/* * Copyright (C) 2016 Jared Boone, ShareBrained Technology, Inc. * Copyright (C) 2016 Furrtek * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "proc_replay.hpp" #include "sine_table_int8.hpp" #include "portapack_shared_memory.hpp" #include "event_m4.hpp" #include "utility.hpp" ReplayProcessor::ReplayProcessor() { channel_filter_low_f = taps_200k_decim_1.low_frequency_normalized * 1000000; channel_filter_high_f = taps_200k_decim_1.high_frequency_normalized * 1000000; channel_filter_transition = taps_200k_decim_1.transition_normalized * 1000000; spectrum_samples = 0; channel_spectrum.set_decimation_factor(1); configured = false; baseband_thread.start(); } // Change to 1 to enable buffer assertions in replay. #define BUFFER_SIZE_ASSERT 0 void ReplayProcessor::execute(const buffer_c8_t& buffer) { if (!configured || !stream) return; // Because this is actually adding samples, alias // oversample_rate so the math below is more clear. const size_t interpolation_factor = toUType(oversample_rate); // Wrap the IQ data array in a buffer with the correct sample_rate. buffer_c16_t iq_buffer{iq.data(), iq.size(), baseband_fs / interpolation_factor}; // The IQ data in stream is C16 format and needs to be converted to C8 (N * 2). // The data also needs to be interpolated so the effective sample rate is closer // to 4Mhz. Because interpolation repeats a sample multiple times, fewer bytes // are needed from the source stream in order to fill the buffer (count / oversample). // Together the C16->C8 conversion and the interpolation give the number of // bytes that need to be read from the source stream. const size_t samples_to_read = buffer.count / interpolation_factor; const size_t bytes_to_read = samples_to_read * sizeof(buffer_c16_t::Type); #if BUFFER_SIZE_ASSERT // Verify the output buffer size is divisible by the interpolation factor. if (samples_to_read * interpolation_factor != buffer.count) chDbgPanic("Output not div."); // Is the input smaple buffer big enough? if (samples_to_read > iq_buffer.count) chDbgPanic("IQ buf ovf."); #endif // Read the C16 IQ data from the source stream. size_t current_bytes_read = stream->read(iq_buffer.p, bytes_to_read); // Compute the number of samples were actually read from the source. size_t samples_read = current_bytes_read / sizeof(buffer_c16_t::Type); // Write converted source samples to the output buffer with interpolation. for (auto i = 0u; i < samples_read; ++i) { int8_t re_out = iq_buffer.p[i].real() >> 8; int8_t im_out = iq_buffer.p[i].imag() >> 8; auto out_value = buffer_c8_t::Type{re_out, im_out}; // Interpolate sample. for (auto j = 0u; j < interpolation_factor; ++j) { size_t index = i * interpolation_factor + j; buffer.p[index] = out_value; #if BUFFER_SIZE_ASSERT // Verify the index is within bounds. if (index >= buffer.count) chDbgPanic("Output bounds"); #endif } } // Update tracking stats. bytes_read += current_bytes_read; spectrum_samples += samples_read * interpolation_factor; if (spectrum_samples >= spectrum_interval_samples) { spectrum_samples -= spectrum_interval_samples; channel_spectrum.feed( iq_buffer, channel_filter_low_f, channel_filter_high_f, channel_filter_transition); // Inform UI about progress. txprogress_message.progress = bytes_read; txprogress_message.done = false; shared_memory.application_queue.push(txprogress_message); } } void ReplayProcessor::on_message(const Message* const message) { switch (message->id) { case Message::ID::UpdateSpectrum: case Message::ID::SpectrumStreamingConfig: channel_spectrum.on_message(message); break; case Message::ID::SampleRateConfig: sample_rate_config(*reinterpret_cast(message)); break; case Message::ID::ReplayConfig: configured = false; bytes_read = 0; replay_config(*reinterpret_cast(message)); break; // App has prefilled the buffers, we're ready to go now case Message::ID::FIFOData: configured = true; break; default: break; } } void ReplayProcessor::sample_rate_config(const SampleRateConfigMessage& message) { baseband_fs = message.sample_rate * toUType(message.oversample_rate); oversample_rate = message.oversample_rate; baseband_thread.set_sampling_rate(baseband_fs); spectrum_interval_samples = baseband_fs / spectrum_rate_hz; } void ReplayProcessor::replay_config(const ReplayConfigMessage& message) { if (message.config) { stream = std::make_unique(message.config); // Tell application that the buffers and FIFO pointers are ready, prefill shared_memory.application_queue.push(sig_message); } else { stream.reset(); } } int main() { EventDispatcher event_dispatcher{std::make_unique()}; event_dispatcher.run(); return 0; }