/* * Copyright (C) 2015 Jared Boone, ShareBrained Technology, Inc. * Copyright (C) 2016 Furrtek * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "file.hpp" #include #include #include Optional File::open_fatfs(const std::filesystem::path& filename, BYTE mode) { auto result = f_open(&f, reinterpret_cast(filename.c_str()), mode); if (result == FR_OK) { if (mode & FA_OPEN_ALWAYS) { const auto result = f_lseek(&f, f_size(&f)); if (result != FR_OK) { f_close(&f); } } } if (result == FR_OK) { return {}; } else { return {result}; } } Optional File::open(const std::filesystem::path& filename) { return open_fatfs(filename, FA_READ); } Optional File::append(const std::filesystem::path& filename) { return open_fatfs(filename, FA_WRITE | FA_OPEN_ALWAYS); } Optional File::create(const std::filesystem::path& filename) { return open_fatfs(filename, FA_WRITE | FA_CREATE_ALWAYS); } File::~File() { f_close(&f); } File::Result File::read(void* data, Size bytes_to_read) { UINT bytes_read = 0; const auto result = f_read(&f, data, bytes_to_read, &bytes_read); if (result == FR_OK) { return {static_cast(bytes_read)}; } else { return {static_cast(result)}; } } File::Result File::write(const void* data, Size bytes_to_write) { UINT bytes_written = 0; const auto result = f_write(&f, data, bytes_to_write, &bytes_written); if (result == FR_OK) { if (bytes_to_write == bytes_written) { return {static_cast(bytes_written)}; } else { return Error{FR_DISK_FULL}; } } else { return {static_cast(result)}; } } File::Result File::seek(Offset new_position) { /* NOTE: Returns *old* position, not new position */ const auto old_position = f_tell(&f); const auto result = f_lseek(&f, new_position); if (result != FR_OK) { return {static_cast(result)}; } if (f_tell(&f) != new_position) { return {static_cast(FR_BAD_SEEK)}; } return {static_cast(old_position)}; } File::Size File::size() const { return f_size(&f); } Optional File::write_line(const std::string& s) { const auto result_s = write(s.c_str(), s.size()); if (result_s.is_error()) { return {result_s.error()}; } const auto result_crlf = write("\r\n", 2); if (result_crlf.is_error()) { return {result_crlf.error()}; } return {}; } Optional File::sync() { const auto result = f_sync(&f); if (result == FR_OK) { return {}; } else { return {result}; } } /* Range used for filename matching. * Start and end are inclusive positions of "???" */ struct pattern_range { size_t start; size_t end; }; /* Finds the last file matching the specified pattern that * can be automatically incremented (digits in pattern). * NB: assumes a patten with contiguous '?' like "FOO_???.txt". */ static std::filesystem::path find_last_ordinal_match( const std::filesystem::path& folder, const std::filesystem::path& pattern, pattern_range range) { auto last_match = std::filesystem::path(); auto can_increment = [range](const auto& path) { for (auto i = range.start; i <= range.end; ++i) if (!isdigit(path.native()[i])) return false; return true; }; for (const auto& entry : std::filesystem::directory_iterator(folder, pattern)) { if (std::filesystem::is_regular_file(entry.status()) && can_increment(entry.path())) { const auto& match = entry.path(); if (match > last_match) { last_match = match; } } } return last_match; } /* Given a file path like "FOO_0001.txt" increment it to "FOO_0002.txt". */ static std::filesystem::path increment_filename_ordinal( const std::filesystem::path& path, pattern_range range) { auto name = path.filename().native(); for (auto i = range.end; i >= range.start; --i) { auto& c = name[i]; // Not a digit or would overflow the counter. if (c < u'0' || c > u'9' || (c == u'9' && i == range.start)) return {}; if (c == u'9') c = '0'; else { c++; break; } } return {name}; } std::filesystem::path next_filename_matching_pattern(const std::filesystem::path& filename_pattern) { auto path = filename_pattern.parent_path(); auto pattern = filename_pattern.filename(); auto range = pattern_range{ pattern.native().find_first_of(u'?'), pattern.native().find_last_of(u'?')}; const auto match = find_last_ordinal_match(path, pattern, range); if (match.empty()) { auto pattern_str = pattern.native(); for (auto i = range.start; i <= range.end; ++i) pattern_str[i] = u'0'; return path / pattern_str; } auto next_name = increment_filename_ordinal(match, range); return next_name.empty() ? next_name : path / next_name; } std::vector scan_root_files(const std::filesystem::path& directory, const std::filesystem::path& extension) { std::vector file_list{}; for (const auto& entry : std::filesystem::directory_iterator(directory, extension)) { if (std::filesystem::is_regular_file(entry.status())) { file_list.push_back(entry.path()); } } return file_list; } std::vector scan_root_directories(const std::filesystem::path& directory) { std::vector directory_list{}; for (const auto& entry : std::filesystem::directory_iterator(directory, "*")) { if (std::filesystem::is_directory(entry.status())) { directory_list.push_back(entry.path()); } } return directory_list; } std::filesystem::filesystem_error delete_file(const std::filesystem::path& file_path) { return {f_unlink(reinterpret_cast(file_path.c_str()))}; } std::filesystem::filesystem_error rename_file( const std::filesystem::path& file_path, const std::filesystem::path& new_name) { return {f_rename(reinterpret_cast(file_path.c_str()), reinterpret_cast(new_name.c_str()))}; } std::filesystem::filesystem_error copy_file( const std::filesystem::path& file_path, const std::filesystem::path& dest_path) { // Decent compromise between memory and speed. constexpr size_t buffer_size = 512; uint8_t buffer[buffer_size]; File src; File dst; auto error = src.open(file_path); if (error.is_valid()) return error.value(); error = dst.create(dest_path); if (error.is_valid()) return error.value(); while (true) { auto result = src.read(buffer, buffer_size); if (result.is_error()) return result.error(); result = dst.write(buffer, result.value()); if (result.is_error()) return result.error(); if (result.value() < buffer_size) break; } return {}; } FATTimestamp file_created_date(const std::filesystem::path& file_path) { FILINFO filinfo; f_stat(reinterpret_cast(file_path.c_str()), &filinfo); return {filinfo.fdate, filinfo.ftime}; } std::filesystem::filesystem_error make_new_file( const std::filesystem::path& file_path) { File f; auto result = f.create(file_path); return result.is_valid() ? result.value() : std::filesystem::filesystem_error{}; } std::filesystem::filesystem_error make_new_directory( const std::filesystem::path& dir_path) { return {f_mkdir(reinterpret_cast(dir_path.c_str()))}; } std::filesystem::filesystem_error ensure_directory( const std::filesystem::path& dir_path) { if (dir_path.empty() || std::filesystem::file_exists(dir_path)) return {}; auto result = ensure_directory(dir_path.parent_path()); if (result.code()) return result; return make_new_directory(dir_path); } namespace std { namespace filesystem { std::string filesystem_error::what() const { switch (err) { case FR_OK: return "ok"; case FR_DISK_ERR: return "disk error"; case FR_INT_ERR: return "insanity detected"; case FR_NOT_READY: return "SD card not ready"; case FR_NO_FILE: return "no file"; case FR_NO_PATH: return "no path"; case FR_INVALID_NAME: return "invalid name"; case FR_DENIED: return "denied"; case FR_EXIST: return "exists"; case FR_INVALID_OBJECT: return "invalid object"; case FR_WRITE_PROTECTED: return "write protected"; case FR_INVALID_DRIVE: return "invalid drive"; case FR_NOT_ENABLED: return "not enabled"; case FR_NO_FILESYSTEM: return "no filesystem"; case FR_MKFS_ABORTED: return "mkfs aborted"; case FR_TIMEOUT: return "timeout"; case FR_LOCKED: return "locked"; case FR_NOT_ENOUGH_CORE: return "not enough core"; case FR_TOO_MANY_OPEN_FILES: return "too many open files"; case FR_INVALID_PARAMETER: return "invalid parameter"; case FR_EOF: return "end of file"; case FR_DISK_FULL: return "disk full"; case FR_BAD_SEEK: return "bad seek"; case FR_UNEXPECTED: return "unexpected"; default: return "unknown"; } } path path::parent_path() const { const auto index = _s.find_last_of(preferred_separator); if (index == _s.npos) { return {}; // NB: Deviation from STL. } else { return _s.substr(0, index); } } path path::extension() const { const auto t = filename().native(); const auto index = t.find_last_of(u'.'); if (index == t.npos) { return {}; } else { return t.substr(index); } } path path::filename() const { const auto index = _s.find_last_of(preferred_separator); if (index == _s.npos) { return _s; } else { return _s.substr(index + 1); } } path path::stem() const { const auto t = filename().native(); const auto index = t.find_last_of(u'.'); if (index == t.npos) { return t; } else { return t.substr(0, index); } } std::string path::string() const { std::wstring_convert, path::value_type> conv; return conv.to_bytes(native()); } path& path::replace_extension(const path& replacement) { const auto t = extension().native(); _s.erase(_s.size() - t.size()); if (!replacement._s.empty()) { if (replacement._s.front() != u'.') { _s += u'.'; } _s += replacement._s; } return *this; } bool operator==(const path& lhs, const path& rhs) { return lhs.native() == rhs.native(); } bool operator!=(const path& lhs, const path& rhs) { return !(lhs == rhs); } bool operator<(const path& lhs, const path& rhs) { return lhs.native() < rhs.native(); } bool operator>(const path& lhs, const path& rhs) { return lhs.native() > rhs.native(); } path operator+(const path& lhs, const path& rhs) { path result = lhs; result += rhs; return result; } path operator/(const path& lhs, const path& rhs) { path result = lhs; result /= rhs; return result; } directory_iterator::directory_iterator( std::filesystem::path path, std::filesystem::path wild) : pattern{wild} { impl = std::make_shared(); const auto result = f_findfirst(&impl->dir, &impl->filinfo, reinterpret_cast(path.c_str()), reinterpret_cast(pattern.c_str())); if (result != FR_OK || impl->filinfo.fname[0] == (TCHAR)'\0') { impl.reset(); // TODO: Throw exception if/when I enable exceptions... } } directory_iterator& directory_iterator::operator++() { const auto result = f_findnext(&impl->dir, &impl->filinfo); if ((result != FR_OK) || (impl->filinfo.fname[0] == 0)) { impl.reset(); } return *this; } bool is_directory(const file_status s) { return (s & AM_DIR); } bool is_regular_file(const file_status s) { return !(s & AM_DIR); } bool file_exists(const path& file_path) { FILINFO filinfo; auto fr = f_stat(reinterpret_cast(file_path.c_str()), &filinfo); return fr == FR_OK; } bool is_directory(const path& file_path) { FILINFO filinfo; auto fr = f_stat(reinterpret_cast(file_path.c_str()), &filinfo); return fr == FR_OK && is_directory(static_cast(filinfo.fattrib)); } space_info space(const path& p) { DWORD free_clusters{0}; FATFS* fs; if (f_getfree(reinterpret_cast(p.c_str()), &free_clusters, &fs) == FR_OK) { #if _MAX_SS != _MIN_SS static_assert(false, "FatFs not configured for fixed sector size"); #else const std::uintmax_t cluster_bytes = fs->csize * _MIN_SS; return { (fs->n_fatent - 2) * cluster_bytes, free_clusters * cluster_bytes, free_clusters * cluster_bytes, }; #endif } else { return {0, 0, 0}; } } } /* namespace filesystem */ } /* namespace std */