_swap(const buffer_c16_t src, std::array& dst) { static_assert(power_of_two(N), "only defined for N == power of two"); for(size_t i=0; i> (32 - log_2(N)); const auto s = src.p[i]; dst[i_rev] = { static_cast(s.real()), static_cast(s.imag()) }; } } template void fft_swap(const std::array& src, std::array& dst) { static_assert(power_of_two(N), "only defined for N == power of two"); for(size_t i=0; i> (32 - log_2(N)); const auto s = src[i]; dst[i_rev] = { static_cast(s.real()), static_cast(s.imag()) }; } } template void fft_swap(const std::array& src, std::array& dst) { static_assert(power_of_two(N), "only defined for N == power of two"); for(size_t i=0; i> (32 - log_2(N)); dst[i_rev] = src[i]; } } template void fft_swap_in_place(std::array& data) { static_assert(power_of_two(N), "only defined for N == power of two"); for(size_t i=0; i> (32 - log_2(N)); std::swap(data[i], data[i_rev]); } } /* http://beige.ucs.indiana.edu/B673/node14.html */ /* http://www.drdobbs.com/cpp/a-simple-and-efficient-fft-implementatio/199500857?pgno=3 */ template void fft_c_preswapped(std::array& data) { static_assert(power_of_two(N), "only defined for N == power of two"); constexpr auto K = log_2(N); constexpr size_t K_max = 8; static_assert(K <= K_max, "No FFT twiddle factors for K > 8"); static constexpr std::array, K_max> wp_table { { { -2.00000000000000000000000000000000f, 0.00000000000000000000000000000000f }, { -1.00000000000000000000000000000000f, -1.00000000000000000000000000000000f }, { -0.29289321881345242726268907063059f, -0.70710678118654746171500846685376f }, { -0.07612046748871323376128827931097f, -0.38268343236508978177923268049199f }, { -0.01921471959676954860407604996908f, -0.19509032201612824808378832130984f }, { -0.00481527332780311376897453001789f, -0.09801714032956060362877792613290f }, { -0.00120454379482760713659939000308f, -0.04906767432741801493456534899451f }, { -0.00030118130379577984830768988544f, -0.02454122852291228812360301958506f }, } }; /* Provide data to this function, pre-swapped. */ for(size_t k = 0; k < log_2(N); k++) { const size_t mmax = 1 << k; const auto wp = wp_table[k]; T w { 1.0f, 0.0f }; for(size_t m = 0; m < mmax; ++m) { for(size_t i = m; i < N; i += mmax * 2) { const size_t j = i + mmax; const T temp = w * data[j]; data[j] = data[i] - temp; data[i] += temp; } w += w * wp; } } } #endif/*__DSP_FFT_H__*/