/* * Copyright (C) 2020 Belousov Oleg * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "dsp_modulate.hpp" #include "sine_table_int8.hpp" #include "portapack_shared_memory.hpp" #include "tonesets.hpp" namespace dsp { namespace modulate { Modulator::~Modulator() { } Mode Modulator::get_mode() { return mode; } void Modulator::set_mode(Mode new_mode) { mode = new_mode; } void Modulator::set_over(uint32_t new_over) { over = new_over; } void Modulator::set_gain_shiftbits_vumeter_beep(float new_audio_gain, uint8_t new_audio_shift_bits_s16, bool new_play_beep) { // new_audio_shift_bits_s16 are the direct shift bits (FM mod >>x) , and it is fixed to >>8_FM (AK) or 4,5,6, (WM boost OFF) or 6,7 (WM boost ON) audio_gain = new_audio_gain; audio_shift_bits_s16_FM = new_audio_shift_bits_s16; // FM : >>8(AK) fixed , >>4,5,6 (WM boost OFF) if (new_audio_shift_bits_s16 == 8) { // FM : we are in AK codec IC => for AM-SSB-DSB we were using >>2 fixed (wm boost ON) . audio_shift_bits_s16_AM_DSB_SSB = 2; // AM-DSB-SSB: >>2(AK) fixed , >>0,1,2 (WM boost OFF) } else { audio_shift_bits_s16_AM_DSB_SSB = (new_audio_shift_bits_s16 - 4); // AM-DSB-SSB: >>0,1,2 (WM boost OFF), >>2,3 (WM boost ON) } play_beep = new_play_beep; } int32_t Modulator::apply_beep(int32_t sample_in, bool& configured_in, uint32_t& new_beep_index, uint32_t& new_beep_timer, TXProgressMessage& new_txprogress_message) { if (play_beep) { // We need to add audio beep sample. if (new_beep_timer) { new_beep_timer--; } else { new_beep_timer = baseband_fs * 0.05; // 50ms if (new_beep_index == BEEP_TONES_NB) { configured_in = false; shared_memory.application_queue.push(new_txprogress_message); } else { beep_gen.configure(beep_deltas[new_beep_index], 1.0); // config sequentially the audio beep tone. new_beep_index++; } } sample_in = beep_gen.process(0); // Get sample of the selected sequence of 6 beep tones , and overwrite audio sample. Mix 0%. } return sample_in; // Return audio mic scaled with gain , 8 bit sample or audio beep sample. } /// SSB::SSB() : hilbert() { mode = Mode::LSB; } void SSB::set_fs_div_factor(float new_bw_ssb) { switch ((int)new_bw_ssb / 1000) { case 2: fs_div_factor = 192; // TXBW_ssb = 2khz = BW_cut_off LPF = fs/4 ; BW_HT fs Hilbert Transform (4khz=fs/2) ==> (8k=fs) Hilbert_fs = 1.536.000/8000= 192 break; case 3: fs_div_factor = 128; // TXBW_ssb = 3khz = BW_cut_off LPF = fs/4 ; BW_HT fs Hilbert Transform (6khz=fs/2) ==> (12k=fs) Hilbert_fs = 1.536.000/12000= 128 break; default: fs_div_factor = 128; // TXBW_ssb = 3khz = BW_cut_off LPF = fs/4 ; BW_HT fs Hilbert Transform (6khz=fs/2) ==> (12k=fs) Hilbert_fs = 1.536.000/12000= 128 break; } } void SSB::execute(const buffer_s16_t& audio, const buffer_c8_t& buffer, bool& configured_in, uint32_t& new_beep_index, uint32_t& new_beep_timer, TXProgressMessage& new_txprogress_message, AudioLevelReportMessage& new_level_message, uint32_t& new_power_acc_count, uint32_t& new_divider) { // unused (void)configured_in; (void)new_beep_index; (void)new_beep_timer; (void)new_txprogress_message; // No way to activate correctly the roger beep in this option, Maybe not enough M4 CPU power , Let's block roger beep in SSB selection by now . int32_t sample = 0; int8_t re = 0, im = 0; for (size_t counter = 0; counter < buffer.count; counter++) { if (counter % fs_div_factor == 0) { // Ex. TX bw_ssb 3khz =fs/4 Hilbert Transform sample rate, 128 = 1.536.000 hz / 12.000 hz (fs H.T.) float i = 0.0, q = 0.0; // over = 1.536.000/24khz = 64 . (Mic audio has fixed SR in audio_p buffer[] = 24khz), but in tx mode , we are running Transceiver fs @tx = 1.536.000 Hz. sample = audio.p[counter / over] >> audio_shift_bits_s16_AM_DSB_SSB; // originally fixed >> 2, now >>2 for AK, 0,1,2,3 for WM (boost off) sample *= audio_gain; // Apply GAIN Scale factor to the audio TX modulation. // switch (mode) { // case Mode::LSB: hilbert.execute(sample / 32768.0f, i, q); // case Mode::USB: hilbert.execute(sample / 32768.0f, q, i); // default: break; // } i *= 256.0f; // Original 64.0f, now x 4 (+12 dB's SSB BB modulation) q *= 256.0f; // Original 64.0f, now x 4 (+12 dB's SSB BB modulation) switch (mode) { case Mode::LSB: re = q; im = i; break; case Mode::USB: re = i; im = q; break; default: re = 0; im = 0; break; } // re = q; // im = i; // break; } buffer.p[counter] = {re, im}; // Update vu-meter bar in the LCD screen. power_acc += (sample < 0) ? -sample : sample; // Power average for UI vu-meter if (new_power_acc_count) { new_power_acc_count--; } else { // power_acc_count = 0 new_power_acc_count = new_divider; new_level_message.value = power_acc / (new_divider * 8); // Why ? . This division is to adj vu-meter sentitivity, to match saturation point to red-muter . shared_memory.application_queue.push(new_level_message); power_acc = 0; } } } /// FM::FM() { mode = Mode::FM; } void FM::set_fm_delta(uint32_t new_delta) { fm_delta = new_delta; } void FM::set_tone_gen_configure(const uint32_t set_delta, const float set_tone_mix_weight) { tone_gen.configure(set_delta, set_tone_mix_weight); } void FM::execute(const buffer_s16_t& audio, const buffer_c8_t& buffer, bool& configured_in, uint32_t& new_beep_index, uint32_t& new_beep_timer, TXProgressMessage& new_txprogress_message, AudioLevelReportMessage& new_level_message, uint32_t& new_power_acc_count, uint32_t& new_divider) { int32_t sample = 0; int8_t re, im; for (size_t counter = 0; counter < buffer.count; counter++) { sample = audio.p[counter >> 6] >> audio_shift_bits_s16_FM; // Orig. >>8 , sample = audio.p[counter / over] >> 8; (not enough efficient running code, over = 1536000/240000= 64 ) sample *= audio_gain; // Apply GAIN Scale factor to the audio TX modulation. if (play_beep) { sample = apply_beep(sample, configured_in, new_beep_index, new_beep_timer, new_txprogress_message); // Apply beep -if selected - atom ,sample by sample. } else { // Update vu-meter bar in the LCD screen. power_acc += (sample < 0) ? -sample : sample; // Power average for UI vu-meter if (new_power_acc_count) { new_power_acc_count--; } else { // power_acc_count = 0 new_power_acc_count = new_divider; new_level_message.value = power_acc / (new_divider / 4); // Why ? . This division is to adj vu-meter sentitivity, to match saturation point to red-muter . shared_memory.application_queue.push(new_level_message); power_acc = 0; } // TODO: pending to optimize CPU running code. // So far , we can not handle all 3 issues at the same time (vu-meter , CTCSS, beep). sample = tone_gen.process(sample); // Add selected Key_Tone or CTCSS subtone , atom function() , sample by sample. } delta = sample * fm_delta; // Modulate FM phase += delta; sphase = phase >> 24; re = (sine_table_i8[(sphase + 64) & 255]); im = (sine_table_i8[sphase]); buffer.p[counter] = {re, im}; } } AM::AM() { mode = Mode::AM; } void AM::execute(const buffer_s16_t& audio, const buffer_c8_t& buffer, bool& configured_in, uint32_t& new_beep_index, uint32_t& new_beep_timer, TXProgressMessage& new_txprogress_message, AudioLevelReportMessage& new_level_message, uint32_t& new_power_acc_count, uint32_t& new_divider) { int32_t sample = 0; int8_t re = 0, im = 0; float q = 0.0; for (size_t counter = 0; counter < buffer.count; counter++) { if (counter % 128 == 0) { sample = audio.p[counter / over] >> audio_shift_bits_s16_AM_DSB_SSB; // originally fixed >> 2, now >>2 for AK, 0,1,2,3 for WM (boost off) sample *= audio_gain; // Apply GAIN Scale factor to the audio TX modulation. } if (play_beep) { sample = apply_beep(sample, configured_in, new_beep_index, new_beep_timer, new_txprogress_message) << 5; // Apply beep -if selected - atom sample by sample. } else { // Update vu-meter bar in the LCD screen. power_acc += (sample < 0) ? -sample : sample; // Power average for UI vu-meter if (new_power_acc_count) { new_power_acc_count--; } else { // power_acc_count = 0 new_power_acc_count = new_divider; new_level_message.value = power_acc / (new_divider * 8); // Why ?orig / (new_divider / 4); // Why ? shared_memory.application_queue.push(new_level_message); power_acc = 0; } } q = sample / 32768.0f; q *= 256.0f; // Original 64.0f,now x4 (+12 dB's BB_modulation in AM & DSB) switch (mode) { case Mode::AM: re = q + 80; im = q + 80; break; // Original DC add +20_DC_level=carrier,now x4 (+12dB's AM carrier) case Mode::DSB: re = q; im = q; break; default: break; } buffer.p[counter] = {re, im}; } } } // namespace modulate } // namespace dsp